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ABSTRACT Analyzing cerebrovascular changes can significantly lead to not only detecting the presence
of serious diseases e.g., hypertension and dementia, but also tracking their progress. Such analysis could
be better performed using Time-of-Flight Magnetic Resonance Angiography (ToF–MRA) images, but this
requires accurate segmentation of the cerebral vasculature from the surroundings. To achieve this goal,
we propose a fully automated cerebral vasculature segmentation approach based on extracting both prior
and current appearance features that have the ability to capture the appearance of macro and micro-vessels
in ToF–MRA. The appearance prior is modeled with a novel translation and rotation invariant Markov-Gibbs
Random Field (MGRF) of voxel intensities with pairwise interaction analytically identified from a set
of training data sets. The appearance of the cerebral vasculature is also represented with a marginal
probability distribution of voxel intensities by using a Linear Combination of Discrete Gaussians (LCDG)
that its parameters are estimated by using a modified Expectation-Maximization (EM) algorithm. The
extracted appearance features are separable and can be classified by any classifier, as demonstrated by our
segmentation results. To validate the accuracy of our algorithm, we tested the proposed approach on in-
vivo data using 270 data sets, which were qualitatively validated by a neuroradiology expert. The results
were quantitatively validated using the three commonly used metrics for segmentation evaluation: the Dice
coefficient, the modified Hausdorff distance, and the absolute volume difference. The proposed approach
showed a higher accuracy compared to two of the existing segmentation approaches.

INDEX TERMS Cerebrovascular, segmentation, TOF–MRA.

I. INTRODUCTION
IN medicine, there are some diseases that have compli-
cated natures and should be analyzed deeply in order to
provide the patient with the right treatment. Among these
diseases that can lead to death, or disability, are the cere-
brovascular diseases [1]. These types of diseases commonly
occur due to the dysfunction of the blood vessels supply-
ing the brain [2]. There are different kinds of cerebrovas-
cular diseases including aneurysms, strokes, arteriovenous
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malformation, and carotid stenosis [3]. Hemorrhage, a cere-
brovascular disease, is considered a cause for strokes for
almost 20% of the cases [4]. Furthermore, cerebrovascular
diseases are considered the fifth leading cause of death and
disability in the US. For neurosurgeons, analyzing the brain
scans manually takes a long time and a lot of effort, especially
when tracking a small vessel in the orthogonal view in order
to be able to get a better picture of the vascular anatomy [5].
With the aid of bio-engineers and computer engineers, sev-
eral computer-aided-diagnostic systems have been developed
to analyze cerebrovascular structures, taking into consider-
ation that any system needs accurate segmentation of the
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cerebrovasculature from its surroundings, and this is the main
motivation behind developing our approach.

Several modalities have been used for noninvasive vascular
imaging e.g., computed tomography angiography and mag-
netic resonance angiography (MRA). Three MRA techniques
are commonly used for vascular imaging, namely; the Time-
of-Flight MRA (TOF-MRA), phase contrast angiography
(PCA), and contrast enhanced MRA. Both TOF-MRA and
PCA use flowing blood as an inherent contrast medium, while
for contrast enhancedMRA, the circularity system is injected
with a contrasting substance. PCA exploits phase changes of
transverse magnetization when flowing spins move through
a magnetic field gradient. This provides good background
signal suppression and can quantify flow velocity vectors for
each voxel. TOF-MRAwhich relies on amplitude differences
in longitudinal magnetization between flowing static spins is
less quantitative, however, it is fast and provides high contrast
images. The fact that it is widely used in clinical practice is
another motivation behind our work. An overview of the most
recent approaches for vascular segmentation will be given
below, focusing on cerebrovascular approaches using MRA
which are mainly categorized in literature into scale-space fil-
tering, centerline-based, deformable, statistical, hybrid mod-
els, and the deep learning based models.

Multiscale filters improve the curvilinear structures in 3D
medical imaging by using multiple scales to convolve an
image with Gaussian filters [6]–[9]. Moreover, analyzing the
eigenvalues of the Hessian for each voxel determines the
3D structures’ local shapes. The output of the multiscale
filtering represents a new enhanced image in a manner that
makes curvilinear structures look brighter while other com-
ponents look darker [6]. A multiscale-based approach was
proposed by Lacoste et al. [9] in which Markov marked point
processes are used for extracting coronary arteries in 2D
X-ray angiograms. The Coronary vessels are locally modeled
as piece-wise linear segments of variable widths, lengths,
locations, and orientations. A Markov object process based
on a uniform Poisson process is used to extract the centerlines
of the vessels. In order to optimize the process, simulated
annealing is done by using a reversible Markov chain Monto
Carlo technique.

