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ABSTRACT With the advent of mobile crowdsensing, we now have the possibility of tapping into the sensing
capabilities of smartphones carried by citizens every day for the collection of information and intelligence
about cities and events. Finding the best group of crowdsensing participants that can satisfy a sensing task
in terms of data types required, while satisfying the quality, time, and budget constraints is a complex
problem. Indeed, the time-constrained and location-based nature of crowdsensing tasks, combined with
participants’ mobility, render the task of participants’ selection, a difficult task. In this paper, we propose a
comprehensive and practical mobile crowdsensing recruitment model that offers reliability and quality-based
approach for selecting the most reliable group of participants able to provide the best quality possible for the
required sensory data. In our model, we adopt a group-based approach for the selection, in which a group
of participants (gathered into sites) collaborate to achieve the sensing task using the combined capabilities
of their smartphones. Our model was implemented using MATLAB and configured using realistic inputs
such as benchmarked sensors’ quality scores, most widely used phone brands in different countries, and
sensory data types associated with various events. Extensive testing was conducted to study the impact of
various parameters on participants’ selection and gain an understanding of the compromises involved when
deploying such process in practical MCS environments. The results obtained are very promising and provide
important insights into the different aspects impacting the quality and reliability of the process of mobile
crowdsensing participants’ selection.

INDEX TERMS Data quality, mathematical modeling, mobile crowdsensing, participants’ reliability,
participants’ selection.

I. INTRODUCTION

FOR many years, Wireless Sensor Networks (WSNs) [1]
have been considered as the main solution to contextual
information acquisition and sensing activities, in various
domains such as environment/habitat monitoring, healthcare
applications, home automation, and traffic control. How-
ever, recently, with the widespread use of smartphones and
the continuous increase of their capabilities, a new sensing
paradigm has emerged: mobile crowdsensing. The concept
of crowdsensing implies the reliance on the crowd to per-
form sensing tasks and collect data about a phenomena of
interest (e.g. traffic conditions and accidents’ occurrence) [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Cristian Zambelli.

The process of acquiring crowd sensed information involves
the publishing of a sensing task within a geographic location
to a network of participants and the real time management
of responses from interested participants. Typically, the pub-
lishers of sensing tasks (or data consumers) specify the type
and location of the event of interest (e.g. fire accident at
location X,Y), the minimum quality level required for the task
(e.g. min. quality level of 7.5), the maximum budget allo-
cated (e.g. max. budget of 30$), and the maximum time
window to satisfy the request (e.g. max. time window of
5 minutes). The crowdsensing process poses many interest-
ing research challenges, specifically in the areas of: overall
system architecture, task publishing techniques, participant
selection methodologies, responses’ validation and analy-
sis, incentives and data monetization, security and privacy
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preservation, and management of the physical infrastructure.
Selecting the optimal group of crowdsensing participants
that can collect the data types required, while meeting the
specified time, quality, and budget constraints is a challenging
problem. Indeed, the time-constrained and location based
nature of crowdsensing tasks, combined with participants’
mobility and unpredictable behavior render the task of MCS
participants’ selection a complex task. The dynamic nature of
the MCS environments is a key factor that affects the quality
and reliability of the sensory information generating valuable
knowledge for critical applications. Our research focus is
on this challenge of MCS participants’ selection, taking into
account the quality and reliability of the sensory information
required.

In the literature, selection of crowdsensing participants is
mainly dependent on the characteristics of the area of interest
(Aol), the capabilities of the sensing devices, and the char-
acteristics of the participants [3]. Each of these dimensions
have many associated factors like the density of population or
the lack thereof in a particular Aol, or number of participants
with required sensors, or the cost of uploading sensory data,
or the past behavior and reputation of participants. These
factors affect the quality and reliability of the crowdsensing
process and it is therefore important to consider them when
selecting suitable MCS participants. From the participants’
perspective, they are required to submit sensory information
either periodically (e.g. traffic incident monitoring) or contin-
uously (e.g. pollution levels monitoring), while satisfying the
data types, quality level, time and budget constraints. Recent
research contributions on MCS participants’ selection have
included some of these factors [3]-[17]. While these contri-
butions have their merits, they often lack comprehensive and
practical models to fully capture the complexity of the MCS
participants’ selection process. Moreover, such approaches
overlook some important factors that may impact the selec-
tion process, such as participants’ malicious behavior, time
requirement for task satisfaction, country in which the task is
taking place, and others. Furthermore, there is a lack of exten-
sive testing and experimental results that give deep insights
about the parameters impacting the participants’ selection
process or the compromises it entails.

In this work, we propose a novel and comprehensive math-
ematical model for representing the problem of MCS par-
ticipants’ selection. Our model relies on a large number of
parameters that can have an impact on the selection result,
in addition to using realistic benchmarking for quantify-
ing sensors quality scores, concrete distributions of phones’
brands across geographical regions, and practical events types
with varying sensory data requirements. Matlab simulations
were used to extensively test the proposed model and demon-
strate its merits and the insights it provides in the area of MCS
participants’ selection.

We present our work in the sections that follow,
where Section 2 discusses the related work review, and
Section 3 describes our novel approach for participant selec-
tion, including the description of the mathematical model and
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the proposed participants’ selection algorithm. In Section 4,
we present and analyze our extensive simulation results.
Finally, in Section 5, we present a summary of our findings
and highlight future work.

Il. RELATED WORK

The selection of the participants in MCS is a research chal-
lenge that directly affects the quality and reliability of the
sensory information and hence there are several selection
models suggested in the literature. In this section we discuss
the state-of-the-art in MCS participants’ selection and the
various factors that are considered in those approaches.

One of the common criteria used for MCS participants’
selection is the coverage or density of participants within
a given Area of Interest (Aol). How would the system get
maximum coverage of participants in the Aol for a minimal
cost? One of the approach used is to determine the histor-
ical data of participants’ spatiotemporal availability in an
Aol, and use those historical traces to send sensing requests
to participants with high-probability of availability in the
Aol [4]-[6]. In [4], The dynamic tensor analysis algorithm
is used to learn the time-series of trajectories so as to predict
the future user’s mobility path. Since, getting the information
from each individual participant and processing it separately
was not efficient, the participants were grouped based on
certain criteria, such as grouping participants with similar
spatiotemporal historical patterns. The group is then ranked
and a participant from the group is selected (based on energy
and trust scores) to transmit the sensory data required. Simi-
larly, the work presented in [5] focuses on the participants’
mobility model and coverage probability by assuming that
a participant’s historical locations are known and the time
slot for mobility prediction is short. This approach models
participants according to a discrete Markov model and selects
individual participants based on the coverage estimation. The
number of participants selected is the sum of all selected sets
of participants. In [6], the selection algorithm relies on taxi
trajectories and considers the inter-cover time for urban sens-
ing. One drawback of this approach is that taxi trajectories
only capture a small subset of the actual participants. Since
vehicles move at high speeds, it would be difficult to identify
participants within an Aol. Moreover, the stay of the partici-
pants within a sensing area would be too short to accomplish
given tasks and therefore this approach is non-optimal for
most MCS tasks. In [3], Azzam et al. proposed a dynamic
selection model that increases or decreases the number of
participants selected to achieve a highly stable group com-
position. To motivate participants to provide sensory data,
the model utilizes cooperative game theory. In this approach,
stability is an important factor to measure the effect of partici-
pants’ collaboration. However, dynamic models are known to
require additional computation and introduce overhead due to
frequent modifications of groups’ composition.

Another MCS participants’ selection factor is the cost
incurred to collect sensory data. An optimal minimum thresh-
old for the number of participants and a fixed cost for the
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duration of the transmission of sensory data needs to be
specified to better estimate the overall budget for getting the
sensory data. An approach that was considered for reducing
the sensing cost is to understand the incentives expected by
interested participants [7], [8]. In this approach, the partic-
ipants announce their expected price for providing sensory
data and the system selects the minimal cost, based on the
available budget. If the required coverage of participants
is not achieved, then the missing information is extrapo-
lated from the available data. In [9], a system called Crow-
dRecruiter minimizes incentive payments while ensuring that
coverage constraint is met. The targeted application in this
case is air quality monitoring and sensing tasks are fulfilled
using phone calls. CrowdRecruiter first predicts the coverage
probability of each mobile user based on historical records,
then computes the joint coverage probability of multiple users
and selects the near-minimal set of participants. However,
this approach is limited by the calls of mobile participants.
If the recruited participants make no calls during specified
sensing cycles, it will lead to responses delay. In [10], based
on the prediction of the probability of calls made at a partic-
ular time and location, offline and online greedy algorithms
are proposed to dynamically select a subset of participants
to perform the tasks. The optimization goal is to minimize
the total cost while ensuring different levels of coverage for
multiple tasks.

The capabilities of the participant’s sensing device con-
stitute another important criterion when selecting MCS par-
ticipants [11], [12]. The availability of required sensors on
a mobile device and the availability of device’s resources
for computation, storage, and communication are attributes
that are typically used when selecting MCS participants.
Moreover, the quality of the sensors is an important factor
to consider. To achieve that, a budget is usually used as a
reward to participants in sensing tasks based on the quality of
their phone sensors. If there are multiple participants in the
same Aol, the sensing tasks are divided to ensure efficient
energy consumption and fairness. Zhao et al. [13] considered
fair and energy-efficient task allocation in MCS by solving a
min-max aggregate sensing time problem. He et al. [14] con-
sidered social surplus maximization for location-dependent
task scheduling. They formulated a task scheduling problem,
where the objective is to maximize the overall net reward of
all the participants, subject to the time of each user and the
redundancy of sensing tasks.

Recent research contributions also considered factors like,
participant reputation, domain expertise, social attributes,
trust factors, and risk factors, in the selection process. In [15],
a truthful, individually rational, and computationally efficient
mechanism was designed to maximize the social welfare for
single-minded combinatorial models. This approach relies on
an approximation ratio and assumes a linear quality model.
Moreover, an iterative mechanism with individual rationality
for multi-minded combinatorial models was proposed as part
of this work. The study in [16] presents a selection process
that chooses appropriate participants based on a reputation
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scheme to evaluate the trustworthiness of the submitted data.
The approach in [17] included a preferred list of potential par-
ticipants to select the most appropriate subset. This list could
be system generated to contain the participant’s friends who
have been endorsed to be trustworthy or could be manually
created by the requester. A blocked list is also created which
lists participants that are not endorsed to be trustworthy.

A. DISCUSSON

While the existing approaches have their merits, they usually
rely on specialized mathematic models that only represent
some of the aspects impacting the MCS participants’ selec-
tion process or are geared toward specific MCS applications.
Comprehensive, generic, and practical models that capture
the most important aspects for MCS recruitment are needed.
Moreover, none of the existing approaches present extensive
testing results that give true insights about the parameters
impacting the participants’ selection process or the compro-
mises it requires.

