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Abstract: In wireless body area networks, temperature-aware routing plays an important role
in preventing damage of surrounding body tissues caused by the temperature rise of the nodes.
However, existing temperature-aware routing protocols tend to choose the next hop according to the
temperature metric without considering transmission delay and data loss caused by human posture.
To address this problem, multiple research efforts exploit different metrics such as temperature, hop
count and link quality. Because their approaches are fundamentally based on simple computation
through weighted factor for each metric, it is rarely feasible to obtain reasonable weight value through
experiments. To solve this problem, we propose an enhanced mobility and temperature-aware routing
protocol based on the multi-criteria decision making method. The proposed protocol adopts the
analytical hierarchy process and simple additive weighting method to assign suitable weight factors
and choose the next hop while considering multiple routing criteria. Simulation results are presented
to demonstrate that the proposed protocol can efficiently improve transmission delay and data loss
better than existing protocols by preventing the temperature rise on the node.

Keywords: temperature-aware routing; multi-criteria decision making (MCDM); Analytic Hierarchy
Process (AHP); simple additive weighting (SAW)

1. Introduction

A Wireless Body Area Network (WBAN) consists of intelligent and low-power computing devices
that are used to collect patients’ vital signs for real-time diagnosis and remote health monitoring.
These devices forward the collected information to a central sink node that forwards it to a medical
server. Unlike the typical Wireless Sensor Networks (WSN), there are several routing issues in WBAN
due to its stringent requirements [1]. For example, the main objective of routing protocol in a WSN is
to minimize the routing overhead and maximize throughput. On the other hand, in WBAN, it is more
important to reduce energy consumption because sensor devices have limited resources in terms of
battery capacity, transmission power and memory. In addition, since WBAN collects physical data of
the human body, it is also important to reduce packet loss and transmission delay.

One of the important challenges in WBANs is the temperature rise of each device. When computing
and traffic forwarding are concentrated on a specific device, the temperature of the device rises sharply
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which leads to damage of surrounding body tissues. To address this problem, multiple researchers
have proposed several temperature-aware routing protocols. For example, TARA is one of the first
protocols that considers nodes’ temperature when selecting the next hop [2]. In TARA, the temperature
of the nodes using the pennes bio heat equation [3] is estimated and used for next hop selection in a way
that the neighbor with the lowest temperature is chosen until the data packet reaches its destination.
However, there is a high possibility that a packet may go through many intermediate nodes until it
arrives at its destination. ALTR [4] takes the same mechanism as TARA, but Shortest Hop Routing
(SHR) algorithm is performed whenever the hop count field of a packet header exceeds the pre-defined
threshold. On the other hand, HPR [5] forwards the data packet to a neighbor with the smallest
number of hop count to the destination. However, if the temperature of the selected node exceeds
the pre-defined threshold, instead a neighbor with the lowest temperature is selected as the next hop.
However, since all these mentioned approaches simply consider one hop information for temperature,
many packets return to the previous node. To solve this problem, Enhanced Temperature-aware
Routing Protocol (ETARP) [6] exploits two hops ahead scheme. The two hops ahead algorithm
contributes to selecting the proper path at an earlier time in a way that it can observe the hot spot
region in advance by calculating the temperature cost, which includes the temperature of its two hop
neighbors. As described earlier, lots of research has been proposed to address the temperature rise
of the node, however, their approaches naturally cause other problems such as delay or loss of data
because they assume fixed network topology. This implies that dynamic network topology changes
caused by movement of human posture are not taken into account in the previous work.