Minimal path centerline-based approaches [10]–[12] for-
mulate the extraction of the centerline, using 2 points as the
minimum cost integrated across the path of the centerline.
The centerlines of blood vessels were extracted by Güls’́un
and Tek [10] by computing the graph edge cost in the direc-
tion of theminimal path usingmedialnessmultiscale filtering.
The centerline of the full vessel tree was then extracted using
a post processing algorithm based on the centerlines scale and
length. Furthermore, Pèchaud et al. [11] proposed a frame-
work for extracting the tubular structures automatically from
2D images using the shortest paths. They merged orientation
and multiscale optimization for the 4D paths to be propagated
on the 2D images, where 4D refers to the combination of
scale, space and orientation. Minimal path approaches could
result in shortcut problems by tracking a false straight path

instead of the true curve. This problem was handled by Zhu
and Chung [13] who segmented the coronary arteries using a
minimum average-cost path.

For deformable models based segmentation techniques or
active contour models, they mainly tend to find an estimate
of the blood vessels’ boundary surface [14]–[19]. The surface
energy is optimized by the evolution of an initial boundary
(snake) [20]. This is dependent on the smoothness of the sur-
face, in addition to the image gradients. Zhao et al. [21] devel-
oped a maximum intensity projection active contour based
approach for cerebrovascular segmentation. Their method
projects the brain into 2D space where an integrated active
contour model is applied, and the output is then converted
back into 3D. Although the results of this method were very
promising, it is complicated as it requires a lot of projections.
To segment complex objects and obtain the energy function,
it is preferable to consider both the region information and
boundary information. A hybrid level-set have been previ-
ously proposed by Zhang et al. [22] for brain segmentation.
A threshold value was set, which represented the lower gray
boundary so the algorithm will only extract parts of image
with a gray level that is higher than the defined threshold.
However, the used threshold value was constant which cannot
fit different intensity distributions. Hong et al. [23] pro-
posed a localized hybrid level-set that calculates the dynamic
threshold locally for the targeted object in the image. Their
method was found to segment small vessels more effectively
but loses the information in the thick parts. Thus, the hybrid
level-set was more effective in segmenting thick vessels but
not in tiny vessels, whereas the localized hybrid level-set was
more effective in extracting tiny vessels [1].

When comparing deformable models to scale space fil-
tering, deformable models give better results, however they
might require some human interaction represented in the
initialization. Also, it is worth mentioning that deformable
models and scale space filtering are slower than statistical
methods.

Statistical approaches for extracting blood vessels are
automatic, however the accuracy depends on the probability
models being involved. The MRA scans can be considered
multimodal as the intensities of each region are accompanied
with a specific dominant mode of the intensity total marginal
probability distribution. For adaptive statistical vascular seg-
mentation approaches, they were introduced by Wilson and
Noble [24] for TOF-MRA as well as Chung and Noble [25]
for PC-MRA. In [24], the marginal data distribution was
represented with amixture of 2 Gaussians in addition to a uni-
form component, corresponding respectively to brain tissues,
cerebrospinal fluid, and arteries, while Rician distributions
were used in [25] instead of Gaussians. Both approaches
made use of a conventional expectation maximization (EM)
algorithm in order to estimate the parameters of the mix-
ture. The EM algorithm was modified in [24] by using the
marginal grey level distribution instead of the actual grey
levels. Thismodification has been commonly used for density
estimation [26].
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Various hybrid techniques worked on combining the previ-
ously mentioned techniques. As an example, Nain et al. [27]
combined shape information and signal statistics to derive a
region-based deformable contour to segment tubes. Further-
more, geometry of surfaces and second order statistics were
used by Law and Chung [28] to guide a deformable model
surface for the purpose of vascular segmentation in PC-MRA
and TOF-MRA. Wen et al. [3] proposed a method based
on a Rayleigh-Gaussian mixture model. In their method,
when analyzing the histogram, many nonvascular voxels are
removed, therefore, this problem can be avoided by dividing
the voxels based on their region where vascular voxels are
in regions with high intensity and non-vascular voxels are
found in the low intensity regions. Cao et al. [29] proposed
a segmentation method that was based on Markov random
field and particle swarm optimization algorithms. In addi-
tion, a new finite mixture mode with two Gaussian and one
Rayleigh distributions used for the intensity histogram of
brain tissues in medical image. Forkert et al. [4] presented
a cerebrovascular segmentation framework from TOF-MRA
that combines statistical, deformable and scale-space tech-
niques. In their method, they calculated the vesselness and
then used fuzzy logic to combine it with the TOF-MRA data.
This was then used to initialize a level-set technique. Their
work was extended by Woźniak et al. [30] by modifying the
vesselness function to include multiscaling in order to handle
different vascular sizes.Moreover, Zhao et al. [31] proposed a
framework for segmenting cerebral vessels from MRA using
gradient information and statistics.