For instance, some approaches model users’ reliability
based on the percentage of tasks they completed in the past
versus the total number of tasks assigned, thus focusing on
a historical measure of interactions. Due to the complexity
of human behavior in crowdsensing environments, partic-
ipants’ reliability for a sensing task can be impacted by
many factors, both historical and instantaneous, including
their proximity from event of interest, their phones’ residual
battery level, the quality of their phone sensors, and their
history of malicious activity. Malicious activities may include
different undesired behaviors, which may be intentional or
unintentional, and impact the quality of the data collected.
Such behaviors can range from individual pollution attacks
(intentionally manipulating reports to give wrong informa-
tion), to malicious denial of service attacks (accepting sensing
request and not returning results to prevent other honest users
from participating in the sensing activities), to honest but self-
ish denial of service attacks (accepting all sensing requests,
but completing them over an extended period of time to
save resources), to orchestrated pollution attacks (group of
malicious users agreeing to give conflicting reports that are
far from the truth value, to impact the reliability of the output).
Therefore, participants’ reliability cannot be solely based
on historical contributions, but should rather include both
instantaneous factors and historical factors, capturing both
past and current behavior. This is required since participants
with good behavior in the past can start misbehaving in the
present.

Furthermore, in existing approaches, devices’ data qual-
ity is typically measured using parameters such as sensors’
availability and sampling frequency. While those aspects play
a role in the quality of the data collected by devices, there
is a need for a concrete and practical benchmark to provide
an accurate and quantifiable measure of phones’ sensors
quality. Finally, some other parameters that may impact the
participants’ selection process are often not considered in
existing approaches, such as the country in which sensing
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task is taking place, the time window allowed for the task, the
total population size and the number of available participants,
the size of the Aol and the population density in it.

In the coming section, we present a novel and comprehen-
sive MCS participants’ selection approach that consider all
the important parameters needed to model the complexity of
the participants’ selection problem. In our approach, partic-
ipants’ selection takes into consideration four categories of
factors, namely: 1) Social characteristics of the participant
who owns the mobile device; 2) Aol related factors; 3) Cost
related factors; and 4) Risk related factors. In our model,
19 parameters were used to model the quality and reliability
aspects, and extensive testing was conducted to study the
impact of those parameters on the participants’ selection pro-
cess, in order to gain insights on the compromises involved
when deploying such process in practical MCS environments.

Ill. A NOVEL PARTICIPANTS’ SELECTION APPROACH
FOR MOBILE CROWDSENSING

This section presents the crowdsensing participants’ selection
problem statement, details the system model and the mathe-
matical model and mathematical formulation, and describes
the proposed participants’ selection algorithm.

A. PROBLEM STATEMENT, ASSUMPTIONS,

AND NOTATIONS

As shown in Figure 1, we consider a system model that con-
sists of a set of data consumers (interested in crowd-sensed
data), data collectors (i.e. crowdsensing participants collect-
ing the requesting data using their phone sensors), and a
crowdsensing platform acting as broker between data con-
sumers and data collectors. The broker collects status infor-
mation (i.e. updated location and sensors’ availability) from
data collectors on a regular basis, to keep track of all available
data types and the associated quality levels that can be offered
at any given moment, to data consumers. The data consumers
send their requests to the broker, which then uses the request
requirements and the available data collectors’ status infor-
mation to find the appropriate set of collectors/participants
who can answer the request. When a data consumer sends
a request to the broker, this request should specify the type
and location of the event of interest (e.g. car accident in GPS
lo-cation 41.40338, 2.17403). This can be achieved through

FIGURE 1. Mobile crowdsensing system overview.
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interaction with the crowdsensing mobile app, in which a
map is shown, and the data consumer can selection a point of
interest along with a diameter around it — thus representing
an area of interest (Aol) centered around an Event of Inter-
est (Eol), along with a menu to choose the type of event of
interest (e.g. car accident, fire incident, storm incident...etc).
In addition to specifying the type and location of the event of
interest, the data consumer should also specify the minimum
quality level required for the task, the maximum budget allo-
cated, as well as the maximum time window required for the
task (e.g. Car accident at location X, Y, min. quality level of 8,
max. budget of 20$, max. time window of 5 minutes).

It should be noted that, unlike other approaches that rely
on individual participants’ selection [4]-[6], we adopt a
group-based selection approach in which a group of partic-
ipants collaborate to fulfil sensing tasks using the combined
capabilities of their devices. More specifically, we consider
the area of interest (i.e. area at the center of which lies the
event of interest) as a grid, that is divided into a number
of sites — each site containing a group of participants. The
main objective of our participants’ selection approach is to
find the best combination of sites that can be used to collect
the types of data requested, while satisfying the specified
constraints (i.e. max. time allowed for task, max. budget allo-
cated, minimum level of quality required). More specifically,
our approach aims at satisfying the task requirements, while
achieving the highest data quality and participants’ reliability
possible. Moreover, the solution also attempts to minimize the
number of participants selected per task, in order to reduce
redundancy and minimize the data collection time and the
price to be paid for the task.

Assumptions: Once the broker selects a group of partic-
ipants for a sensing task, the sensing request is forwarded
to the selected participants who can accept or reject the
request. In the case of request acceptance, each crowdsensing
participant (data collector) offers the sensing capabilities of
his/her mobile device, depending on the data types required
for the sensing task.

In our model, we have the following assumptions about the
crowdsensing environment:

. There is a specific sensing service/event associated to
each sensing task that is given by the task creator. The
types of data/sensors required depend on the sensing
service/event.

. There is a specific time window for each sensing task
given by the task creator.

. There is a minimum data quality level for each sensing
task given by the task creator.

. We assume a cooperative environment, in which a group
of participants collaborate to fulfil sensing tasks. Fur-
thermore, the types of data/sensors required for each
sensing task should be fulfilled by the aggregated capa-
bilities of a group of participants, not by each individual
participant.

. A task may require the use of one or more sensors of a
single participant’s phone.
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. Each participant can handle multiple sensing tasks
simultaneously.

. The area of interest is represented as a grid, consisting
of a number of sites — each site encompassing a number
of participants, based on the participants’ locations with
respect to the event.

. This variety of the sensors a site offers depends on the
phone brands/models carried by the participants in the
site.

. Each site is characterized by: 1) the number of partici-
pants in the site; 2) the variety of the sensors it offers;
3) the price of the service it offers; 4) its proximity from
the event of interest; 5) its average battery level; and
6) its average sensors quality with respect to the sensing
task.

Notations: Our model includes several parameters, which are
summarized, along with their notations, in table 1.

TABLE 1. Notations.

Variables Descriptions
A The Area of interest (Aol) represented as a square lattice
centred around the Event of Interest.
side The length of a side of the area of interest.
P Total population within area of interest.
N Total number of available participants in the area of
interest.
Y the participants’ density in the area of interest.
T} Sensing task i occurring in area A.
D} The required sensing data types for sensing task i
occurring in area A.
o The maximum time window permitted for obtaining the
sensing data, for task i occurring in area A.
Q4 The required data quality level for task i occurring in area
A.
N; The number of participants in site j.
Bi/,l- Max budget allocated to site j for task T§.
RiAj Reliability score of site j with respect to task T
p{} Price for carrying task T} at site j.
DSR{; Data satisfaction ratio provided by site j for task T.
Vi;l The probability of task satisfaction of a given site j
Kj,4 Site j's total quality score, with respect to task T?.
&/ The proximity of site j from the event of interest
h The average battery level in site j
s/ The average sensors’ quality in site j with respect to
the sensing task
M; malicious participants in site j
My Non-malicious participants in site j
€ The strength of price competition among the participants
in a site.
Df{ Number of task i data types supported by site j.
K 1/11 Site j selection score with respect to task T?.
C Country in which the sensing task is taking place.
ET Event type to which the sensing task is related.
30772

B. SYSTEM MODEL AND MATHEMATICAL FORMULATION
We begin by considering a geographic system A € Z2(Aol =
A €79 d > 1) which can represent a city, a country, a road,
a shopping center . .. etc.

The Area of interest (Aol) A will be chosen to be a square
lattice centered at the event of interest (Eol) which we will
denote by site J and that the distance between two sites is
equal to /.

'Let Tji\ = (D ,UA, Qi\) denote a sensing task i where
D'y represents the required sensing data types (which are
mapped from different event types), o is the maximum time
window permitted for obtaining the sensing data, and Q', is
the required data quality level for the task.

Given a set of tasks Th = (TI"\)l. e We shall denote .by l;
the maximum distance from J within which all tasks 7'y can
be accomplished.

Next, we take A to be the square lattice with diameter side
centered at J with spacing / between each two sites. Given
the length of a side of the area of interest (side) along with
the participants’ density y in that area, we can determine the
spacing of the grid /as follows:

y = (D

N =

where:

P= Total population within area of interest

N= Total number of available participants in the area
of interest (i.e. users who are logged in to the crowd-
sensing mobile app.)

vl = side.(1-) )

Therefore, the number of sites generated in one area (n) is
directly proportional to the size of the area and the population
density as shown below.

side *

To ensure that the spacing calculated does not result in
sites’ fractions, for spacing results with fractions, we round
the spacing calculated to the nearest divisor of the side. For
instance, if the side = 20 meters, the total population = 100
and the number of participants = 62, then y = 62/100 =
062. 1 = 20 x (1 — 0.62) = 7.6. The closest divisor
of 20, to 7.6 is 5. Therefore, n = (20/5)2 = 16 sites.
Furthermore, in the case where the number of participants =
total population (e.g. 100 participants in a population of 100),
the same approach is used, resulting in the following: y =
100/100 = 1.1 =20 x (1 —1) = 0. The closest divisor of 20,
to 0 is 1. Therefore, n = (20/1)2 = 400 sites. Therefore,
the spacing in that case will always equal to 1, and the number
of sites will equal to the square of the side of the area of
interest.

We shall assume that the participants are located at the sites
J's of the lattice A and that the distance between two sites is
equal to side.(1 — y)

VOLUME 7, 2019
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We shall also assume that the participants are close enough
to cooperate effectively and that the task publisher will select
sites rather than a particular individual participant in a site.

Aol = N cZ¢

Put:
A = Aside.(1-y)

Observe that the variety of sensors at a site j for TI"\ isanon
decreasing function of N;. Each site has a Data satisfaction
ratio DSR{/.\ that represents the ratio of data types satisfied by
the site, with respect to data types required for the task. DSR{}
is a non decreasing function of N;. Also, because of a possible
competition between participants in a site, the price pé.\ for T}
at site j is a non increasing function of ;.

