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Abstract 

 
With the increasing global stock of vehicles, traffic congestion is becoming more severe and costly in many urban 
road networks. Road network modeling and optimization are essential tools in predicting traffic flow and reducing 
network congestion. Markov chains are remarkably capable in modeling complex, dynamic, and large-scale networks; 
Google’s PageRank algorithm is a living proof. In this article, we leverage Markov chains theory and its powerful 
statistical analysis tools to model urban road networks and infer road network performance and traffic congestion 
patterns, and propose an optimization approach that is based on Genetic Algorithm to model network-wide 
optimization decisions. Such decisions target relief from traffic congestion arising from sudden network changes (e.g. 
rapid increase in vehicles flow, or lanes and roads closures). The proposed network optimization approach can be used 
in time-sensitive decision making situations such as crisis response management, where decision time requirements 
for finding optimal network design to handle such abrupt changes typically don’t allow for the traditional agent-based 
simulation and iterative network design approaches. We detail the mathematical modeling and algorithmic 
optimization approach and present preliminary results from a sample application. 
 
Keywords 
Operations research, Markov chains, road network optimization, genetic algorithms 
 
1. Introduction 
 
Traffic congestion is growing fast in major cities around the world due to the increasing global stock of vehicles. 
Actually, it is projected that the global stock of vehicles will increase from 800 million vehicles in 2002 to over 2 
billion vehicles by 2030 [1]. Often, choices made in developing transportation infrastructure have profound impacts 
on network performance. Transportation authorities typically employee a mixture of transportation network evaluation 
and design techniques to help it understand current and future challenges of this complex problem and produce 
transportation network solutions to meet such challenges. These approaches typically fall into one of two categories. 
First, traffic simulation which simulates existing or proposed road network traffic [2,3] with varying levels of 
granularity that enables different levels of accuracy in a trade off with computational cost. Second, static and dynamic 
traffic assignment models that are based on road network equilibrium approaches to estimate congestion and design 
road network solutions to minimize it [3,4]. Although both approaches can be very useful in certain applications, both 
suffer from shortcomings that prevent their use in other applications: 1) traffic simulation computational cost is 
typically very high such that real time analysis is not possible, 2) traffic assignment models utilize a unified driver 
behavior, i.e. based on user equilibrium, that assumes uniform driver’s knowledge of the entire network performance 
which allow them to select routes accordingly.   
 
In this article we aim to optimize the efficiency of existing transportation infrastructure by employing a recently 
developed road network evaluation approach, which is inspired by Google’s PageRank algorithm and was applied to 
the traffic assignment problem to predict vehicles movement in urban road networks [5,6]. Our work builds on this 
evaluation approach and utilizes Genetic Algorithm (GA) to optimize a road network’s traffic pattern through 
selectively converting two-way roads to one-way roads to arrive at an improved road network performance without 
requiring infrastructure network modification such as lane additions or road constructions. This approach can be 
utilized in time-sensitive decision making situations, such as crisis response management, when sudden and 
unpredicted traffic pattern changes take place in a network due to unforeseen events (such as localized disasters, or 
major accidents) rendering parts of the network heavily congested as a result of the event. Finding optimal network 



design to handle such abrupt changes typically don’t allow for the traditional agent-based simulation and iterative 
network design approaches. Although our approach utilizes GA, which typically is associated with long optimization 
runs, our experimental results demonstrate that our approach produces considerable network performance 
improvement for a real size city in a relatively short timeframe, allowing this approach to be deployed when such 
time-sensitive decision making is needed. This can be characterized as an intelligent road network traffic pattern 
design system, one which can analyze complex existing networks and suggest optimal solutions taking into 
consideration far reaching inter-dependencies of such changes on the entire network. 
 
During the last few decades, urban network modeling has received great attention – see [7] for a comprehensive review 
on urban network models and several model classification schemes. One popular approach to model urban network is 
using flow models which are usually classified according to their representation granularity of traffic flow and 
behavior into three models: microscopic, macroscopic, and mesoscopic. Network equilibrium models are typically 
used to model and solve road/transportation Network Design Problem. Different approaches that generally utilize the 
bi-level user equilibrium approach were proposed in the literature to model and solve the Network Design. The 
Majority of these approaches are based on the assumption that road users’ behavior can be predicted by User 
Equilibrium equations. For example, Zhang and Gao (2007) utilize a bi-level model, where the upper-level model 
minimizes total system cost and the lower-level model accomplishes user equilibrium assignment, to solve a proposed 
lane reallocation (during peak periods) problem. Long, et.al. (2010) proposed a turning restriction road network design 
problem and used bi-level optimization model to minimize total system travel time using branch and bound strategies. 
Long, et.al. (2014) extended the problem to a bi-objective, bi-level optimization problem where the total system travel 
time and total vehicle emissions are minimized using artificial bee colony algorithm (ABC). 
 