To mention the technical issues in the dynamic topology, B. Kim et al. presented research challenges
for mobility support in a WBAN [7]. The authors of [8] proposed a temperature-aware routing
protocol called M-ATTEMPT that considers the mobility of a human body. The network topology of
M-ATTEMPT is based on the tree structure that is rebuilt by a node’s joining to the new parent node
whenever a node changes its location. In addition, each node can simply prevent its temperature rise
by disconnecting with all links from its neighbors when the node’s temperature reaches the threshold.
On the other hand, Mobility and Temperature-aware Routing (MTR) [9] utilizes the mobility of the
human body in the routing process. When the temperature of all neighboring nodes exceeds the
pre-defined threshold, a mobile node attached to the arms and legs is selected as a next hop in order
to forward the data packet to the sink directly by adapting the store and carry scheme. Otherwise,
all packets are forwarded to a neighboring node with the lowest temperature. However, the data
packet may go through many intermediate nodes in case the mobile nodes are not available. This is
mainly because hop count metric is not considered in the routing process. To solve this problem,
Forwarder based Temperature-aware Routing (FTAR) has been proposed recently. It selects a mobile
node which is the most likely to be connected to a sink node as a forwarder. However, in situations
where a mobile node is not available, both hop count and temperature metric are used to select the
next hop. Similarly, Mobility and Temperature-aware Routing Protocol (MTARP) [10] selects the best
next hop while considering three routing metrics such as hop count, temperature, and link quality
at the same time. These metrics are used to formulate routing cost by multiplying the metrics and
pre-defined weighted factor. Once the routing cost is calculated, the next hop selection is performed by
selecting a neighbor node which has the highest routing cost.

However, the previous approaches have limitations in terms of adaptability, i.e., they exploit a
heuristic weighted factor for calculating a routing cost. Especially, since they set the highest weight for
the hop count metric, it is hard to prevent packet loss or temperature rise efficiently. Therefore, a logical
approach is required to determine the weight of each routing metric where the routing metrics are not
correlated to each other. To achieve this goal, we propose an enhanced version of MTARP based on the
Multi-Criteria Decision Making (MCDM) method by exploiting Analytic Hierarchy Process (AHP) and
Simple Additive Weight (SAW) methods. These methods provide a flexible decision making process
for next hop selection by considering various factors at the same time. In order to select the best
next hop, we take three routing metrics: hop count, temperature and link quality. Furthermore, these
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metrics are the criterions for the AHP and SAW methods. Moreover, the simulation results are given
to demonstrate that the proposed scheme reveals the better performance than MTARP in the aspects of
number of hot spots, packet delivery ratio and end-to-end delay.

The main contributions of this paper are summarized below.

• Unlike the previous temperature routing protocols, our study incorporates three metrics:
hop count, temperature, and link quality in the routing process to prevent the packet loss
and transmission delay due to body movements.

• To analyze the influence of the temperature rise of sensor nodes on the network parameters
such as packet delivery ratio and end-to-end delay, we logically determine the relative weights
between the proposed metrics using AHP and SAW methods.

• Since the problem of optimization of the number of hot spots, real-time transmission,
and reliability depends on the WBAN applications, we determine the relative weights among
the proposed metrics differently depending on the type of applications such as common medical
sensors, critical medical sensors.

The rest of paper is organized as follows. Section 2 describes the related work. In Section 3,
the MCDM methods used in our study are described. In Section 4, we describe the proposed protocol.
A performance evaluation is conducted in Section 5. Finally, Section 6 concludes our work.

2. Related Work

The authors of [2] proposed the first temperature-aware routing protocol for WBAN. In TARA,
a data packet is forwarded to a neighbor node with the lowest temperature until it is delivered to
a sink node. However, if the temperature of a neighbor node with the lowest temperature exceeds
threshold, the data packet is sent back to the node that had forwarded the data packet previously.
Thus, TARA leads to the temperature rise of many intermediate nodes because a packet might have
to go through them until it arrives at its destination. To overcome this problem, ALTR [4] has been
proposed. In ALTR, the data packet is forwarded to a neighbor node with the lowest temperature in
normal condition. Otherwise, it is forwarded to a neighbor node with the smallest number of hops to
the destination when the hop count of the packet header exceeds the pre-defined threshold. Similarly,
HPR [5] selects a neighbor node with the smallest number of hops as a next hop. On the other hand,
it selects a neighbor node with the lowest temperature when the temperature of the selected node is
greater than the pre-defined threshold. Unlike the previous approaches that consider neighbor nodes’
temperature only, ETARP [6] exploits the two hops ahead scheme while considering the short distance
between each node and a sink. For example, as shown in Figure 1, the previous works take node A as a
next hop because it has a lower temperature than B. However, all packets forwarded to node A cannot
forward any more because both node C and D are hot spots now. To avoid this situation, MTARP
takes the neighbor nodes’ temperature cost within its two as well as one hop. As a result, node B is
selected as a next hop because the temperature cost of node B including the temperature of its two hop
neighbors is lower than node A.