We assume that the task publisher can assign to each site
Jj a perceived probability of satisfying the minimum required
quality information for T4, V*. V/* should be a non decreas-
ing function of N;

We assume that the participants at a given site j can be
partitioned into malicious participants M; (those who have
the intention to deliberately provide wrong information) and
non-malicious participants MjC

We define the reliability of the site j with respect to T,
Rf} to be the probability of satisfaction given that the infor-
mation comes from non-malicious participants in site j

We assume that at each site j, the task publisher has a
maximum budget Bi? that he is willing to spend for TI"\

The Equations of the model: We first begin with the
required data types (Di\) and the required data quality level
for the task Q). at site j. We will denote by KUA the site

selection score, based on which it is decided whether or not
the task requirements are satisfied by task j, as follows:

K = (B} .Rj; — p}}).DSR;; )

where:
Bf} = Max budget allocated to site j for task XTI"\
Ri‘} = Reliability score of site j with respect to task TA
pj} = Price for carrying task T}, at site j
DSRZ.[].‘ = Data satisfaction ratio provided by site j for
task T
The probability of task satisfaction of a given site j with N;
participants, is given by equation (5).

N

VA =1 - efin 5)

N; represents the number of participants in the site j. «;j A
represents site j's total quality score, with respect to task 7' .

VOLUME 7, 2019

The total quality score will vary from site to site, depending
on the sensing capabilities offered in each site. j 5 will be
small (smaller than 1) for tasks in which the site’s participants
carry devices with high sensing capabilities (i.e. high residual
battery level, high sensors’ quality) and are located in close
proximity to the event of interest. ; o will be large (larger
than 1) for tasks in which the site’s participants carry devices
with low sensing capabilities (i.e. low residual battery level,
poor sensors’ quality) and are located far from the event
of interest. The total quality score for site j is given by
equation (6).

1+d

A+ W49 ©

Kj,A

where:
d/ = Site j's distance to the event of interest.
(0 =<d <20
W = The average battery level at site j. (#/ is given in
percentage)
s/ = The average sensors’ quality score at site j. (s/ is
given in percentage)

Rf/.\, which represents site j’s reliability score, is modeled as
the probability of task satisfaction given that the information
comes from non-malicious participants in site j The site’s
reliability score is represented by equation (7).

R = P(Vj /M) @
Using Bayes’ Theorem, we have:
Ay A
AL P(M; V)V ®
i P(M)

The price of the service offered by the site is represented
by equation (9). This expression of the price is based on the
circular city model, presented in [18].

ol

i . €
K],ANj

where:
‘71’.\ represents the maximum amount of time required
(in minutes) to accomplish task 7'y
N; represents the number of participants in the site j
Kj, A Tepresents to total quality score for site j
¢ is an exponent reflecting the strength of price com-
petition among the participants in a site. If ¢ = 0, then
there is no competition — all participants are isolated
(each in one site) or demand the same price.

The site’s data satisfaction ratio (DSR) is calculated using
equation (10). The higher the value of a site’s data satisfaction
ratio, the higher the chance of that site being selected for
the task.

ij
DSR}} = % (10)
A
where:
D’/]\ = Number of taski data types supported by site j
D', = Number of data types required for task TI"\
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Finally, the site’s quality satisfaction ratio (QSR) is calcu-

lated using equation (11).
OSRjj = 15,5 — Oy (11)
where:
kj,A = Site j total quality score with respect to task TA
s = the minimum required data quality level for the
task T}

Sites that cannot deliver a data quality level that is equal to
or above the quality level requested for the task will have a
negative QSR, and will be eliminated from the final selection.
Furthermore, all malicious sites, which produce a reliability
of 0, will be assigned a negative value in the final score and
will be eliminated from the final selection. The sites with
highest final selection scores (i.e. that achieve the highest
reliability, highest DSR, and lowest price), will be selected.

The final expression for the site selection score is given by
equation (12).

K = (Budgesire.Reliabilitysie — Pricesire) .DSRyire
K} = B} .R}; —p}}).DSR}}

[}

Nj
c /A , Ki A
P<Mj/Vl-j).<1—e A) i
K} =|B : —— AN‘E -DSR}
P(v) o
(12)
Subject to the following constraints:

OSR} > 0 (C1)
ol <o (C2)

Constraint C1 implies that sites with a negative QSR will
be eliminated from the selection process as they cannot satisfy
the requested quality level. Constraint C2 implies that the
time window to achieve the task by the site should be less
than the total allowed time window for the task.

C. CROWDSENSING PARTICIPANTS’

SELECTION ALGORITHM

Our proposed crowdsensing participants’ selection algorithm
is described in Algorithm 1.

The process starts when a data consumer sends a sens-
ing task request to the crowdsensing platform, specifying:
1) The type of event of interest; 2) the location and size of
the area of interest; 3) the minimum quality level required;
4) the maximum budget allocated for the task; and 5) the max-
imum time window to satisfy the request. Since our algorithm
was tested in a simulated environment, we also specified
some input configuration parameters that were required to run
the selection process, including: the total population in the
area of interest; the number of available participants in the
area of interest; the country where the task is taking place;
and the percentage of malicious participants. In a real-life
deployment, this information would be collected dynamically
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Algorithm 1 Participants’ Selection Algorithm

1.Input: Sensing task details & initial configuration values
— Country (Region), Total population (P), # of participants
(N), Task budget (B), Size of area of interest (side), time
window for task (time), required information quality
level (quality), % of malicious participants (mp).
Output: selected site(s) that can satisfy the
sensing  task  requirements &  constraints

2. [side,P,N,Region,time,event, Quality,B,mp] =
get_input();//get all the required
input parameters

3. [L,n,y] =get_dist(side,N,P); // calculate
sites’ dimensions/spacing & form
grid

4. Phone_Battery= Random(1-100); // Generate
phones’ battery levels

5. Phone_Location—= Random(0-side); //
Generate participants’ locations

6. [device_sensors,participant_phones|]—assign_
phones(N, Region); /lassign phone
models to participants, based on
country’s statistics

7. N_ID= I:N; // assign ID to each
participant

8. sensor_table= read_sensors_data
(’Sensors’); [/lread from the database
values of sensors’ quality scores

9. Malicious_participants =  Random (mp%) ;//
randomly assign malicious
participants according to
maliciousness % (mp)

10. Event_location = [side/2 side/2];// Set
event location at the center of the
grid

11. Event_data_types = ‘1001101100’;// represent
event data types required in binary

12. Compare event type to availability
of data type on the phone

13. Determine list of participants per
site, based on the participants’
locations in the grid.

14. Count the number of participants in each
site;

15. Identify phone models in each site;

16. Calculate phones_Sensors_quality with
respect to event; // average quality
of sensors required for the event,
per phone, based on sensors quality
DB.

17. Site_sensors_quality =
average(phones_sensors_quality in site);
/lquality of site sensors quality is
the average of individual phones
sensors quality in that site
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Algorithm 1 (Continued.) Participants’ Selection Algorithm

Algorithm 1 (Continued.) Participants’ Selection Algorithm

18. Site_Malicioussness_score(M) =
average(malicious participants in site);

19. Site_battery = average(individual battery levels in
site);

20. Site_data_types = SUM (site_devices_data_types)
/lthe data types a site can handle
is the aggregation of the data
types that can be provided by
individual phones in the site.

21. DSR = site_data_types/Event_data_types;
//[Calculate sites’ data satisfaction
ratios

22. Set price competition value: //Calculate
price competition values in sites
if (y <0.33)
eps = 0;
else if (y < 0.66)
eps = 0.5;
else
eps = 1;
end

23. Calculate sites’ distances from the event (dj);

24. Calculate sites’ total quality
scores (kappa), based on distances from
event, average sites battery (hj ), and sites’ sensors
quality scores (sV);

25. Calculate price and probability of task satisfac-
tion per site;

26. Calculate sites’ Reliability Scores(R);

27. If site:M > 0// Assign a reliability
of zero to sites with malicious
participants

site:R =0;
Add_to_malicious_sites_list(site);

else
site:R=site:V;
28. Calculate Total sites’ final selection scores = (Bx
R — p)*xDSR;
29. if (Required_Quality > Site_Quality)
eliminate(site); //eliminate site
that does
not pass quality check
add to _eliminated sites_list
(site);
30. Rank sites from highest to lowest
final selection scores: ranked_sites_list
= sort_descending_order(Scores);

by the system (e.g. country would be identified from the
event’s GPS coordinated, the % of malicious participants
would be determined based on the history of previous inter-
actions with the users, and the population and participants’
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31. Select site with highest final selection score
as top_selected_site;

32. If (top_selected_site_ DSR ==
selected site satisfied all
data types, while satisfying the
constraints, display that site
information as final result

Set selected_sites_list =
top_selected_site;
Else
Add rop_selected_site to

selected_sites_list,

Event_data_type = —
Selected_Site_data_types; I/ reduce

task to the data types that were
not provided by selected site(s)

100) //if

Repeat (steps 16 to 32);
33.Display selected_sites_list;
Displayeliminated_sites_1list;
Displaymalicious_sites_list;

pool size would be determined based on real users’ locations
tracked by the system). Once those configuration parameters
specified, the selection algorithm consists of 4 key stages,
namely:
> Stage 1: Grid Formation and Participants’ distribution
> Stage 2: Individual participants’ parameters generation
> Stage 3: Sites’ parameters generation & scores compu-
tation
> Stage 4: Final sites’ selection
Stage 1: Once the input parameters specified, the first step
of the selection process consists in dividing the Aol into
sites and generating some realistic parameters related to the
participants and their devices. More specifically, the number
of sites in which the Aol will be divided is calculated based
on (3), the sites dimensions are computed as per (2), and the
grid is formed. Gridlines are drawn on the Aol to differentiate
each site, and participants are placed in their respective sites
according to their randomly generated location. Since the
location of individual participants have a 4 decimal point
precision, no participant will belong to two adjacent sites.
To illustrate the grid formation operation, we take as example
a scenario with the following input configuration:
o Side = 30m (area size = 30m x 30m)
o P =100 (total population of 100 in Aol)
e N = 65 (# of available participants within Aol is 65 out
of 100)
For that scenario, the values of y, n, and 1, calculated using

equations 1, 2, and 3 are as follows:

N 65

o [ =sidex(1—y)=30x(1-0.65) = 10.5. The closest
divisor 0f230, to 102.5 is 10
e n=(¥) " =G =9
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Accordingly, the Aol (of 30 x 30 m) is divided into a
3 x 3 grid, with a total of 9 sites, in which the 65 available
participants are distributed randomly, as shown in figure 2.

Location of participants in Area of interest
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FIGURE 2. Grid formation example.

Stage 2: In addition to being assigned with a random
location within the 2D grid, individual participants are also
assigned random battery levels. Similarly, malicious users are
randomly chosen based on the specified percentage of mali-
cious users. Furthermore, individual participants are assigned
specific smartphones, out of 32 chosen phone brands, that
we determined based on statistics related to the most com-
monly used smartphones in 21 countries worldwide [19].
Those countries were selected from every continent to rep-
resent a variety of smartphone penetration rates, such as:
high penetration rate (e.g. UAE), medium penetration rate
(e.g. Argentina), and low penetration rate (e.g. Nigeria). The
full list of countries considered in our simulation is shown
in Table 2. In real-life deployment, information about smart-
phone brands carried by participants would be determined
dynamically by the platform based on users’ registration and
login interactions.

The next step consists in computing the participants’
phones quality scores with respect to the event, as well
as the sites’ sensors quality scores. To accurately represent

TABLE 2. List of countries considered in our simulated environment.