Deep learning based models have recently gained a lot
of attention as they provide a new trend to extract the fea-
tures in addition to final classification to provide the final
segmentation labels. Kandil et al. [32] developed a new 3D
convolutional neural network (3D-CNN) based segmenta-
tion approach that divides the brain into two compartments,
(above, and at and below circle of Willis, CoW), relying on
the intensity variations as the blood flow changes to provide
an enhanced segmentation. Livne et al. [33] used the U-net
deep learning framework with energy function computed by
a voxel wise sigmoid over the final feature map combined
with the Dice coefficient as the loss function to segment blood
vessels from MRA scans.

In summary, the above-mentioned overview demonstrates
the following limitations:
• Most of the cerebral segmentation approaches are semi-
automatic which require user interaction to initialize a
vessel of interest, in particular, the deformable based
segmentation approaches.

• Some of them developed their approaches based on an
assumption the vessels follow tubular shape; this holds
for healthy people but not for patients with stenosis or
an aneurysm.

• Most of them are developed based on using pre-trained
models and did not take into account any features from
the given data to make their approach adaptable and not
biased to the training data.

To overcome the above-mentioned limitations, we devel-
oped a fully automated segmentation approach that takes
into account both current and prior appearance models. For
prior appearance, we developed a new MGRF model, invari-
ant under translation in the (x, y) plane and under rotations
around the z axis, which has the ability to capture the 1st order
appearance model as well as the 2nd order appearance model
without using any alignment algorithms. For current appear-
ance model, we used the Linear Combination of Discrete
Gaussians (LCDG) model to estimate the marginal density
of the blood vessels from the MRA data.

II. METHODS
We present a fully automated framework to extract both
micro and macro brain blood vessels from MRA images.
As demonstrated in Figure 1, the proposed framework con-
sists of the following major steps: (i) bias correction and
skull stripping, (ii) enhancement of vascular contrast and
homogeneity, (iii) modeling vascular prior appearance using
a pairwise, rotation and translation invariant, Markov-Gibbs
random field (MGRF), the interaction parameters of which
have been analytically estimated from a set of MRA training
data, (iv) modeling the current appearance using our prior
model and LCDG approach, (v) initial classification of vascu-
lar tissue, and (vi) final extraction of the brain vascular system
based on 3D connectivity analysis. The proposed framework
in Figure 1 avoids many of the shortcomings of the methods
presented in the literature. In particular, it does not require
any alignment steps because all the proposed models are
translation and rotation invariant in the (x, y) plane. Also, the
proposed framework is not biased toward the training data,
due to its taking into account the current appearance of the
MRA data as well as the learned prior appearance model
of the cerebral vasculature. Finally, the proposed framework
performs well in the presence of inhomogeneities that may
exist in MRA images. This is due to its encoding local spa-
tial information using the MGRF model to identify vascular
tissue irrespective of large-scale variation in absolute signal
intensities. Details of the proposed approach are outlined in
the following sections.

• Basic notations:-
• Let (x, y, z) denote Cartesian coordinates of points in a
finite arithmetic lattice R = {(x, y, z) : x = 0, . . . ,X −
1; y = 0, . . . ,Y − 1, z = 0, . . . ,Z − 1}.

• Q = {0, . . . ,Q− 1} denotes a set of gray levels.
• g : R→ Q is a 3D grayscale image.