However, previous temperature-aware routing protocols did not support QoS requirements.
TMQoS [11] integrates the QoS support issue with temperature-awareness in the routing process.
TMQoS classifies the data packet into four types according to the importance of data, and creates
different routing paths using cross-layer framework module such as temperature module,
reliability module, and delay module. TLQoS [12] also uses a cross-layer framework like TMQoS, but it
is based on the greedy forwarding algorithm that selects the neighboring node with the greatest routing
cost as the next hop, rather than generating the routing path according to the data types. TTRP [13]
provides reliable and secure data transmission. To avoid malicious node, it calculates the trust value
by counting the total number of forwarded packets and actual received packets. The routing cost is
calculated by adding the weighted trust value and the weighted temperature of the node.

However, previous approaches have problems such as long delay or lots of packet loss because
they do not consider the dynamic network topology changes caused by human posture.
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Figure 1. Next hop selection in the two hops ahead algorithm.

As alternative scheme for dynamic topology, M-ATTEMPT [8] has been proposed to address the
dynamic network topology changes in WBAN. In M-ATTEMP, the tree is constructed according to a
node’s joining or departure whenever a person changes his/her gesture. Furthermore, in the case that
a node’s temperature approaches the pre-defined threshold, all nodes prevent its temperature rise by
disconnecting all links with neighbor nodes during the next few rounds until the temperature turns
normal. However, this approach has a problem because a node’s function cannot be performed when a
node disconnects all links with neighbor nodes. On the other hand, MTR [9] utilizes the movements of
the human body in the routing process. MTR defines two types of nodes: mobile node and static node.
The mobile is attached to arms and legs while the static node is fixed body parts with no mobility.
When the temperature of all neighboring static nodes exceeds the pre-defined threshold, a mobile node
is selected as a next hop in order to forward the data to the sink node directly by adapting store and
carry scheme. MTR uses routing cost P that is calculated by multiplying pre-defined weighted factor
and connection time between a source node and a mobile node. It is to prevent the data loss caused
by movement of the mobile node. Figure 2 illustrates the routing process in MTR. If source node A is
surrounded by hot spots, node A forwards the packet to mobile node B, and then node B stores the
packet in its buffer until it is connected to the sink. Otherwise, all packets from node A are forwarded
to a static node with lowest temperature. However, the store and carry scheme has a drawback in that
the emergency sensor data may be delayed if it is delivered by a mobile node.

Figure 2. Next hop selection in Mobility and Temperature-aware Routing (MTR).

To solve this problem, FTAR has been proposed. FTAR is a forwarder based temperature-aware
routing protocol that supports multiple traffic transmission. FTAR categorizes the data into normal
and critical data. In order to forward normal data, each source nodes select a mobile node which is
the most likely to be connected to the sink as a forwarder. To select a forwarder among neighboring
mobile nodes, FTAR uses Total Connected Time (TCT) which means duration time in which a mobile
node was connected to the sink. However, if there are no mobile nodes, normal data is forwarded to
the node with the lowest temperature. On the other hand, critical data is forwarded to the node with
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the smallest number of hops in order to reduce the end-to-end delay. Similarly, MTARP [10] selects the
best next hop while considering three metrics such as hop count, temperature, link quality at the same
time. The hop count denotes the number of hops to the sink while the temperature is the temperature
of a neighbor node. Moreover, the link quality represents the signal power received from a neighbor
node. These metrics are used to compute link cost between a source node and a neighbor node at
time t. However, since the link cost is simply calculated by multiplying the metrics and pre-defined
weighted factor, the impact of these factors is not explored well. In addition, these approaches cannot
guarantee good performances because they set the highest weight to the hop count metric or exploit a
heuristic or constant weighted factor for calculating a routing cost. As a result, they lead to packet
loss, long end-to-end delay and average temperature rise in networks. Based on this analysis, a logical
approach is required to determine the weight of each metric in a reasonable way because the metrics
are not correlated to each other.