No. Region No. | Region

1 UsS 12 Brazil

2 UK 13 Argentina
3 Germany 14 India

4 France 15 Japan

5 Spain 16 Malaysia
6 Italy 17 Australia
7 Ireland 18 South Africa
8 Poland 19 Egypt

9 Russia 20 Nigeria
10 Sweden 21 UAE

11 Canada
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phone quality scores, we relied on two sensor benchmarking
databases to accurately quantify the quality of individual
sensors associated with each of the 32 smartphone mod-
els considered, namely: SensMark [20] and Dxomark [21].
Dxomark is an independent benchmarking tool that scientif-
ically assesses and scores the quality of smartphone lenses
and cameras, while SensMark relies on a mobile app. running
on the smart phone to evaluate and benchmark the various
phone sensors (e.g. GPS, accelerometer, temperature sen-
sors) and provide a total score for the tested sensors with
respect to the accuracy and quality of the data offered. Finally,
an N-by-6 matrix is constructed for N participants, in which
each participant is represented by: 1) The Participant ID;
2) The x coordinate; 3) The y coordinate; 4) The participant
maliciousness; 5) The participant’s battery level; and 6) The
participant’s phone model.

Stage 3: In this work, we investigated six types of events
for sensing tasks, assuming that events occur at the center of
the Aol and that each event requires its unique data types as
shown in table 3.

TABLE 3. Data types required per event.

Description Tempera- Light  Accel- Ambient

Relative pulse

erometer Temp. humidity

Traffic Condition 0

Traffic accident

Fire incident

o o | w0
clo|e|e|e|e
oo |o|e o IR
wlele|e |~
wla e lo|e
wlale|e|e|e

[ [ U [ ) Y

[
1
Storm Incident 1
[
1

o=~

Heart attack

Volcanic Eruption

The required data types of event form a 10-bit binary num-
ber (event_data_type), similar to each site’s data type param-
eter (site_data_type) representing the data types needed for
this event, that can be obtained from the collection of
phones within this site. A logical and operation between
site_data_type and event_data_type is performed in order to
compute the number of data types that are: a) available in the
site and b) required by the event. The result of the logical
operation is divided by the number of data types required
per event (number of ones) and produces a data satisfaction
ratio (DSR) for each site per event.

Let us take as example an event requires the following data
types: Temperature, GPS, Camera, and Pulse.

> The event_data_type produced will be 1000000111
number_of_event_data = 4

Site 1 can provide these data types: 1000000101

Site 2 can provide these data types: 1000011111
event_data_type AND sitel_data_type = 1000000101
*missing camera

number_of_data_sitel = 3

DSR_site 1 = number_of_data_sitel/
number_of_event_data = 3/4.

> event_data_type AND site2_data_type = 1000000111
All data types are satisfied

number_of_data_site2 = 4

DSR_site 2 = number_of_data_site2/
number_of_event_data = 4/4.

vy

vy

vy
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Another sites’ parameter that is calculated for each site
is the site sensors’ quality score, as follows: Based on
the sensors’ quality scores obtained from the benchmarking
databases, the algorithm computes the phones’ quality scores
with respect to the event as well as the sites’ sensor quality
scores, as follows: a) calculate the phone quality score per
event (average value of quality scores of sensors related to
event only, and which are supported by the phone) for the
phones in each site; b) For each site, calculate the site’s
quality score by using the formula: Site quality score (Si) =
average of phones quality scores (for phones in the site). For
example, if event 1 requires camera and GPS data:

o Step 1: Identify the phone models in each site

o Step 2: Extract the GPS and camera quality for each

phone model available to produce an average represent-
ing the phone quality Score for Event 1/site

« Step 3: for all the phone models available in a site, take

the average of individual phone quality that represents
site quality score

The next step consists of calculating the sites total quality
scores based on (6), as well the sites’ prices based on (9).
Subsequently, the sites’ probability of task satisfaction,
the sites’ reliability scores, and the sites’ data satisfaction
ratios and quality satisfaction ratios are calculated based on
equations (5), (7), (10), and (11) respectively.

Stage 4: Finally, the sites’ final selection scores are calcu-
lated based on (12). To obtain the final list of selected site(s),
all sites with a negative final selection scores (i.e. sites with
malicious participants), or sites with a negative quality satis-
faction ratio (i.e. sites that do not meet the min. level of quality
required) are eliminated from the selection, and moved to the
eliminated sites list. The remaining sites are ranked based on
their final selection scores, from highest to lowest values. For
the highest scoring site, if its data satisfaction ratio is 100%
(i.e. can satisfy all data types required for the task), this site it
marked as selected, and the process is terminated. If the data
satisfaction ratio of the top scoring site is not 100% (i.e. some
of the request’s data types are not supported by the site),
the request’s requirements are reduced by removing the data
types that are already satisfied (in this round), and reducing
the time window required, then repeating the selection steps
again to find additional sites that would meet the remainder of
the request’s requirements. Finally, the program displays the
selected site(s), the eliminated sites, and the remaining sites
as final output.

IV. EXPERIMENTAL RESULTS
A. SIMULATION ENVIRONMENT, INPUT
PARAMETERS, AND TEST SCENARIOS
We implemented our proposed participants’ selection algo-
rithm using Matlab, and used the following parameters as
input configuration values to our simulation: 1) event types;
2) Geographical areas; 3) Most popular phone models per
geographical area; 4) sensors’ quality scores.

Six event types were defined (as shown in table 4), along
with associated data types and sensor types, to experiment
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TABLE 4. Types of events considered in our simulation.

No. Events
1 Traffic condition | GPS
2 Traffic accident Light, Temperature, Proximity, GPS,
Camera, Pulse
Temperature, Ambient Temperature,
Camera, pulse
Temperature, Light, Ambient
temperature, Relative Humidity,
Camera, Pulse
Camera, pulse
Light, Temperature, ambient
temperature, Proximity, relative
humidity, GPS, Camera

Data Types

3 Fire incident

4 Storm incident

5 Heart attack
6 Volcanic
eruption

with different scenarios using our simulation. Those types
were chosen to represent requests with different sensing data
requirements. It should be noted that our model is extendible
and can support additional event types as well.

The twenty-one countries presented in table 2 were also
considered as potential regions for our simulation. For each
country, the five most used phone brands were identified
based on 2017 smartphone market penetration statistics [19],
resulting in a list of 32 phone brands that were considered
in our simulation. Those brands are shown in table 5. Each
of the 21 countries considered was associated with five of
those phone brands, according to the statistics used [19].
Table 6 shows the top five smartphone brands used in the USA
in 2017, as well as their % penetration rate.

TABLE 5. Smartphone brands considered in our simulation.

'iphone?’ 'GalaxyS6' 'Galaxy j7' 'lyf Jio FO9OM'
'iphone6’ 'GalaxyA5' 'j1 Ace' 'Iphone X'
'iphonebs' 'default’ 'j2Prime' 3!
'iphone6sp’ 'GalaxyJ5' 'J7Metal' 'Oppo37'
'iphone6p' 'Huaweip8' 'J7Prime' 'GalaxyS8'
'Generic
'iphone7p’ 'iphone5s' 'Lyf LF 2403N' | Anroid'
'Xiaomi Note
'iphoneSE' 'Huawei P9’ 4' 'Nokial05'
'GalaxyS7' 'S7Edge’ 'j2' ‘Nokia 108’

Another input parameter used consists in the sensors
quality scores for each sensor, for each of the 32 smart-
phones models considered. This information was collected
using the SensMark and Dxomark sensors benchmarking
databases [20], [21]. Since the sensors’ quality score is a
relative factor, the highest score found in the database was
marked as a perfect 10, and all other scores were normal-
ized according to the following expression: SensorScore =
% % 10. Table 7 shows the normalized sensors’ quality
scores associated with five different phones, based on the
sensors’ benchmarking results. If a sensor does not have a
score, it implies that this sensor is not supported by this
phone brand. The table shows the variation in the availability
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TABLE 6. Top smartphones used in the US in 2017.

TABLE 8. Testing strategies and metrics.

% Usage by
. Description of
Country Rank - Phone Model poPUIatlon Test Performance | how metric was Test scenarios used
1 iPhone 7 11.52% Category Metric measured/
2 iPhone 7 Plus 9.78% e
USA 3 iPhone 6S 7.88% Impact | - Site total Site quality We varied the following
4 iPhone 6 6.52% onsite | quality score | score: parameters, to illustrate their
5 iPhone 6S Plus 4.41% quality calculated impact on the site quality
score using equation | score:
6 1. Site average battery level
TABLE 7. Sample of sensors’ quality scores for five smartphones’ models. 2. Site proximity to area of
interest
3. Site sensors quality
measure
Impact | - Site Site reliability | We varied the following
on site reliability score: parameters, to illustrate their
reliabilit | score calculated impact on the site quality
y score using equation | score:
7 1. Site maliciousness
2.Site quality score
3.# of participants in site
and quality of sensors from one phone brand to another.
For instance, the S7 Edge phone encompasses all 10 sensors Impact | - Site Site price: We varied the following
ith relativelv hich s li hile the iPh on site price calculated using parameters, to illustrate their
with relatively high sensors’™ quality scores, while the iPhone price equation 9 impact on the site price:
7 only supports 7 out of the 10 sensors, and the LyfLF 2403 1. Task time,
N (a phone brand that is popular in India) only supports 2. The site quality score,
) 3. The total number of site
SEnSors. participants
4. The price competition
B. EVALUATION STRATEGY AND METRICS among participants
The objectives of the experiments we conducted are to assess Impact | - Site Site probability of | We varied the following
whether our model functions as planned, and analyze the on site probabilit | task satisfaction: parameters, to illustrate their
. t of diff t iabl the fi . t probabil |y of task | calculated using impact on the site price:
impact ot ditierent variables O.H c I.Ve main parame e.rs ity of satisfacti | equation 5 1. The site quality score,
of our model, namely: 1) the site quality score; 2) the site task on 2. The total number of site
reliability score; 3) the site’s price; 4) the site’s probability satisfact participants
. . . . . i 3. The task t
of task satisfaction; and 5) the site’s final selection score. on © task time
. . 4. % of maliciousness
To achieve those goals, a number of testing approaches and
metrics were used. as summarized in table 8. The detailed Impact | - Site final | Site final selection We varied the following
Ivsis of th ’ i .. h . on site selection | score: calculated parameters, to illustrate their
analysis of the conducted tests will be presented in the coming final score using equation 12 | impact on the site final
sections. selectio selection score:
n score 1. Type of event
2. Participants’ maliciousness
C. IMPACT OF VARIOUS PARAMETERS ON 3. Requested quality level
SITE QUALITY SCORE (lc,-’,\) 4. Country
The first set of experiments we conducted focused on evaluat- 2' ?‘:{:Ib;g;:g;:r'f'pa”ts
ing the impact of the geographic area and event type on sites’ 7. Size of area of interest
quality scores. Since each geographic area is characterized 8. Budget allocated for task

by some specific phone brands which are widely used in it,
different areas implies different phone brands, and thus vary-
ing availability and quality of sensors. In this set of exper-
iment, we varied the event type requested and country in
which request is taking place, and kept the other simulation
parameters constant, as shown in table 9.