A. BIAS CORRECTION AND SKULL STRIPPING
Illumination non-uniformity of brain MR images, which is
known as bias field, limits the accuracy of the brain tissue
segmentation and extraction approaches. These approaches
presents a very important step to extract the region of inter-
est for the subsequent segmentation approaches. Therefore,
the accurate extraction of the brain requires accounting for the
low-frequency intensity non-uniformity or inhomogeneity.
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FIGURE 1. The proposed segmentation framework showing the step by step details starting from Pre-processing, feature extraction, voxel
classification, and finally the post-processing.

A non-parametric bias correction algorithm [34] was used
to reduce any effects of noise and to remove data inconsis-
tencies. Consequently, the brain extraction tool was used to
remove the skull and keep the brain tissue only [34].

B. HOMOGENEITY ENHANCEMENT
To enhance the vascular homogeneity in this work, we devel-
oped a new 3D Rotational and Translational Invariant Gen-
eralized Gauss-Markov random field (RTI-GGMRF) model.
This model will be applied after the bias correction and skull
stripping step. The main idea of the model is to reduce the
signals inconsistencies of the MRA data by estimating the
new grey level that minimize the Gibbs energy between the
voxel of interest and its neighbors. To ensure the proposed
RTI-GGMRF is invariant under rotations and translations,
we selected the neighborhood system to be central-symmetric
around the voxel of interest (e.g., spherical-neighborhood
system) as demonstrated in Figure 2. In order to use the
proposed RTI-GGMRF model to estimate the MRA signals
that enhance the homogeneity of MRA data, let the gray
level values of a volume g be considered as samples from
a 3D RTI-GGMRF model [35] with spherically symmetric
neighborhood system (n1,n2). The maximum a posteriori
estimates [35] and voxel-wise stochastic relaxation (iterative
conditional mode [36]) of voxel values at each location s ∈ R
are as follows:

q̂(s) = argmin
q
|g(s)− q|α + ραλβ

∑
r∈n1

η1(r)|g(s+ r)− q|β

+ ραλβ
∑
r∈n2

η2(r)|g(s+ r)− q|β ] (1)

The neighborhood n1 is located at a unit distance from the
central voxel. Similarly, n2 is the neighborhood located at
a double unit distance from the central voxel. η1 and η2 are
the corresponding RTI-GGMRF potentials, and ρ and λ are
scaling factors. The parameter β ∈ [1.01, 2.0] controls the
smoothing level (e.g., β = 2 for smooth vs. β = 1.01
for noisy edges). The parameter α ∈ {1, 2} determines the
Gaussian, α = 2, or Laplace, α = 1, prior distribution of the
estimator.

To enhance the contrast of MRA images, we are proposing
to use our former, unsupervised first-order appearance model

FIGURE 2. A 2D and 3D illustration of the proposed rotational and
translational invariant neighborhood system. The center voxel and the
neighborhood system are cololred in blue and yellow respectively.

to estimate the marginal grey level distributions of blood
vessels and other brain tissues.

An LCDG model with K of dominant modes is given by
a sum of Cp positively weighted and Cn negatively weighted
discrete Gaussian components with Cp ≥ K :

P(q) =
Cp∑
r=1

wp,rψ(q|θp,r )−
Cn∑
l=1

wn,lψ(q|θn,l) (2)

where ψ(q|θ ) is the discrete Gaussian distribution on Q with
parameter vector θ = (µ, σ 2) and the weights are constrained
to be nonnegative and the the difference between their sum-
mation equal 1

The parameters of the LCDG were estimated using the
modified expectation-maximization algorithm in [37].

Assuming the positively weighted discrete Gaussian com-
ponents are ordered such that µp,1 ≤ µp,2 ≤ · · · ≤ µp,Cp ,
the marginal distribution of grey levels within brain tissue
(grey/white matter) and within blood vessels were calculated
as

P(q|Brain) =
1
α

2∑
r=1

wp,rψ(q|θp,r )−
Cn∑
l=1

wn,lψ(q|θn,l)

P(q|Vessels) =
1

1− α

Cp∑
r=3

wp,rψ(q|θp,r )

−

Cn∑
l=1

wn,lψ(q|θn,l) (3)

where α = wp,1+wp,2∑
r wp,r

.
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Given these preliminaries, we employed the following
algorithm to improve the homogeneity and contrast of MRA
images as follows:

1) Choose δ > 0
2) For each MRA volume g : R→ Q

a) For each slice gi ⊂ g
i) Estimate parameters of the LCDG model

using modified EM algorithm.
ii) Calculate the empirical marginal distributions

of brain tissue Pi(q|Brain) and blood vessels
Pi(q|Vessel) using equation 3

b) Initialize contrast-enhanced image E : R→ R
c) For each s ∈ R

i) Solve Eq. 1 for q̂(s) using gradient descent
ii) Pv ← Pi([̂q(s) + 0.5]|Vessel), where [ · ]

denotes the greatest integer function.
iii) Po← Pi([̂q(s)+ 0.5]|Brain)
iv) If Pv ≥ Po

E(s)← q̂(s)+ δ
else

E(s)← q̂(s)− δ
Note that δ is a ‘‘small’’ value controlling the degree of
contrast enhancement; in all our experiments we used δ = 1.

C. ROTATION AND TRANSLATION INVARIANT
MGRF-BASED PRIOR CEREBRAL VASCULATURE
APPEARANCE MODEL
To develop the proposed learnableMGRFmodel in a way that
it does not require any alignment stage in order to use it to
extract cerebral vasculature, the appearance of cerebral vas-
culature is modeled using a 3D MGRF, having 2D rotational
and translational symmetry, with neighborhood system N.
As illustrated in Fig. 2,N is specified by a set of characteristic
voxel neighborhoods of the origin {nν : ν = 1, 2, . . . ,N }
and their corresponding Gibbs potentialsVν . A characteristic
neighborhood nν is spherically symmetric if and only if it
comprises all voxels whose distance from the origin falls
within a half-open interval, nν = {r : dmin,ν ≤ ||r|| <
dmax,ν}.
Since the MRA appearance of the cerebral vasculature

changes from large vessels (bright) to microvessels (less
bright), we have to take this effect into account in order to
accurately segment cerebral vasculature. To accomplish this
we developed the 3D interaction system to be a function in
the z (inferior–superior) direction. That is, for each axial slice
of the MRA volume there is a corresponding set of Gibbs
interaction potentials Vν(q, q′; z), as well as a gray level
potential V0(q, q′; z) = V0(q; z). Note that V0 represents the
estimated potential for the first order prior appearance of the
cerebral vasculature and Vν is the pairwise, or second order,
prior appearance of the cerebral vasculature.

To identify/learn the proposed MGRF model, we have to
estimate the potentials Vν and V0. Thus, consider a train-
ing set of MRA volumes g = {g1, . . . , gT }, T = 20
in our experiments, and the families of voxel pairs (s, s′)

where s ∈ R, s′ = s + r , and r ∈ nν . Let Fν,t (q, q′; z)
be a joint empirical probability distribution of gray level
co-occurrences in the training nodules from the image gt .
Also define F0,t (q, q′; z) = F0,t (q; z) as the empirical dis-
tribution of gray levels.

TheMGRFmodel of the t-th object is specified by the joint
Gibbs probability distribution on the sublattice Rt = {s ∈
R|gt (s) is vasculature}.

Pt (q, q′) =
1
Zt

exp

(
|Rt |

N∑
ν=0

(
ρν,t

Zt−1∑
z=1

Vν,t (q, q′; z)

Fν,t (q, q′; z)

))
(4)

where ρν,t is the average cardinality of the neighborhood nν
with respect to the sublattice Rt . We make the simplifying
assumption that different vascular trees have approximately
the same total volume, |Rt | = Rvasc, and the same neighbor-
hood sizes, ρν,t = ρν . For independent samples, the joint
probability distribution of gray values for all the training
cerebral vasculature is as follows:

PS =
1
Z
exp

(
TRvasc

N∑
ν=0

(
ρν

Z−1∑
z=1

Vν,vasc(q, q′; z)

Fν,vasc(q, q′; z)

))
(5)

where the marginal empirical distributions of gray levels
F0,vasc and gray level co-occurrences Fν,vasc describe all the
cerebral vasculature from the training set. The potentials are
approximated using the analytical approach similar to that
in [38].