Other QoS aware routing protocols for WBANs have been proposed in [14–17]. LAEEBA [14] and
CO-LAEEBA [15] were introduced to support reliable transmission and efficient energy consumption
by using the multiple metrics such as residual energy and path loss rate. On the other hand, ARBA [16]
uses residual energy and bandwidth as routing metrics to enhance bandwidth utilization and network
lifetime. V. Ayatollahitafti et al. [17] provide the energy efficient next hop selection algorithm, and the
algorithm uses the hop count and link cost function to satisfy QoS requirements such as lower delay
and reliable transmission.

To address the above-mentioned limitations, we propose an Enhanced version of MTARP
(EMTARP) based on the MCDM method while considering the hop count, temperature and link quality.

3. Multi-Criteria Decision Making (MCDM) Method

3.1. Analytic Hierarchy Process (AHP)

The AHP [18] is one of MCDM methods that was originally developed by Prof. Thomas L. Saaty.
The AHP is supposed to calculate the weights of the multiple criteria according to its relative importance
to optimize decision making considering qualitative, quantitative and conflicting factors. The main
benefits of using AHP are as given below

• In AHP, the importance of each criterion becomes clear because the objective of decision is
organized into a hierarchical structure.

• The inconsistency between alternatives can be checked through AHP.
• There is no bias in the decision making.

Our protocol adopts the AHP approach to calculate the weight of proposed metrics. In order
to determine the weights of them, the AHP uses the judgments of decision makers to form a
decomposition of criteria into hierarchies.

Figure 3 shows the AHP hierarchy model. The objective of decision making is represented at the
top of the hierarchy model. The below level of hierarchy model consists of multiple criteria taken into
account as decision factors. The bottom level includes the set of neighbor nodes as decision alternatives.

Figure 3. Analytic Hierarchy Process (AHP) hierarchy model.



Appl. Sci. 2018, 8, 2245 6 of 17

Once the hierarchy model is constructed, the decision maker has to construct a pairwise
comparison matrix in order to determine the relative importance among the decision factors.
The pairwise comparison matrix is represented as a square matrix C given by [18],

C = Cijn ∗ n =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 (1)

where Cij indicates the relative importance between decision factor i and j. The decision maker
determines the relative importance according to Table 1 [18]. For example, the row 1 column 2 of the
matrix is filled with 5 if decision factor 1 is more strongly important than decision factor 2. In the
opposite case, the row 1 column 2 of the matrix is filled with 1/5.

Table 1. Scales for pairwise comparison matrix.

AHP Scale (Cij) Rating Reciprocal

Equal importance 1 1/9
Equally to moderately 2 1/8
Moderate importance 3 1/7
Moderately to strong 4 1/6

Strong importance 5 1/5
Strongly to very strong 6 1/4
Very strong importance 7 1/3
Very strong to extremely 8 1/2

Extreme importance 9 1

3.2. Simple Additive Weighting (SAW)

We can obtain the weights of each criteria using the AHP. However, the AHP does not use the
value from actual measurement in the decision making process. Since our protocol needs to calculate
a single routing cost, we need an additional method to normalize the actual value. To achieve this,
we use the SAW method [19] with AHP. The objective of the SAW method is to calculate the weighted
sum of performance ratings on each alternative. The SAW method performs the following two steps.

• The first step is to evaluate the alternatives. Given the neighbor table as shown in Table 2, we must
evaluate whether each criterion should be minimized or maximized to obtain a high rating. In this
example, we assume that C1 and C2 should be minimized, and C3 should be maximized.

Table 2. Example of a neighbor table.