Despite User Equilibrium popularity in literature, little effort has been expended to determine whether real world 
network flow patterns are accurately described by it [11]. Furthermore, models incorporating more realistic behavior 
principles suffer from solution methodology convergence issues [4], which complicates its application to realistic 
situations. Alternatively, the use of Markov chains to model road networks has become of interest due to their 
capability in modeling complex, dynamic, and large-scale networks. Although Markov chains use in transportation 
systems is diverse and numerous, its application to traffic assignment and road network design problems is just starting 
to gain attention recently. This line of research can be traced to earlier studies, e.g. [12-15], however, it was still a 
novel and not yet widely utilized approach until researchers started to apply inspirations from Google’s PageRank 
algorithm to the traffic assignment problem. One of the early applications can be found in [5] which proposed the use 
of the PageRank algorithm to predict human movements in urban road networks. Nevertheless, this approach was first 
fully analyzed by Crisostomi et al. (2011) through a macroscopic model inspired by Google’s PageRank algorithm. 
The authors model road networks as Markov chains applying its analytical tools to infer non-evident properties and 
compare its theoretical expectations to network characteristics obtained through simulation results, validating the new 
approach. It is noteworthy that the proposed model depends on easily accessible data such as: ratio of vehicles moving 
between road links on intersections, road link lengths, road link average vehicles speed, which are available through 
modern road network sensory infrastructures. Faizrahnemoon et al. (2015) applied the same Markov chain model 
proposed in [6] to multi modal public transportation networks, and proposed network design changes to improve the 
network performance. Reiter (2015) applied a similar Markov chains model to the greater Philadelphia region highway 
network by modeling links between highway exists as the Markov chain states and basing his probabilities on historical 
data. While previous studies utilized Markov chains in analyzing road networks, this work contribution is the 
expansion of Markov chain use from network evaluation into network optimization using GA as the optimization 
vehicle. GA has been used in User Equilibrium models to optimize road networks. For example, Jia, et al. (2009) 
utilize a bi-level model to optimize road network design through the selection between candidate links through the use 
of GA, simulated annealing (SA), and ABC algorithm. Sharma & Mathew (2011) presented a multiobjective road 
network optimization model which minimizes emissions and travel time and used GA as the to solve the network 
design problem. Szeto et al. (2014) proposed a network design optimization problem that considers emissions and 
noise costs, and solved the problem using chemical reaction optimization and GA. However, optimizing road network 
design using Markov chains while utilizing GA, to the best of our knowledge, has not been investigated yet. 
 
The rest of this paper is organized as follows. First, we provide a brief primer on the use of Markov chains in road 
network evaluation. Next, we setup the problem, present the optimization model and GA approach. Then, we present 
experimental results on a real-size problem. Finally, we conclude the article and point to future work. 

  



2. Traffic Evaluation Model 
 
Our work utilizes the Markov chain road network evaluation model proposed by Crisostomi et al. (2011) which we 
summarize in this section. A Markov chain is a stochastic process characterized by the Markov property, which states 
that the future state depends only on the present state, or in other words, the probability of a random variable to be in 
a given state only depends on its previous state and not on the path it took to arrive at that previous state:  
 

   	  	  𝑃 𝑥$%& = 𝑗 	  𝑥$ = 𝑖) = 𝑃 𝑥$ = 𝑗	   𝑥$+& = 𝑖) 	  = 𝑝-.                (1) 
 
Throughout this article we use discrete-time, finite-state, homogeneous Markov chains. A Markov chain is completely 
described by its transition matrix 𝑃 = [𝑝-.], where  𝑝-. denotes the probability of moving from state 𝑖 to state 𝑗. If a 
Markov chain is ergodic, the steady state probabilities 𝜋 (aka stationary distribution) are given by 𝜋𝑃 = 𝜋. The vector 
𝜋 can also be calculated by finding 𝑃’s eigenvector that is associated with the eigenvalue 1. Finally, the mean first 
passage time (from any state to any other state) for a Markov chain is known as the Kemeny constant, and can be 
calculated from the 𝑃 eigenvalues ordered descending, such that 𝜆& = 1 and 𝜆- ≤ 1 for 𝑖 ≠ 1:  
 

𝐾 =
1

1 − 𝜆.