For computing MGRF energies E0 and Eν of the
spherically-symmetric pairwise voxel interactions in the
training data, note that the energies are equal to the variances
of the co-occurrence distributions:

E0(z) =
Q−1∑
q=0

F0,vasc(q; z)
(
F0,vasc(q; z)−

1
Q

)
(6)

Eν(z) =
Q−1∑
q=0

Q−1∑
q′=0

Fν,vasc(q, q′; z)
(
Fν,vasc(q, q′; z)−

1
Q2

)
(7)

The calculated Energies from Eqs. (6 and 7) will be
used as discriminatory features that represent the first-order
and second-order prior appearance model of the cerebral
vasculature.

D. LCDG-BASED CURRENT APPEARANCE MODEL
In addition to the appearance prior that learned from the
normalized training data sets that are modeled using the
MGRF model, we model the marginal gray level distribution
with a dynamic mixture of two distributions for brain blood
vessels and other brain tissues, respectively, by using the
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FIGURE 3. Illustration of the Dice coefficient, (right), and the Hausdorff
evaluation, (left), metrics. Evaluation is performed in 3D while a 2D cross
section is depicted for visualization simplicity.

LCDG model in Eq. 3 to estimate their marginal densities.
This modeling will overcome the problems that stem from
the visual appearance variations between different subjects,
g, that will be segmented. These differences can be caused
by the changes in patient tissue characteristics, different data
acquisition systems that causes non-linear intensity varia-
tions, scanner type, and scanning parameters.

E. EXTRACTION OF THE CEREBRAL VASCULATURE
To highlight that the features extracted using the pro-
posed segmentation approach are separable and can be
accurately classified/segmented by any classifier algorithm,
the extracted prior appearance features and current appear-
ance features were fed into different classifiers (Figure 1),
namely, Support Vector Machine (SVM), Neural Network,
auto-encoder network followed by softmax decision network,
and decision tree. The classifier with the highest accuracywas
used (SVM in experiments below). To extract the final seg-
mented cerebral vasculature, the Image Processing Toolbox
within Matlab was used to extract the largest connected 3D
component from the initial segmentation that was obtained
using the the SVM classifier. After assigning a unique label
for each individual connected component, a volume and
shape-based constraints are applied to select the largest com-
ponents that satisfy a predefined threshold and tabularity
shape conditions.

To summarize, the whole segmentation approach is as
follows:

1) Read TOF-MRA volume
2) Apply the bias correction algorithm followed by the

skull stripping algorithm as demonstrated in Section II-
A.

3) Apply the proposed homogeneity enhancement algo-
rithm as demonstrated in Section II-B.

4) Use Eqs. 6 and 7 to estimate the energy of the first-order
and second-order prior appearance.

5) Use Eq. 3 to estimate the probability density for any
voxel to be blood vessels (P(q|Vessels)) and probability
to be other brain tissues (P(q|Brain)).

6) Feed the estimated current and prior features to your
classifier.

7) Extract Cerebral Vasculature by using the Matlab tool-
box to extract the largest connected components.

To Summarize, the proposed method is based on modeling
and generating engineered features (some of them depends
on training data, e.g., the MGRF Gibbs energy feature), then
feed these features to a machine learning classifiers.

F. EVALUATION METRICS
The segmentation results of the proposed blood vessels seg-
mentation framework are evaluated using two types of met-
rics: area-based similarity metrics and a distance-based error.
The area-based similarity indicates the overlap between the
segmented area and the ground truth. These types of met-
rics are crucial for studying area measurements, e.g., total
volumes of blood vessels. The distance-based error measures
how close the edges of the segmented vessels are to the
ground truth. In this paper, we used the Dice coefficient (DC)
and absolute vessels volume difference (AVVD) to describe
the area-based similarity, while the 95-percentile bidirec-
tional Hausdorff distance (BHD) is used to characterize the
distance-based error metric. These evaluation metrics are
detailed below.

1) DICE COEFFICIENT (DC)
The Dice coefficient (DC) is used first to evaluate the seg-
mentation accuracy. DC is the most commonly used similar-
ity metric for segmentation evaluation by characterizing the
agreement between the segmented (S) and the ground truth
(G) regions by calculating the true positive (TP) value, true
negative (TN ) value, false negative (FN ) value, and false pos-
itive (FP) value. The TP represents the number of positively
labeled voxels that are correct; theFP is the number of labeled
voxels that are classified positively while it is incorrect; the
TN is the number of negatively labeled voxels that are correct;
and the FN is the number of negatively labeled voxels that are
incorrect. The DC value is calculated using all these values as
follow [39]:

DC =
2 · TP

2 · TP+ FP+ FN
× 100 (8)

The calculated value of the DC can have a percent-
age value in the range 0% to 100%, where 0% means
strong dissimilarity and 100% means a perfect similarity.
To obtain the ground truth that used in the segmentation
evaluation process, an MRA expert delineated the brain
vessels.