Table 10 and figure 3 shows the obtained results for the
first scenario — a fire incident in Germany. In this scenario,
the area of interest was divided into 25 sites, 19 of which
contained participants. The site selected in this scenario was
site 11 (highlighted in green), which had an average sensors’
quality score of 7.76 (the highest sensor’s quality score out
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of all sites), a proximity of 0 from the event of interest
(i.e. centered at the event of interest, as shown in figure 3),
and an average site’s residual battery level of 75%. The total
site’s quality score obtained was 0.655238 — representing the
lowest value and thus the highest site quality levels. It should
be noted that the sites highlighted in yellow (sites: 2, 6, 7,
8,9, 10, 12, 17, and 18) were eliminated from the selection,
since they did not meet the min. required information quality
level (4.5 in that case). Moreover, none of the sites contained
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TABLE 9. Test configuration parameters - Site quality score experiment.

Germany/fire, Italy/fire,
Type of event(s) & country — | India/Traffic accident,
these are variable in this test set Malaysia/storm
Total population 60
Participants 46
Budget 100
Area size 50*50
Time window for task 1
Required information quality level | 4.5
% of malicious participants 0

TABLE 10. Sites’ quality score results - fire incident in Germany scenario.

Germany / Fire Incident

Location of participants in Area of interest
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Site’s Site’s
Sensors proximity Site’s Site quality

Site | Quality from Eol battery level | score (Kappa)
! 8.214996904 | 28.28427125 24 0.943567
2 4.293577982 | 22.36067977 42 1.172811
3 5.165019297 20 | 52.66666667 0.959396
4 5.80092843 | 22.36067977 43 0.990224
> 6.890430724 | 28.28427125 61.5 0.771796
6 4.293577982 | 22.36067977 0 2.26327
7 4.293577982 | 14.14213562 53 1.041749
8 4.293577982 | 14.14213562 45 1.135022
? 4.293577982 | 22.36067977 47 1.10919
10 4.293577982 10 59.5 0.976451
1 7.761637891 0 75 0.655238
2 4.293577982 10 60.5 0.967102
13 4.781552179 20 42.25 1.107907
14 5.383080275 | 14.14213562 35 1.123765
5 4.656745413 10 | 62.16666667 0.920407
16 4.683957339 | 14.14213562 58.6 0.949093
17 4.293577982 | 22.36067977 70 0.887683
18 4.293577982 | 28.28427125 6 1.986477
= 5.81565156 | 22.36067977 | 47.66666667 0.946111

malicious participants, since the % of malicious users was
set to 0% in that test case. Finally, Figure 3 shows the area of
interest, divided into 25 sites, the distribution of participants
in the area, and the site what was selected for the sensing task
(site at the center, with the green dashed borderline).

Table 11 and figure 4 shows the obtained results for the sec-
ond scenario — a traffic accident in India. Similar to the first
scenario, the area encompassed 19 sites with participants
and 6 empty sites. Site 18 was selected in that case, with a
site quality score of 1.0568, a residual battery level of 47%,
a proximity level of 22.36 meters from the event of inter-
est, and a sensors’ quality score of 4.749. In comparison to
the first scenario occurring in Germany, in which the most
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FIGURE 3. Selection result - fire incident in Germany scenario.

TABLE 11. Sites’ quality score results - traffic accident in India scenario.

India / Traffic accident ‘

Site’s Site’s Site’s Site quality
Sensors proximity | battery score
Site | Quality from Eol level (Kappa)

1 4.445714 | 28.28427 44 1.126448
2 4.293578 | 22.36068 60 0.972086
3 4.293578 20 21 1.54696
4 4.265669 | 22.36068 | 46.66667 1.116609
5 4.23776 | 14.14214 55 1.026545
6 4.293578 10 19 1.60481
7 3.765138 | 14.14214 15.2 1.868849
8 4.293578 10 11 1.83851
9 4.293578 0 63 0.943968
10 3.765138 10 51.6 1.119097
11 4.293578 20 17 1.646867
12 4.293578 | 22.36068 | 30.33333 1.354027
13 2.972477 | 14.14214 60.5 1.106671
14 4.209851 10 38.5 1.237768
15 3.862253 | 14.14214 55.75 1.05875
16 1.651376 | 22.36068 10 3.556058
17 4.293578 | 28.28427 6 1.986477
18 4.749986 | 22.36068 47 1.056857
19 4.293578 | 28.28427 60 0.972242

popular phone brands are the Samsung Galaxy S7, Samsung
Galaxy A5, iPhones 6, 6S, and 7 [19] —i.e. brands with high
variety and high quality sensors, the second scenario took
place in India, with phones containing less sensors with lower
sensor quality scores (e.g. Lyf Jio FOOM, Samsung Galaxy J2,
Xiaomi Redmi Note 4, Lyf LF-2403N, Samsung Galaxy J7
Prime [19]). This resulted in 18 out of 19 sites being elim-
inated from the selection, due to the inability to meet the

30779



IEEE Access

M. El Barachi et al.: Novel Quality and Reliability-Based Approach for Participants’ Selection in Mobile Crowdsensing

Location of participants in Area of interest

50 T
o
o
o
40 ol o o o o o g
o o p o O t :
o o o O o |
30 o o
2 o o
G * 0
> o o
20 o o o 4
o
o
o o o
o
10 o o
@ o o
o o
0 . . | |
0 10 20 30 40 50
X-axis

FIGURE 4. Selection result - traffic accident in India scenario.

minimum required information quality level —i.e. 4.5 in that
case. The only site that was able to meet that requirement was
site 18, with a sensors’ quality score of 4.749, and thus it was
selected despite its low residual battery level and poor overall
quality score. Figure 3 highlights the location of the selected
site in this scenario.

Finally, Table 12 and figure 5 shows the obtained results
for the third scenario — a storm incident in Malaysia. In that
scenario, site 8 was selected with a close proximity from the
event of interest (10 meters), a high residual battery level
(of 73.5%), and a sensors quality score exceeding the required
level (4.865). Due to the mixed nature of popular phones in
Malaysia, 11 out of 18 sites were not selected due to lack
of ability to meet information quality requirements (see sites
high-lighted in yellow). Figure 5 illustrates the location of the
selected site in the area.

[lustrating the impact of different parameters on the site’s
total quality score (Kappa), we plotted three graphs, pre-
sented in figure 6-a, 6-b, and 6-c. Figure 6-a depicts the
inversely proportional linear relation between the site’s aver-
age battery level and the site’s total quality score. Indeed,
the more the battery level increases, the lower the site
kappa score becomes — indicating higher sensing capabilities.
Similarly, there exists an inversely proportional linear rela-
tion between the sensors’ quality level in the site and the
site’s total quality score (kappa), as shown in figure 6-b. The
higher the sensors’ quality level, the lower the total qual-
ity score — indicating higher sensing capabilities. Finally,
as shown in figure 6-c, the site’s total quality score increases
in a logarithmic fashion, with the increase in the site’s dis-
tance from the event of interest. For instance, when the site
is very close to the event of interest (close to zero), the
site’s kappa score is very low (0.77). For sites that are far
away from the event of interest (e.g. 30 meters), the site’s
kappa score increases (i.e. its quality level de-creases) to
0.98. The kappa value stabilizes, tending to 1, for distances
bigger than 50 meters from the event, since beyond this level,
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TABLE 12. Sites’ quality score results - strom incident in Malaysia
scenario.

Malaysia / Storm

Site’s Site’s Site’s Site quality
Sensors proximity | battery score
Site Quality from Eol level (Kappa)
1 4.293578 | 28.28427 84 0.792425
2 6.146789 | 22.36068 74 0.742434
3 4.293578 20 66 0.919451
4 4.293578 | 28.28427 66 0.920048
5 4.998196 | 14.14214 | 51.66667 0.984004
6 4.293578 | 22.36068 40.5 1.193345
7 4.293578 20 70 0.887452
8 4.865168 10 73.5 0.820127
9 4.726728 0 63 0.906887
10 4.293578 10 24.5 1.475836
11 4.293578 20 55.5 1.015574
12 4.293578 | 14.14214 4 2.097502
13 4.437961 10 | 39.33333 1.192262
14 6.559633 | 14.14214 13.5 1.259639
15 4.716349 | 22.36068 58.6 0.946634
16 5.247706 | 22.36068 | 45.33333 1.021886
17 5.533945 20 42 1.026782
18 4.293578 | 22.36068 35 1.275212
19 4.293578 | 28.28427 57.25 0.998197
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FIGURE 5. Selection result - storm incident in Malaysia scenario.

the participant is too far to capture meaningful information
about the event. We can conclude that sites with higher
residual battery and higher sensors’ quality scores have a
higher chance of being selected for sensing tasks. Con-
sequently, the geographic region and its associated phone
brands/supported sensors have an important impact on the
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FIGURE 6. Impact of various parameters on site’s total quality score
(Kappa): a) impact of residual battery level on site’s quality score; b)
impact of sensors’ quality level on site’s quality score; c) impact of
proximity from event of interest on site’s quality score.

participants’ suitability for sensing tasks, since more sophisti-
cated phones support more sensors and ones that have higher
quality scores. Finally, the closer the site from the event of
interest, the higher its chance of being selected — noting that
the proximity has a lower impact on the selection than the
battery level and sensors’ quality scores. The proximity from
the event has a stronger positive impact for sites close to
the event, showing little variation for sites beyond a certain
distance which are considered as out of reach with respect to
the event.

D. IMPACT OF VARIOUS PARAMETERS ON SITE
RELIABILITY SCORE (R})

The second set of experiments we conducted focused on
evaluating the impact of the % of malicious participants;
the event type; the country; the total number of participants;
and the task time on sites’ reliability scores. In this set of
experiment, we varied those 5 parameters, through 5 different
scenarios. Table 13 shows the obtained results. In the table,
M represents the site maliciousness; K the site’s total quality
score, N the site’s participant number, and R the site reliability
score.