8

.9:

	  

   (2) 
Since Markov chains are frequently used to describe networks, it is also customary to utilize graph theory to describe 
the same networks. Consider the directed weighted graph 𝐺(𝑉, 𝐸, 𝑃) with node set 𝑉, edge set 𝐸, and weight matrix 
𝑡𝑃, consisting of the turning probabilities 𝑡𝑝-. from one edge to another, where 0 ≤ 𝑡𝑝-. ≤ 1 if (𝑖, 𝑗) ∈ 𝐸 and 𝑡𝑝-. = 0 
otherwise. Figure 1 shows two example intersections and some of their turning probabilities. Using this terminology, 
we can describe an entire city’s road network as a directed network graph and model it using Markov chains to analyze 
network properties and performance indicators, such as the Kemeny constant which has been used in the literature to 
measure the mean expected time to arrive at the different states from an arbitrary state. We refer to edges and roads 
interchangeably going forward. 
 

       
(a)     (b)  

Figure 1. Two example edge-to-edge turning probabilities. Figure 2. A simple road network with 16 edges. 
 
To illustrate the network evaluation method we consider the simple road network consisting of 16 edges 𝐸 =
(0, 1, … , 15), as shown in Figure 2. Let all edges share the same average speed of 60 km/hr, and width of 2-lanes 
except for edges 6, 7, 8, and 9 which are single lane roads. Lastly, let all edges be of equal length of 1 km except for 
edges 6 and 7 which are of length 1.5 km. Let the turning probabilities 𝑡𝑃 be: 
 

 
 

 
 

 𝑡𝑃 =  
 
 
 

 
 
Although the above turning probability matrix 𝑡𝑃 is also a Markov transition probability matrix, however it does not 
take into account that vehicles will take different times in traversing different roads due to differing road 



characteristics, i.e. average speed and length. This can be incorporated into the model by calculating 𝑝--, which is the 
self-loop probability. By computing and normalizing travel times 𝑡𝑡- for all edges such that the smallest travel time is 
1, we can compute the self-loop probability for all edges using eq.3, and the off-diagonal transition probabilities will 
be modified using eq.4. 

𝑝-- =
EEF+&
EEF

,	  	  	  	  	  	  	  	  	  𝑖 = 1, … , 𝑛     (3) 

 
𝑝-. = 1 − 𝑝-- 	  𝑡𝑝-., 𝑖 ≠ 𝑗      (4) 

 
The new Markov transition matrix 𝑃 (referred to as transition matrix onwards), is then used to calculate 𝜋 by finding 
𝑃’s eigenvector that is associated with the eigenvalue 1, as stated by the Perron-Frobenius theorem (Langville and 
Meyer 2006). Finally, given an estimated total number of vehicles 𝑉 traversing the road network, and road length 𝐿- 
and number of lanes 𝑁- data, one can calculate road vehicle density (vehicles/km/lane) using eq.5, which enables 
granular evaluation of traffic conditions at each of the network roads. In particular, road traffic conditions can be 
compared to reference values published by the Highway Capacity Manual (HCM2010), shown in Table 1.  
 

𝐷- =
KLF
MFNF

       (5) 

 
In conclusion of this section we list Figures 3(a through c) which illustrates the Markov chain evaluation model results 
for the simple road network example using a total of 100 vehicles on the network; Figure 3(a) shows stationary 
distribution probabilities for each of network roads, Figure 3(b) shoes traffic density after taking into consideration 
road length and number of lanes, and Figure 3(c) shows a heat map for simple network traffic density. 
 

Table 1. Highway level of service (LOS) and congestion conditions, adapted from (HCM2010) 
LOS Traffic Conditions Volume/Capacity Ratio Maximum Density (vehicle/km/lane) 

A Free 0.35 7 
B Stable 0.54 11 
C Stable 0.77 16 
D High Density 0.93 22 
E Near Capacity 1.00 28 
F Breakdown Unstable >28 

 

 
(a)           (b) 

 

 
(c) 

Figure 3. Markov chain evaluation model results for the simple road network consisting of 16 edges 
 
3. Optimization Method 
 
In heavily congested road networks, city planners and transportation authorities often turn to road direction conversion 
(two-way to one-way) for selected roads to enable larger traffic volume capacities and relieve congestions. Our 
approach is to design an optimization system that identifies direction conversion road candidates while evaluating the 
conversion total impact on the entire network, taking into consideration the interdependencies between different roads 



in the network. In the case of an abrupt congestion resulting from a localized event, this approach can be used to 
identify quick, temporary, and comprehensive road direction conversion response plan to alleviate the congestion. 
 