2) ABSOLUTE VESSELS VOLUME DIFFERENCE (AVVD)
Another area-based metric that is used in this paper for the
evaluation of segmentation, in addition to the DC, is the
absolute Vessels volume difference (AVVD). The AVVD is
the volume difference (percentage), between the output of
the segmentation framework, S, and the ground truth, G,
as follows:

AVVD(G,S) =
|G− S|
|G|

× 100 (9)
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FIGURE 4. Visualization of the average vessel volume difference. The
ground truth and the segmented volumes, in the second row, colored in
green and red respectively.

FIGURE 5. Illustration of the pre-processing steps, (in 2D projection):
(a) Original axial slice, (b) Output after applying bias correction and
homogeneity algorithms, and (c) Output after applying the skull stripping
algorithm.

FIGURE 6. Voxel-wise Gibbs energy: (a) 1st -Order Gibbs energy and
(b) total Gibbs energy.

where |G− S| is the absolute difference between the number
of voxels in G and S, |G| is the number of voxels in G.

3) BIDIRECTIONAL HAUSDORFF DISTANCE (BHD)
In addition to the DC and AVVD, the distances between G
and S borders are used as an additional metric to measure
the accuracy of the segmentation framework. To measure the

FIGURE 7. Maximum Intensity Projection (MIP) presented on the 2D axial
(A), coronal (C), and sagittal (S) planes for visualization.
(a) MIP-visualization of original MRA data, (b) MIP-visualization of MRA
data after applying bias correction and homogeneity algorithms, and
(c) MIP-visualization for the estimated voxel-wise Gibbs energy.

FIGURE 8. A 2D axial projection for the segmentation results from two
different subjects using the proposed technique. The true positive, and
false negative segmentation’s are overlaid with green, and red,
respectively.

distance error between the borders of G and S, we used the
bidirectional Hausdorff distance (BHD). The HD from the
boarder points ofG to the boarder points of S is defined as the
maximum distance from the border of G to the nearest point
on the border of S [39], [40]:

HD(G,S) = max
g∈G
{min
s∈S
{d(g, s)}} (10)

where g and s denote points of set G and S respectively, and
d(g, s) is the Euclidean distance between g and s.
The bidirectional Haussdorf distance (BHD) between the

segmented region S and its ground truth G is defined as:

BHD(G,S) = max{HD(G,S),HD(S,G)} (11)

In this paper, we use the 95th-percentile bidirectional
Haussdorf distance (BHD) as a metric that measures the
segmentation accuracy.

III. EXPERIMENTAL RESULTS
In order to evaluate the performance of the proposed
cerebral vasculature segmentation system, it was applied
to 270 ToF–MRA data sets which were obtained from the
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FIGURE 9. Sample of 2D segmentation results, for two different cross
sections, (first and third rows), and zooming for selected regions, (second
and fourth rows). From left to right, the output segmentation of:
proposed method, method by [32], and then [33]. The true positive, false
negative, and false positive segmentation’s are overlaid with green, red,
and blue respectively.

University of Pittsburgh, Pennsylvania, USA, through our
collaborator in this project. An MRA expert delineated
the brain vessels to provide the ground truth that will be
used in the evaluation process. The ToF–MRA data were
acquired using a 3.0T Trio MRI scanner with a 12-channel
phased-array head coil (TR=21.0, TE=3.8, flip angel=22).
Each volume has the size of 384 × 448 × 160 with a slice
thickness of 0.5 mm.

To highlight the role of each step in the proposed seg-
mentation system, we demonstrate in Figure 5 the output of
each step for a selected axial cross-section of one subject.
As shown in Figure 5(b), the homogeneity and contrast are
enhanced by using the proposed GGMRF model. Figure 6
highlights the advantages of using a higher order MGRF
model versus using only the 1st -order MGRFmodel. Another
way to visualize our new Gibbs energy and compare it to
the original intensity of MRA data is to use maximum inten-
sity projection for the original MRA data and the estimated
voxel-wise Gibbs energy of MRA data as demonstrated
in Figure 7. It is clear from Figure 6(b) that the estimated
voxel-wise energy for the brain vascular system is high com-

TABLE 1. Comparison between the proposed segmentation framework
and other two segmentation techniques.