In the 5 scenarios, the area of interest was divided into
4 sites. In scenario 1, the configuration parameters were
as follows: Country = Poland; Event = Traffic accident
(event 2); Task time = 2 minutes; # of participants = 60 par-
ticipants; Maliciousness % = 2%, min. information qual-
ity = 4.5. Site 1 was selected for the task, with a reliability
score of 1, a total quality/kappa score of 1.0293 (the lowest
in the 4 sites), 0% of malicious participants, and 17 total
participants. Site 2 was eliminated since it could not meet the
min. information quality requirements, and site 4 was elimi-
nated since it contained malicious participants. We note that
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TABLE 13. Sites’ reliability score results.

maliciousness has a direct impact on sites’ reliability — since
malicious sites are given zero as reliability score. In the sec-
ond scenario, the configuration parameters were as follows:
Country = Germany; Event = Fire incident (event 3); Task
time = 4 minutes; # of participants = 30 participants; Mali-
ciousness % = 20%, min. information quality = 4.5. Due to
the high % of malicious participants, all four sites were elimi-
nated due to presence of malicious users in them, and thus no
selected could be made for this task. In scenario 3, the follow-
ing configuration parameters were used: Country = Brazil;
Event = Storm incident (event 4); Task time = 5 minutes;
# of participants = 50 participants; Maliciousness % = 10%,
min. information quality = 4.5. In that scenario, 2 out of
the four sites contained malicious participants and thus were
eliminated. Site 1 could not meet the information quality
requirement, and site 3 was selected with a reliability score
of 1, 13 participants, 0% maliciousness, and a total quality
score of 1.0441.

In Scenario 4, the configuration was as follows: Country =
Malaysia; Event = volcanic eruption (event 6); Task time =
3 minutes; # of participants = 60 participants; Maliciousness
% = 15%, min. information quality = 4.5. In that case,
3 out of 4 sites contained malicious participants and were
eliminated, while site 1 was selected with a reliability score
of 1, 19 participants, 0% maliciousness, and a total quality
score of 1.0321. Finally, scenario 5 represented the following:
Country = South Africa; Event = heart attack (event 5); Task
time = 2 minutes; # of participants = 30 participants; Mali-
ciousness % = 0%, min. information quality = 4.5. In that
scenario, non of the sites were eliminated due to malicious-
ness. Site 2 was selected with a reliability score of 0.9995,
8 participants, 0% maliciousness, and a total quality score
of 1.0404.

Illustrating the impact of different parameters on the
site’s reliability score (R), we plotted three graphs, pre-
sented in figure 7-a, 7-b, and 7-c. Figure 7-a shows that
any maliciousness percentage > 0% is associated with a
zero reliability score, as per equation 7. Figure 7-b shows
an exponentially decreasing relation between kappa and

30781



IEEE Access

M. El Barachi et al.: Novel Quality and Reliability-Based Approach for Participants’ Selection in Mobile Crowdsensing

a)

b)

)

FIGURE 7. Impact of various parameters on site’s reliability

score (R): a) impact of maliciousness % on site’s reliability score;

b) impact of site’s quality level on site’s reliability score; c) impact of
number of participants on site’s reliability score.

the site’s reliability. This implies that the more kappa
increases (i.e. the quality decreases), the more the reliability
of the site will decrease exponentially. This illustrates the
importance of the site’s sensing capabilities on its reliability
for the task. Finally, figure 7-c shows an increasing logarith-
mic relation between the number of participants in the site
and the site’s reliability. Indeed, sites with a small number of
participants (less than 10 participants) have lower reliability,
since they represent fewer sources of information. Some of
those sources could reject the request, or suffer from dying
batteries or erroneous readings, thus impacting the reliability
of the site. On the other hand, when the number of partic-
ipants in a site increases, there are better chances that the
needed information can be collected. For sites with more than
10 participants, we notice that the reliability stabilizes at 1,
since having a very large number of readings would not bring
additional value due to the high level of redundancy.

E. MPACT OF VARIOUS PARAMETERS ON SITE PRICE (Pl;\)

The third set of experiments we conducted focused on evalu-
ating the task time, the site quality score, the total number of
site participants and the price competition among participants
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on sites’ prices. In this set of experiment, we varied the
country, the event type, the number of participants and the
task time, through 4 different scenarios. Table 14 shows the
obtained results.

TABLE 14. Sites’ price results.

In scenario 1, the configuration parameters were as fol-
lows: Country = Germany; Event = Storm (event 4); Task
time = 2 minutes; # of participants = 120 participants out
of 200 users’ population. The area of interest was divided
into 9 sites in that case, and site 3 was selected for the task,
with a site price score of 0.6502, 9 participants, and a site
kappa score of 1.0253. Sites 4 and 5 were eliminated due
to malicious participants, and all other sites could not meet
the minimum quality requirement. Figure 8-d illustrates the
location of the selected site in this scenario.

In scenario 2, the configuration parameters were as fol-
lows: Country = South Africa; Event = Heart attack
(event 5); Task time =5 minutes; # of participants = 40 par-
ticipants out of 120 users’ population. The area of interest was
divided into 4 sites in that case, and site 3 was selected for the
task, with the lowest price score among the 4 sites (i.e. a score
of 1.3048), as well as 14 participants, and a site kappa score
of 1.0242. None of the other sites were eliminated in that
case, thus showing the that lower the site’s price, the higher its
chance of getting selected. Figure 8-c illustrates the location
of the selected site in this scenario.

In scenario 3, the configuration parameters were as fol-
lows: Country = Sweden; Event = Traffic condition moni-
toring (event 1); Task time = 10 minutes; # of participants =
35 participants out of 60 users’ population. The area of
interest was divided into 9 sites in that case, and site 8 was
selected for the task, with the lowest price score among the
9 sites (i.e. a score of 3.97), as well as 6 participants, and
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FIGURE 8. Selection results: a) Nigeria scenario; b) Sweden scenario;
c) South Africa scenario; and d) Germany scenario.

a site kappa score of 1.0267. None of the other sites were
eliminated in that case. Figure 8-b illustrates the location of
the selected site in this scenario.

Finally, scenario 4 pertained to a fire incident in Nigeria,
with a task time of 15 minutes, and 80 participants of a
population of 200 users. The area was divided into 4 sites,
as shown in figure 8-a and site 1 was selected with a
price score of 3.5603, 30 participants, and a kappa score of
1.0218. Sites 2 and 3 could not meet the minimum quality
requirements, and site 4 was eliminated due to malicious
participants.

Ilustrating the impact of different parameters on the
site’s Price score (P), we plotted four graphs, presented in
figure 9-a, 9-b, 9-c, and 9-d. Figure 9-a shows a linearly
increasing relation between the task time and the site’s price,
since long lived tasks would require more resources and the
commitment of the users to remain in the same area for the
duration of the task. Therefore, we expect that time recur-
rent tasks or continuous sensing tasks would be associated
with higher sensing prices. Figure 9-b shows the relation
between Kappa (reflecting the sites’ sensing capabilities and
quality level) and the site’s price. In this case, we observe
that the site’s price decreases in an exponential fashion
with the decrease of the site’s sensing capabilities. Indeed,
sites with lower sensing capabilities and lower quality levels
would be associated with lower prices, in comparison to sites
with higher sensing capabilities and better quality levels.
In figure 9-c, we notice that the site’s price decreases rapidly
(at an exponential rate) with the increase of the number of
participants’ in the site. Since the availability of many par-
ticipants in the same area implies the availability of multiple
sources for the information, the competition between those
sources drives the site’s price down. This is confirmed by
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FIGURE 9. Impact of various parameters on site’s price: a) impact of
request time window on site’s price; b) impact of site’s quality level on
site’s price; c) impact of number of participants on site’s price; d) impact
of price competition on site’s price.

figure 9-d in which the site’s price decreases exponentially
with the increase in the price competition between partici-
pants. The higher the price competition between the partici-
pants, the lower the site’s price will be due to the abundance
of sources for the same information.

F. IMPACT OF VARIOUS PARAMETERS ON SITE
PROBABILITY OF TASK SATISFACTION(VI.I’.‘)

The fourth set of experiments we conducted focused on eval-
uating the impact of the site’s total quality score and the
total number of site participants on sites’ probability of task
satisfaction. In this set of experiment, we varied the country,
the event type, the number of participants, the task time
and the % of maliciousness, through 4 different scenarios.
Table 15 shows the obtained results.

In scenario 1, the configuration parameters were as fol-
lows: Country = Germany; Event = traffic condition; Task
time = 10 minutes; # of participants = 26 participants out
of 60 users’ population; % of maliciousness = 0%. The area
of interest was divided into 4 sites in that case, and site 2 was
selected for the task, with the highest probability of task
satisfaction out of the 4 sites (0.9999), 10 participants, and a
site kappa score of 1.0128. None of the sites were eliminated
in that case, thus showing the that higher the site’s probability
of task satisfaction, the higher its chance of getting selected.

In scenario 2, the configuration parameters were as fol-
lows: Country = Spain; Event = traffic accident; Task time =
3 minutes; # of participants = 46 participants out of 60 users’
population; % of maliciousness = 5%. The area of inter-
est was divided into 16 sites in that case (1 of which was
empty). Site 4 was selected in that case, with a probability
of task satisfaction of 0.8546, 2 participants, and a site kappa
score of 1.0371. Two sites were eliminated due to malicious
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TABLE 15. Sites’ probability of task satisfaction results.

Scenario
rio 2: :
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Traffic Traffic Event = Fire Storm;
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Test Scenarios ot Hof o participa
participants = participants= | nts=
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26/60; 46/60; 60/100; 50/100;
Tasktime= | $5% | Tasktime=1 | Task
10 minutes; — . minute; time=1
Maliciousness | VeEs | Maliciousness | minute;
%= 0% o e5% %=5% Maliciou
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ore 1.010427205 10524 1028 1.0415
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Site quality L0222
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Site 4
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:‘;ﬁ_:“amv 1.0413
sites | Ste 5
= participants #:
Site Prob. Of
991
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2‘;?“""’ 1.0438
) Site
Site7 | participants #: 4
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score
Site
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— participants #:
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Satisfaction: QEES
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Site quality -
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participants, and 7 sites did not meet the minimum quality
requirements.

In scenario 3, the configuration parameters were as fol-
lows: Country = Argentina; Event = fire; Task time = 1 min-
utes; # of participants = 60 participants out of 100 users’
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population; % of maliciousness = 5%. The area of interest
was divided into 4 sites in that case, and site 2 was selected,
with a probability of task satisfaction of 1, 14 participants, and
a site kappa score of 1.0282. The 3 other sites were eliminated
due to malicious participants.

In scenario 4, the configuration parameters were as
follows: Country = Poland; Event = storm; Task time =
1 minutes; # of participants = 50 participants out
of 100 users’ population; % of maliciousness = 7%. The area
of interest was divided into 4 sites in that case, and site 2 was
selected, with a probability of task satisfaction of 0.9999,
10 participants, and a site kappa score of 1.02. Two sites were
eliminated due to malicious participants, and one site could
not meet the minimum quality requirements.

FIGURE 10. Impact of various parameters on site’s probability of task
satisfaction: a) impact of site’s quality level on site’s probability of task
satisfaction; b) impact of number of participants on site’s probability of
task satisfaction.