Alternative C1 C2 C3

N1 13 234 0.8
N2 7 203 0.4
N3 9 270 0.5
N4 16 300 0.5

• The second step is to construct a normalized decision matrix. To do this, both C1 and C2 are
normalized as [19],

eij =
Min(Cij)

Cij
(2)

where eij is the normalized value corresponding to row i and column j. The Min(Cij) indicates
the minimum value of Cij. On the other hand, C3 is normalized as [19],

eij =
Cij

Max(Cij)
(3)
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where the Max(Cij) denotes the maximum value of Cij. The results of normalization are shown
in Table 3.

Table 3. Example of a normalized decision matrix.

Alternative C1 C2 C3

N1 0.538 0.867 1
N2 1 1 0.500
N3 0.777 0.751 0.625
N4 0.437 0.676 0.625

4. EMTARP: System Model and Protocol Description

4.1. System Assumption

We assume that all nodes have the same transmission range and energy level initially.
The maximum transmission range of a node is assumed to be r, and the maximum transmit power
of a node cannot exceed the range of r considering the limited battery capacity of the WBAN device.
We define two types of nodes: a static node and mobile node. The static node represents a node
which is attached to the human body with no movements, and the mobile node represents a node
which is attached to arms and legs. We construct a network with N sensor nodes and one sink node.
Each sensor node is responsible for forwarding the data packet collected by itself or received from
neighbor nodes to the sink node.

4.2. Proposed Routing Metrics

The detailed description of routing metrics at node i is as follows.

• Idi: Unique identifier of node i.
• Hi: Number of hop count of node i to the sink node. This value is updated by exchanging the

HELLO packet with neighbor node.
• Tempi: Normalized temperature of node i. This value is computed by Equation (4) where Tth

denotes the allowed threshold of the temperature [20] while Ti does current temperature of node
i. Note that we use the pennes bio heat equation [3] used in TARA [2] in order to estimate the
current temperature Ti. The main reason for the temperature rise is radio signals generated
via wireless communication [21]. Since the radio signals generate electric and magnetic fields,
which lead to radiation absorption, Specific Absorption Rate (SAR) is used in the pennes bio heat
equation. Therefore, it is important to limit the number of wireless communications of a node
which will reach the temperature threshold.

Tempi =
Tth − Ti

Tth
(4)

• Linki,j: Normalized link quality between node i and j which was carried by HELLO packet.
This value is computed by Equation (5) where RSSImin indicates the minimum signal strength
for packet transmission.

Linki,j =
RSSIi,j − RSSImin

RSSIi,j
(5)

4.3. Operation of EMTARP

The network topology is changed frequently by mobile nodes, and each node broadcasts a HELLO
packet in each time interval t in order to update the network topology. The HELLO packet includes its
own routing information: id, H, Temp, Link. When a node receives a HELLO packet from its neighbor
node, it creates or updates its neighbor table with the information in HELLO packet. Id denotes a
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unique number of a node while H does the hop count to the sink node. Temp denotes the temperature
of a node and Link denotes the link quality which means signal strength when the HELLO packet
is received.

4.3.1. Description of Calculating Routing Cost

The following example illustrates the procedures for calculating routing cost as well as the next
hop decision making process using the AHP and SAW method. As we described before, we first need
to determine the pairwise comparison matrix to calculate the weights of each metric. The pairwise
comparison matrix used in this example is given as

H Temp Link H 1 1/3 1/2
temp 3 1 2
link 2 1/2 1

(6)

After the pairwise comparison matrix is determined, the next step is to compute the priority
vector, which is the normalized eigen vector of the matrix. In order to obtain an eigen vector, we need
to normalize the pairwise comparison matrix as follows [18],

Cij =
Cij

∑n
i=1 Cij

(7)

The eigen vector of decision factor i is obtained as [18],

vi =
∑n

j=1 Cij

n
(8)

where vi is the priority vector of decision factor i. Equation (9) shows the result of calculations.
The result column indicates the priority vector of each decision factor. As shown in Equation (9),
the priority vector of Temp is the highest. This means decision factor Temp performs a major role in
the multi-criteria decision making process.