FIGURE 10. 3D visualization of the circle of Willis boundaries in a typical
MRA, (left), volume and its corresponding vasculature, (right).

TABLE 2. Comparison between the execution, (minutes), time for the
proposed segmentation framework and other two segmentation
techniques. The CNN method is reported for the testing phase only.

FIGURE 11. 3D vasculature visualization of sample output segmentation
obtained using the proposed framework for the three different subjects.

pared with the other brain tissues, which encourage us to use
the estimated Gibbs energies as separable features to extract
brain vascular system from MRA images.

Figure 8 presents the segmentation results on the 2D axial
plane for the proposed vasculature segmentation system by
using the SVM classifier as it obtained the highest overall
accuracy.

To highlight the advantages of the proposed segmenta-
tion approach, we compared it with CNN-based segmenta-
tion approach proposed by Kandil et al. [32] and statistical
based segmentation approach proposed by Livne et al. [33]
(Figure 9). Table 1 shows a comparative evaluation using
the aforementioned evaluation metrics, for the obtained
3D segmentation, and proves that our proposed algorithm
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FIGURE 12. The receiver operating characteristic curve for the support
vector machine classifier.

FIGURE 13. A 2D axial projection for the segmentation of different
subjects from the validation data set using the proposed segmentation
technique. The segmentation results are overlaid with red on the grey
image.

provides a better segmentation over larger blood vessels, (at
and below CoW), as well as smaller ones, (above CoW). The
reported results for our approach used the SVM classifier
with four-fold cross validation. To measure the statistical
significance between the results of the proposed segmenta-
tion and the other techniques that used in the comparison,
we used the paired t-test. The differences between the metrics
means were found to be statistically significant as the cor-
responding p-values are below 0.0001. Figure 10 provides
a 3D demonstration of the anatomical separation based on
the coW. Moreover, in Table 2, we demonstrated the aver-
age execution time for each segmentation approach. The
reported execution time is based on implementing the pro-
posed approach on an Intel quad-core processor (3.2 GHz
each) with 64 GB of memory and a 4 TB hard drive with

RAID technology using Matlab. Finally, Figure 11 demon-
strates 3D visualization of the extracted vascular system using
the proposed segmentation framework. Another major met-
ric, the receiver operating characteristic (ROC), is used to
evaluate the robustness of our segmentation framework. The
ROC tests the sensitivity of the segmentation results against
the selection of the the classification threshold (operating
point) by showing the relationship between the fractions of
TP and FP rates at different threshold points as demonstrated
in Figure 12.
In addition, the accuracy of the proposed approach was

quantitatively validated using 30 data sets with a known man-
ually segmented ground truth that was obtained by an MRA
expert. Each data volume consists of a matrix of 696 × 768
with an in-plane spacing of 0.26 mm and was collected for
patients who underwent stress analysis study. The average
DC, AVVD, and BHD is 94.58%, 7.31%, and 2.85 voxels
respectively. Figure 13 shows qualitative results for the vali-
dation data set, it shows a 2D axial projection from different
subjects.

IV. CONCLUSION
In conclusion, the cerebral vascular diseases are threatening
the life of millions around the world. The diagnosis of such
diseases has been a challenge over the years and most physi-
cians would agree that the most important step of recovery
is having the right diagnosis. If the illness is precisely iden-
tified, most likely proper treatment will be done. Therefore,
segmentation of the cerebrovascular structure is crucial since
it helps in the diagnoses process, surgery planning, research,
and monitoring. Moreover, the benefits of the segmentation
of the cerebrovascular structure lay in its ability to improve
the simulation of the blood flow and the visualization of the
vessels in which each developed method solves a problem
faced previously or triggers a specific region of the brain.
This paper proposes a statistical approach that utilizes a
voxel-wise classification based on determining probability
models of voxel intensities in order to separate blood ves-
sels from the background of each TOF-MRA slice. This is
done by approximating the marginal empirical distribution
of intensity probabilities with LCDG with alternate signs
and utilizing EM-based techniques for linear combination
of Gaussian approximation that are adapted for dealing with
LCDGs.
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