Ilustrating the impact of different parameters on the site’s
probability of task satisfaction (V), we plotted two graphs,
presented in figure 10-a and 10-b. Figure 10-a shows an expo-
nentially decreasing relation between the site’s kappa score
and the probability of task satisfaction. The more the site’s
sensing capability decrease (i.e. kappa increases), the more
the probability of task satisfaction decreases, since the site
has a higher chance of not containing the sensors required and
meeting the minimum level of information quality requested.
Figure 10-b shows that the probability of task satisfaction
exhibits a logarithmically increasing relation with respect
to the site’s number of participants. Indeed, for smaller site
(containing less than 10 participants), the probability of sat-
isfaction is low. This is due to the smaller probability that a
small number of participants could satisfy all the request’s
requirements. On the other hand, for larger sites of 10 partic-
ipants and more, the probability of task satisfaction increases
significantly and levels out at 1. This is due to the fact that
having too many participants would not add more value, since
there would be a high level of redundancy in the information
collected.

G. IMPACT OF VARIOUS PARAMETERS ON SITE
SELECTION SCORE (K;})

The last set of experiments we conducted focused on eval-
uating the impact of eight of the model’s parameters on
sites’ final selection scores. First, we varied the event type
requested, and kept the other simulation parameters constant,
as shown in table 16.
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TABLE 16. Test configuration parameters - event type variation.

Type of event(s) — this is variable

in this test set 1,2,3,4,5,6
Total population 200
Participants 140

Budget 1000

Area size 20%20=400m"2
Time window for task 1 minute
Required information quality

level 5

% of malicious participants 2

Country 16.Malaysia

FIGURE 11. Sites’ selection scores across varying event types.

Figure 11 shows the obtained results, in terms of sites
selection with respect to various event types requested. In this
test scenario, the area of interest was divided in 16 sites, two
of which contained malicious participants (sites 1 and 14).
The two malicious sites obtained negative selection scores as
shown in the figure, and were therefore eliminated from the
selection. Site 10 was selected for five of the six events (traffic
condition, fire, storm, heart attack, and volcanic eruption
incidents), while site 13 was selected for the traffic accident
event. As shown in the figure, the type of event requested had
anoticeable impact on sites’ selection scores (considering the
same set of participants with the same characteristics). This is
due to the fact that each event type is associated with specific
sensors. Therefore, the event requiring less or more common
sensors resulted in higher selection scores. As shown in fig-
ure 10-a, traffic condition event (requiring 1 sensor) resulted
in scores in the 1000 range, while fire incident (requiring
4 sensors) resulted in scores in the 500 range. Strom incident
resulted in the lowest selection scores (350 range) since it
requires 6 sensors, including some specialized sensors not
commonly available in all phones. Therefore, we can con-
clude the events requiring more sensors or specialized sensors
have lower chances of being satisfied. Moreover, sites with
more sophisticated phones supporting all types of sensors
have higher chances of being selected, across all types of
events.

The second set of experiments we conducted focused on
evaluating the impact of participants’ maliciousness on sites’

VOLUME 7, 2019

TABLE 17. Test configuration parameters - participants’ maliciousness %
variation.

Type of event 2. Traffic accident
Total population 100

Participants 50

Budget 100

Area size 20*20

Time window for task 1

Required information quality 4.5

level

% of malicious participants 2%,5%,10%,25%
Country 8.poland

selection scores. In this set of experiment, we varied the
% of malicious participants, and kept the other simulation
parameters constant, as shown in table 17.

FIGURE 12. Sites’ selection scores across varying maliciousness
percentages.

Figure 12 shows the obtained results, in terms of sites
selection with respect to various percentages of malicious
participants in the area of interest. In this test scenario,
the area of interest was divided in 4 sites. Site 1 was selected
for the scenarios with 10% and 25% malicious participants,
while site 3 was selected for the scenarios with 2% and
5% malicious participants. As shown in the figure, the more
the % of maliciousness increased, the more sites contained
malicious participants and were therefore eliminated from
the selection. For instance, with 2% maliciousness, 1 out
of 4 sites had malicious participants. With 5% maliciousness,
2 out of 4 sites had malicious participants, while for 10%
and 25% maliciousness, 3 out of 4 sites had malicious users.
We can conclude that the % of maliciousness in the network
has a significant impact on the ability to satisfy requests, as it
has a direct impact on participants and sites reliability, which
is an essential parameter in the final selection score.

The third set of experiments we conducted focused on
evaluating the impact of the requested quality level on sites’
selection scores. In this set of experiment, we varied the
requested quality level, and kept the other simulation param-
eters constant, as shown in table 18.
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TABLE 18. Test configuration parameters — requested quality level
variation.

Type of event 3

Total population 100
Participants 50
Budget 100
Area size 20*20
Time window for task 5
Required information quality level 3,4,5,8
% of malicious participants 2
Country 8.poland

FIGURE 13. Sites’ selection scores across varying required quality levels.

Figure 13 shows the obtained results, in terms of sites
selection with respect to various quality levels requested.
In this test scenario, the area of interest was divided in 9 sites.
Site 2 was eliminated since it contained malicious partici-
pants. Site 6 was selected when quality levels 3 and 4 were
requested, while site 7 was selected when quality level 5 was
requested. When quality level 8 was requested, none of the
9 sites were selected, since none could satisfy the quality
requirement. We can conclude that the higher the requested
quality level, the lower the chance of making a successful
selection, since the site’s aggregate quality score should be
equal to or exceed the required quality level.

The fourth set of experiments we conducted focused on
evaluating the impact of the country in which the sensing task
is taking place on sites’ selection scores. In this set of experi-
ment, we varied the requested quality level, and kept the other
simulation parameters constant, as shown in table 19.

TABLE 19. Test configuration parameters — country variation.

Type of event 6

Total population 50

Participants 20

Budget 10

Area size 20%20

Time window for task 1

Required information quality level 6

% of malicious participants 0

Country Poland, USA, UAE,
Egypt, Nigeria, India,
Brazil, Japan
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FIGURE 14. Sites’ selection scores across varying geographical areas.

Figure 14 shows the obtained results, in terms of sites
selection with respect to various geographical. In this test
scenario, the area of interest was divided in 4 sites. Since
the maliciousness percentage was 0% in that case, non of the
sites were eliminated because of malicious participants. Site 3
was selected for six of the eight countries (Poland, USA,
Brazil, Egypt, India, and Japan), while site 2 was selected
when the country was set to UAE, and site 4 was chosen when
Nigeria was the country in question. That specific test case
pertained to a volcanic eruption event requiring 7 sensors,
namely: Light, Temperature, ambient temperature, Proxim-
ity, relative humidity, GPS, Camera. Analyzing the obtained
results, when a sophisticated sensing request is made, sites
containing the latest phones containing a large variety of
sensors would have a high chance of being selected. In this
case, site 3 contained such phones and therefore was selected
in most tests. On the other hand, in the UAE and Nigeria
scenario, a different distribution of phone brands resulted
in other sites containing the required sensors, and thus
being selected. We can therefore conclude that countries in
which there is a high penetration rate of latest smartphone
brands supporting many sensors have a better chance of sat-
isfying sophisticated sensing requests, than those supporting
more modest phone brands.

The fifth set of experiments we conducted focused on
evaluating the impact of the number of participants on sites’
selection scores. In this set of experiment, we varied the num-
ber of participants, and kept the other simulation parameters
constant, as shown in table 20.

In that experiment, the population size was 100 and the
area size was 20 meters X 20 meters. Since the number of
sites is impacted by the participants’ density (i.e. number
of participants / total population), the higher the density the
bigger the number of sites in which the area will be divided.
As shown in figure 15-a, for 10 participants, the area was
divided into only 1 site. For 50 participants, the area was
divided into 4 sites. This number increased to 16 sites for
75 participants. The 100 participants case is a special case
in which all the population of users are participants. The
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TABLE 20. Test configuration parameters - number of participants’
variation.

Type of event 3

Total population 100

Participants — this is variable in this | 10;25;50;75;100
test set

Budget 1000

Area size 20%20

Time window for task 1

Required information quality level 5

% of malicious participants 2

Country 16.Malaysia

number of sites in that case = area size? = 202 = 400 sites,
in which each site contained 1 or 2 participants, as shown
in figure 15-e.

In terms of sites’ final selection scores, figure 15-b depicts
the results for the 10, 25, and 50 participants’ scenarios.
In the 10 participants’ scenario, since they are was divided
into 1 site that met the minimum quality requirements and
did not contain malicious users, it was selected by default.
In the 25 and 50 participants’ scenarios, site 3 was selected,
since the other 3 sites did not meet the min. quality require-
ments. Figure 15-c illustrates the results for the 75 partici-
pants’ scenario, in which the area was divided into 16 sites.
In that scenario, site 15 was selected, while site 16 was
eliminated due to malicious participants, and all other sites
(except site 2) did not meet the minimum quality require-
ments. Finally, figure 15-d shows the results obtained for
the 100 participants’ scenario. In this case, the area was
divided into 400 sites, 93 of which contained participants.
Indeed, since the number of sites was very large in that case,
each site contained 1 or 2 participants, thus resulting in 307
empty sites, as shown in figure 15-e. In that scenario, site
13 (containing 2 participants) was selected, and sites 3 and
53 contained malicious users. We can therefore conclude that
the participants’ density has an important impact on the selec-
tion, since it impacts the number of sites and their dimensions.
The higher the participants’ density, the higher the number of
sites and the lower the number of participants in each site.
Therefore, higher densities will result in a smaller number
of participants being selected for a particular task, since the
participants are spread over a larger number of sites. The
benefit in this case would be a faster response time. However,
there would be little redundancy and limited possibility to
obtain the information from multiple sources for validation
purposes. On the contrary, smaller densities will result in a
smaller number of sites containing more users, and thus a
chance for a higher level of redundancy.

The sixth set of experiments we conducted focused on
evaluating the impact of the total population size on sites’
selection scores. In this set of experiment, we varied the total
population size, and kept the other simulation parameters
constant, as shown in table 21.
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No. of non-empty sites in different scenarios
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Sites selection score - 75 participants scenario
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FIGURE 15. Impact of number of participants on sites’ selection

scores: a) number of non-empty sites with respect to a varying number of
participants; b) sites’ selection scores for 10, 25, and 50 participants;

c) sites’ selection scores for 75 participants; d) sites’ selection scores for
100 participants; e) location of selected site for 100 participants’ scenario.
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TABLE 21. Test configuration parameters - total population size variation.

Type of event 2

Total population — this is variable in | 100;250;500;750;1000
this test set

Participants 80

Budget 100

Area size 20*20

Time window for task 2

Required information quality level 4.5

% of malicious participants 2

Country 8.poland

In that experiment, the population size was varied
(100, 250, 500, 750, and 1000), while the number of par-
ticipants was kept constant at 80 participants, and the area
size was 20 meters X 20 meters. In comparison to the pre-
vious test, the total population size had an inverse impact on
the number of sites. The higher the population size (with a
constant number of participants), the lower the participants’
density, and the lower the number of sites in which the area
is divided. As shown in figure 16-a, the area was divided
into 1 site only for the 80 participants with 500, 750, and
100 populations scenarios. In those cases, those single sites
were not selected due to the presence of malicious users in
them. Figure 16-b depicts the 80 participants with 250 pop-
ulation size result. In that case, the area was divided into
4 sites, one of which contained malicious participants, two
did not meet the minimum quality requirements, and one was
selected (site 3). Finally, figure 16-c shows the 80 participants
with 100 population size results. Due to the high population
density, the area in this case was divided into 25 sites, 2 of
which were empty, and one with malicious participants. Site
15 was the one selected in that case. Similar to the number
of participants, the total population size has an impact on the
selection result, since a higher population with low partici-
pants leads to lower density and a smaller number of sites.
On the contrary, a large population with a high number of
participants leads to a high density and a large number of
sites — with smaller number of selected participants.