H Temp Link Result   H 1 1/3 1/2 0.164
temp 3 1 2 0.539
link 2 1/2 1 0.297

(9)

However, the pairwise comparison matrix may not be consistent because it is determined by the
decision maker’s judgments. Thus, Ratio Consistency (CR) is a parameter used for checking whether
the pairwise comparison matrix is determined properly or not. The CR is obtained as [18],

CR =
CI
RI

(10)

where RI is the random index proposed by Oakridge laboratory and these values are shown in Table 4.
CI is the consistency index; this value is calculated as [18],

CI =
λmax − n

n− 1
(11)

where

λmax =
n

∑
j=1

(vj ∗
n

∑
i=1

Xij) (12)
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The CR ≤ 0.1 indicates that the pairwise comparison matrix is consistent. Otherwise, the decision
maker must re-define the pairwise comparison matrix.

Table 4. Random index (RI).

n 1, 2 3 4 5 6 7 8 9 10

RI 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

In this example, we give more relative importance to temp metric than other metrics because
the main objective of the proposed protocol is to prevent the temperature rise of the node. The link
metric is considered as the second important criteria while the H metric is the least important criteria.
Note that, the eigen vector denotes the weight of criteria so the sum of eigen vectors must be 1.0.
Once the weights of the metrics are calculated, the next step is to normalize the actual value using the
SAW method. The neighbor table used in this example is given below in Table 5.

Table 5. Neighbor table.

Id H Temp Link

N1 4 23.4 0.6
N2 2 33.2 0.4
N3 3 21.1 0.5
N4 4 28.9 1.0

In the given neighbor table, we have to evaluate whether the metrics should be minimized or
maximized to get a high rating. In the proposed protocol, both H metric and Temp metric should be
minimized according to Equation (2), and the Link should be maximized according to Equation (3).
Table 6 shows the results of normalization.

Table 6. Normalized decision matrix.

Id H Temp Link

N1 0.500 0.901 0.600
N2 1 0.635 0.400
N3 0.666 1 0.500
N4 0.500 0.730 1.000

Once the normalization of each value is finished, the next step is to construct a weighted
normalized decision matrix. The weighted normalized value is obtained as,

Wij = eij ∗ vi (13)

where Wij denotes the weighted normalized value. The eij denotes the normalized value of each
alternative and the vi is the weight of criteria i as shown in Equation (9). Table 7 shows the weighted
normalized decision matrix.

Table 7. Example of a weighted normalized decision matrix.

Alternative H Temp Link

N1 0.082 0.485 0.178
N2 0.164 0.342 0.118
N3 0.109 0.539 0.148
N4 0.082 0.393 0.297
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The final step is to select the best alternative. We can simply calculate the final score and rating
by adding the weighted normalized value of each criteria. Table 8 shows the final score and rating,
and we can judge that N2 is the best alternative.

Table 8. Final score and rating.

Id H Temp Link Final Score Rating

N1 0.082 0.485 0.178 0.745 3
N2 0.164 0.342 0.118 0.624 4
N3 0.109 0.539 0.148 0.796 1
N4 0.082 0.393 0.297 0.772 2

4.3.2. Next Hop Selection Algorithm

The main component of the proposed protocol is the next hop selection scheme. Actually, the
next hop selection scheme does not require complicated algorithms. According to Algorithm 1, each
node selects the best next hop based on the routing cost. At line 6, the next hop which has the highest
routing cost is selected, such as greedy forwarding. The routing cost is calculated in the CostFunction,
and it requires three routing metrics: Hi, Ti, Linki. The objective of this function is to find the best next
hop considering multiple metrics, and it computes a single routing cost. The detailed procedures for
calculating routing cost are described in the above subsection.