Therefore, the problem statement is: when a road network exhibits localized congestion due to unexpected traffic 
patterns, what is the set of roads that can be converted to one-way to help reduce the resulting congestion. Before 
defining our mathematical model, it will be beneficial to draw the reader’s attention to the fact that rows (columns) in 
a transition matrix represent outbound (inbound) transition probabilities from (into) a road. Now, since congestion 
reduction is our focus, we formulate the model to minimize the maximum vehicle density in the road network, 𝐷OPQ: 
 

minimize  𝐷OPQ 
s.t.:  

KLF
MRNF

≤ 𝐷OPQ       (6) 

𝜋𝑃 = 𝜋        (7) 
𝑃 = 𝐻T+&	  𝑃	  𝑋T       (8) 
𝐻T = 𝑑𝑖𝑎𝑔[	   𝑃	  𝑋T + 𝑂T 	  𝕝8]     (9) 

𝑂T
-,. = 1, 𝑖 = 𝑗,	  	  	   𝑃	  𝑋T	  𝕝8 - = 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      (10) 

𝑋T
-,. = 1, 𝑖 = 𝑗, 𝑎𝑛𝑑	  𝑟𝑜𝑎𝑑	  𝑖	  𝑓𝑙𝑜𝑤	  𝑖𝑠	  𝑢𝑛𝑎𝑙𝑡𝑒𝑟𝑒𝑑	  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (11) 

𝑋T
-,- + 𝑋T

e(-),e(-) > 0      (12) 

𝐿g = 2 − 𝑋T
e - ,e - 𝐿-      (13) 

𝑟 𝑖 = 𝑗	  	  	  	  	  𝑤ℎ𝑒𝑛	  𝑖, 𝑗	  𝑎𝑟𝑒	  𝑎	  𝑝𝑎𝑖𝑟	  𝑜𝑓	  𝑜𝑝𝑝𝑜𝑠𝑖𝑛𝑔	  𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛	  𝑟𝑜𝑎𝑑𝑠 (14)  
 where: 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑛        

 
In the above model, 𝑉, 𝐿-, 𝑁-, 𝑃 are estimated number of vehicles traversing the network at concurrently, road 𝑖 length, 
and road 𝑖 number of lanes, and network transition probability matrix, respectively, and are all collected data from the 
network under question. The diagonal decision variable matrix 𝑋T designed to determine road flow restriction, such 
that if 𝑋T

-,- = 0, then road 𝑖 inbound flow is completely eliminated (achieved by post multiplying 𝑋T with 𝑃 in eq.8), 
and 𝑋T

-,- = 1 when road 𝑖 inbound flow is unaltered. This eliminates all vehicle traffic on the affected road allowing 𝐿g 
for the opposite direction road to take twice its normal value, and effectively doubling the road capacity in the opposite 
direction, achieving the goal of converting a road to a single-direction road with double the traffic volume capacity. 
𝑃 is the modified transition probability matrix for the modified network as defined by the decision variable 𝑋T, and 𝜋 
is the stationary distribution vector associated with 𝑃. The diagonal matrix 𝐻T is a scaling matrix used to maintain 
transition probability proportions after the elimination of inbound transition probabilities after post multiplying 𝑋T 
with 𝑃. The diagonal matrix 𝑂T denotes absorbing states (roads); diagonal element 𝑂T-- = 1 when all transition 
probabilities for row 𝑖 is zero, or	   𝑃	  𝑋	  𝕝8 - = 0 after the elimination of inbound transition probabilities for road 𝑖. 
Vector 𝐿g is the new number of lanes based on the restriction of its opposite direction road. 𝕝8 is the column vector of 
all ones and size 𝑛. Finally, 𝑑𝑖𝑎𝑔[𝑎] denotes the diagonal matrix generated by vector 𝑎. However, the model presents 
multiple challenges in regard to solution methodology using mathematical programming methods, this is due to the 
non-linear constraints eq.7 and eq.8, and the use of 𝑑𝑖𝑎𝑔[𝑎] in eq.9 to create square diagonal matrices from vectors to 
achieve the scaling effect. These model shortcomings can be easily handled using GA. 
 