The seventh set of experiments we conducted focused on
evaluating the impact of the area size on sites’ selection
scores. In this set of experiment, we varied the area size, and
kept the other simulation parameters constant, as shown in
table 22.

Figure 17 shows the results obtained when the area size
was varied (100, 400, 900, 1600, and 2500). The number of
sites was 4, for all cases, except for the 900 square meter area
size, which resulted in 9 sites. In the case of 100 square meter,
site 3 was selected, and site 1 was eliminated due to malicious
participants. In the 400 square meter case, site 4 was selected,
and site 1 was eliminated due to malicious participants. For
the 900 square meter case, site 6 was selected, and site 1 was
eliminated due to malicious participants. For the 1600 square
meter case, site 2 was selected, and site 4 was eliminated
due to malicious participants. Finally, for the 2500 square
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Site_1 selection scores, for 80
participants in 500, 750, and 100 Users'
population scenarios

-1.040193174
-1.160180356

a)

Sites selection score - 80 participants/ 250
population scenario

Sites' selection scores

site_1 site_2 site_3

Series2 78.44407106 -1.159251387

78.44082505

Sites

b)

c)

FIGURE 16. Impact of population size on sites’ selection scores: a) sites’
selection scores for 80 participants in 750, 500, and 100 population size;
b) sites’ selection scores for 80 participants in 250 population size;
¢) sites’ selection scores for 80 participants in 100 population size.

TABLE 22. Test configuration parameters - area size variation.

Type of event 2

Total population 100

Participants 60

Budget 100

Area size — this is variable in this 100, 400, 900, 1600,
test set 2500

Time window for task 1

Required information quality level 4

% of malicious participants 2

Country 8.poland

meter case, site 4 was selected, and site 2 was eliminated
due to malicious participants. We can conclude that the area
size has an impact on the number of sites and the number
of participants in each site, therefore indirectly impacting the
selection results.

The last set of experiments we conducted focused on eval-
uating the impact of the budget allocated to the task on
sites” selection scores. In this set of experiment, we varied
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FIGURE 17. Sites’ selection scores for different area sizes.

TABLE 23. Test configuration parameters — budget variation.

Type of event 2

Total population 100

Participants 30

Budget — this is variable in this test 1,5, 10, 20, 50, 100,
set 500, 750, 1000
Area size 20*20

Time window for task 10

Required information quality level 4.75

% of malicious participants 2

Country 8.poland

the budget, and kept the other simulation parameters constant,
as shown in table 23.

Figure 18 shows the results obtained when the budget was
varied (1, 5, 10, 20, 50, 100, 500, 750, 1000). As shown
in figure 18-a, when very small budget (e.g. 1$ and 5$) were
used, the total selection scores were negative for all sites,
indicating that no selection was made due to insufficient
budget. When the budget was increased to 10$, 20$ and 508,
site 3 was selected since it obtained the highest selection
scores. In those three scenarios, sites 1 and 2 could not meet
the minimum quality requirements. Figure 18-b shows the
results when large budgets (100, 500, 750, 1000 $) were used.

a)

b)

FIGURE 18. Impact of budget on sites’ selection scores: a) sites’ selection
scores for small budgets (1, 5, 10, 20, 50); b) sites’ selection scores for
large budgets (100, 500, 750, 1000).
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The result in those cases remained the same — site 3 selected,
and sites 1 and 2 eliminated due to inability to meet the
quality requirements. Therefore, beyond a certain threshold,
when a sufficient budget is available to meet the price of the
selected site, the selection will be made and the selected site
will not change. Below this threshold, when the budget is too
low, selection will be infeasible. Therefore, it is important to
determine the optimal budget to allocate to each task, based
on the potential prices of participants/sites.

V. SUMMARY OF FINDINGS AND FUTURE WORK

In this work, we have presented a comprehensive and prac-
tical approach to model and address the issue of mobile
crowdsensing participants’ selection. The proposed approach
revolves around the selection of the most reliable group of
participants that can provide the best quality possible for the
required sensory data. All significant parameters that may
have an impact on the outcome of the selection process were
included in our model, and realistic benchmarks and statistics
results were used to represent a realistic testbed for our
approach, which was simulated using Matlab. Furthermore,
extensive testing of our model was conducted to gain an
understanding of the important aspects affecting the quality
and reliability of MCS participants’ selection process.

Many important findings and insights were gained from

this work, namely:

1) The nature of the MCS application and sensing
task impacts the suitability of the participants’ being
selected. Indeed, sensing tasks requiring many sensors
or more sophisticated sensors have a lower chance of
being satisfied. Similarly, sites containing more sophis-
ticated phones (supporting all types of sensors) have
a higher chance of being selected, across all types of
sensing tasks.

2) Malicious activity has a significant impact on the selec-
tion process since it directly impacts the participants’
and sites’ reliability. More sophisticated models for the
modeling and detection of malicious sensing activities
are needed in the future.

3) The quality level specified in the request impacts the
ability to select suitable participants. The higher the
requested quality level, the lower the chance of mak-
ing a successful selection, since the site’s (i.e. group
of participants) quality score should equal or exceed
the requested quality level. Therefore, quality level
requirements should be chosen wisely depending on the
criticality of the MCS task (e.g. incident or emergency
monitoring application should require a higher quality
level than noise level monitoring).

4) The geographic area in which the sensing task is
required has an impact on the success of the selection
process. Since each geographic area is characterized
by some specific phone brands which are widely used
in it, different areas imply different phone brands, and
thus varying availability and quality of sensors. Thus,
countries in which there is a high penetration rate
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of latest smartphone brands supporting many sensors
have a better chance of satisfying sophisticated sensing
requests, when compared to less developed countries
supporting more modest phone brands.

In group-based selection approaches, the area size cho-
sen for a sensing task impacts the number of sites
and the number of participants in each site, therefore
indirectly impacting the selection results. Moreover,
the participants’ density in the Aol is found to have
an important impact on the selection, since it dictates
the number of sites used to form the grid, and the sites’
dimensions. Indeed, there exists a compromise between
response time and level of redundancy, when consid-
ering different participants’ densities. Higher densities
result in a higher number of smaller sites, and partici-
pants being spread over a larger number of sites. Such
case could result in faster response time, but limited
redundancy, due to the limited possibility of obtain-
ing the information from multiple sources. In contrast,
lower densities result in a smaller number of bigger
sites, and thus a higher degree of redundancy as well as
longer total response time. It should be noted that such
compromise does not apply for individual selection
approaches.

Choosing the optimal budget for a sensing task, that
meets the expectations of participants is crucial for
the success of the selection process. If the allocated
budget is too low, the selection process will fail. If it
meets the expectations of participants, it will succeed,
leading to efficient budget utilization. It if exceeds the
expectations of participants, the selection process will
still succeed, but leading to wasted financial resources.
Game theoretic approaches and double sided market
theory can be used for the calculation of equilibrium
conditions leading to optimal budgets per sensing task.
In terms of impact on the collected data quality, the fol-
lowing parameters were found to have an important
impact: a) Phones’ residual battery levels; b) Bench-
marked phones’ sensors quality scores; and c) phones’
proximity from the event of interest. It was found that
phones with higher residual battery and higher sensors’
quality scores have a higher chance of being selected
for sensing tasks. The proximity from the event has a
lower impact on the selection than the battery level and
the sensors’ quality scores. Moreover, we found that the
proximity from the event has a stronger positive impact
for phones/participants close to the event, showing little
variation for participants beyond a certain distance,
which are considered as out of reach with respect to
the event.

In addition to data quality, participants’ reliability rep-
resents a critical factor in the success of the selection
process. Due to the complexity of human behavior
in crowdsensing environments, participants’ reliability
for sensing task can be impacted by many factors, both
historical and instantaneous. Sophisticated models are

9)

10)

11)

needed to model participants’ reliability, in a com-
prehensive and practical manner. Such models should
capture past and present behavior.

In our reliability model, we found the following to be
important parameters: a) participants’ maliciousness;
b) participants’ data quality score relative to event;
¢) number of participants collaborating to satisfy the
sensing task. The detection of any malicious activity in
a site leads to a score of zero as reliability for this site,
therefore resulting in its elimination from the selection
process, and an impact on its future reputation. On the
other hand, the more the participants’ data quality score
relative to the event increases, the more the reliability
increases exponentially. Finally, sites with a smaller
number of participants (1 or 2) have lower reliability
due to the limited sources of information they offer,
while sites with a larger number of participants (5 to 10)
are seen as more reliable as they offer better chances to
collect and validate the data. Very large sites (10 and
more) do not offer more reliability, since the very large
number of readings does not bring added value in term
of information or redundancy.

In term of task price, the following was observed: The
longer the sensing task duration the higher the price
required for it, since long lived tasks would require
more resources and the commitment of the users to
remain in the same area for the duration of the task.
Therefore, we expect that time recurrent tasks or con-
tinuous sensing tasks would be associated with higher
sensing prices. On the other hand, sites with lower
sensing capabilities and lower quality levels would be
associated with lower prices, in comparison to sites
with higher sensing capabilities and better quality lev-
els. Finally, we noticed that the site’s price decreases
rapidly with the increase of the number of participants’
in the site. Since the availability of many participants
in the same area implies the availability of multiple
sources for the information, the competition between
those sources drives the site’s price down. Indeed,
the higher the price competition between the partic-
ipants, the lower the site’s price will be due to the
abundance of sources for the same information.
Finally, in terms of probability of task satisfaction,
we observed that the more the site’s sensing capabil-
ity decreases, the more the probability of task satis-
faction decreases, since the site has a higher chance
of not containing the sensors required and meeting
the minimum level of information quality requested.
Moreover, the probability of task satisfaction has an
increasing relation with respect to the site’s number of
participants. Indeed, for smaller sites, the probability of
satisfaction is low. This is due to the smaller probability
that a small number of participants could satisfy the
request’s requirements. On the other hand, for larger
sites of 10 participants and more, the probability of task
satisfaction increases significantly and levels out at 1.
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This is due to the fact that having too many participants
would not add more value, since there would be a high

level of redundancy in the information collected.
As future work, we plan to enhance our participants’ selec-

tion model by modeling additional aspects of the problem.
For instance, we could take into consideration participants’
mobility patterns and coverage of the area of interest to ensure
the success of long lived and continuous sensing activities.
More sophisticated modeling of participants’ reliability and
participants’ malicious activities could be incorporated as
well. Finally, optimal pricing models are needed to ensure the
efficient utilization of data collection budgets.
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