GA is an optimization search heuristic characterized by the repetitive evolution of a population of candidate solutions 
to the underling problem. It achieves evolution through crossover and mutation operations that generate new offspring 
candidate solutions from the previous population generation to explore new areas of the solution space using the best 
characteristics of previous population generations. For the GA to work efficiently in exploring the solution space, an 
effective scheme for generating feasible network candidates is needed. For this approach, we selected a solution gene 
encoding such that each gene represent one of three states for every pair of opposing direction roads; the three states 
are: no change, the first road direction is reversed, and the second road direction is reversed. This solution encoding 
allows for the elimination of constraint eq.12 while generating feasible network candidate solutions, and at the same 
time reduce the number of genes by half rendering the solution space (38) considerably more manageable. In addition, 
GA typically is more efficient when solving unconstrained problems. Since the remaining constrains are all equality 
constraints, they can all be incorporated into the objective function calculation subroutine used in the GA computer 
code. This allows for the unconstrained optimization of the problem defined above using GA. Applying the GA 



optimization approach to the simple network example discussed in section 3 proved to be trivial as the two best 
solutions of reversing links (6,9) or (7,8) were found in few generations with limited population size. This is expected 
as the solutions space (3k = 6,561) is not large. 
 
4. Experimental Results 
 
We present here experimental results from applying the proposed approach to a realistic size network, the island 
portion of the city of Abu Dhabi, UAE, and included 360 roads to model the main road arteries for the city, resulting 
in an impressive problem size (3&km = 7.6×10kq). In this experiment an assumption of 10,000 vehicles traversing the 
network simultaneously was made, and turning probabilities were generally set in a similar fashion to Figure 1(a) 
unless certain turns are not present/allowed by the nature of a junction, in which case the remaining probabilities were 
scaled to ensure a total probability of 1.0. The following GA parameters were utilized in this problem: chromosome 
size (180), population size (200), total generations (1000), cross over probability (50%), mutation probability (30%), 
gene mutation probability (2%), and top 20 individual solutions were kept for the following generation.  
 
Figure 5 summarize the GA run results in which a substantial improvement of 46.3% in maximum vehicle density 
was achieved; from 34.2 to 19.3 veh/km/lane. Although the best solution was only achieved at the later part of the 
optimization GA run, it is obvious that much of the gains in the objective function were achieved early on in the run 
(𝐷OPQ = 21 by generation 97). For this example the network Kemeny constant was also tracked for the best solutions 
in each generation, however it was not included in the objective function. Its an interesting observation that the 
Kemeny constant tend to increase as we optimize vehicle density. Although it may seem counter intuitive at first, it’s 
actually logical that as vehicle movement options is restricted in the network to minimize traffic congestion, the mean 
expected time to arrive at the different roads from an arbitrary road will increase as shorter path options get eliminated 
from the network. Figures 6.(a-d) show the network vehicle density and congestion in its starting stage and the final 
best solution from the GA run. Note that the optimized network achieves better vehicle density distribution among the 
entire network compared to the starting network. 
 
5. Conclusion and Future Work 
 
This article presented a novel approach to optimizing vehicle density distribution throughout the network while taking 
into consideration the complex interdependencies of such networks. The results show promising possibilities to utilize 
this approach as an automated traffic design system that can be deployed in crisis response management situations, 
were congestion reduction solutions are needed in short time frames, and the true optimality of the solution is of less 
importance since the impact time (the time the solution will be in effect) is typically limited to the presence of the 
event that triggered the situation. Using this approach coupled with a parallelized computing environment will allow 
for good-enough solutions to be generated considerably faster than what is possible through other methodologies such 
as agent based simulation and iterative design.  
 
This line of research can be extended in several directions: 1) the exploration of other heuristic search methodologies 
such Simulated Annealing, Artificial Bee Colony, among others, 2) incorporating local search techniques to improve 
the resulting solution especially in early generation termination cases due to decision time-sensitivity, 3) multi-
objective optimization to achieve best network balance solution where both vehicle density and the Kemeny constant 
are optimized, 4) investigating the environmental impact of such solutions if deployed for the long term, and 5) 
deriving a closed form mathematical model that is addressable by recent advances in convex optimization, specifically 
Semidefinite programing. 

 



  
Figure 5. GA run results summary: Maximum Vehicle  

Density and best fit network’s Kemeny constant 
 

  
(a) Traffic density – starting network  (b) Traffic density heat map – starting network 

  
(c) Traffic density – optimized network  (d) Traffic density heat map – optimized network 
 

Figure 6. Abu Dhabi traffic patter optimization results: starting and optimized networks 
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