Algorithm 1 Next hop selection process

1: Hi = Hop count from node i to destination
2: Ti = Normalized temperature of node i
3: Linki = Normalized link quality between a source node and node i
4: CostFunction = A Function to compute a routing cost using MCDM method
5: for i← 1, n do
6: Next Hop← argMax

i ∈ n
(CostFunction(Hi, Ti, Linki))

7: end for

5. Performance Evaluation

5.1. Simulation Environment

We evaluate the performance of two protocols: MTARP and EMTARP, using the network simulator
OPNET modeler version 18.7. Even though M-ATTEMPT and MTARP are the only comparative
protocols with EMTARP in the aspects of mobility and temperature aware properties, the comparison
with M-ATTEMPT is not observed since MTARP shows better performance than M-ATTEMPT
already. The simulation parameters are summarized in Table 9. The network size is set to 2 m × 2 m.
The number of nodes constituting the network is 25, the number of mobile nodes is 10, and the
number of sinks is 1. All nodes are deployed in the network while considering the human body.
Moreover, the sink is placed at the center of the network. The transmission range of nodes is set to
30 cm. The temperature estimation model of TARA is used to estimate the temperature of nodes.
The temperature threshold is set to 43 °C [20]. We define a node which exceeds the threshold as a hot
spot. The mobile node moves every 3 s as to describe slow walking. HELLO packets are propagated to
neighboring nodes every 5 s. We performed the simulation 100 times with 95% confidence interval.
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Table 9. Simulation Parameters.

Parameters Values

Simulation time 1800 s
Network size 2 m × 2 m

Number of nodes 30
Number of mobile nodes 10
Number of traffic source 5

Number of sink 1
Data processing rate 15,000 bits/s
Transmission range 30 cm

Traffic model IP traffic flow
MAC 802.15.4

Mobility model Random waypoint
Pause time 3 s

HELLO packet timer 5 s
Temperature threshold 43 °C

5.2. Simulation Scenario

In order to compare the performance of two protocols, we observe three performance metrics:
the packet delivery ratio, the end-to-end delay, and the hot spot ratio. We simulate these protocols
under two different scenarios in order to study the efficiency of the MCDM method. Each scenario is
described below.

• Scenario 1 (case 1): In this scenario, the network consists of common medical sensors such
as temperature and blood pressure sensors. Therefore, it is most important to prevent the
temperature rise of the nodes rather than guarantee the low end-to-end delay and the high
reliability. Given this fact, the pairwise comparison matrix can be determined as below.

H Temp Link Result   H 1 1/4 1/2 0.137
temp 4 1 3 0.623
link 2 1/3 1 0.240

(14)

In the above matrix, we determined the scales using Table 1 in order to set the weight of Temp to
be highest. Note that, in Table 1, number 4 denotes “moderately to strong” and number 3 denotes
“moderate importance”.

• Scenario 2 (case 2): In this scenario, the network consists of critical medical sensors such
as Electromyography, Electroencephalography, and Electrocardiography sensors. Thus, it is
necessary to prevent the delay and loss of data in the forwarding process. Based on this, we set
the pairwise comparison matrix as follows.

H Temp Link Result   H 1 1/2 1/3 0.170
temp 2 1 1 0.387
link 3 1 1 0.443

(15)

Unlike scenario 1, we set the scale of link to be highest in order to increase the reliability of the
transmission. It may be noted that number 2 denotes “equally to moderately” and number 1
denotes “equal importance” as shown in Table 1. In addition, we set the scale of link and temp as
“equal importance” so as not to neglect preventing the temperature rise.
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5.3. Simulation Results

5.3.1. Hot Spot Ratio

In this simulation, we evaluate the hot spot ratio of two protocols varying traffic bit rate and
hello packet interval. Hot sport ratio indicates how many nodes among all nodes become hot spots
during simulation. The purpose of this simulation is to measure how effectively comparative protocols
can prevent the temperature rise while maintaining the other performance metrics: packet delivery
ratio and end-to-end delay. Thus, it is important to determine the weight of the temperature metric
efficiently to prevent the performance degradation of other metrics.

As illustrated in Figure 4a, the hot spot ratios of two protocols gradually increase as traffic bit rate
increases. Even though two protocols perform load distribution based on the temperature of neighbor
node, there are some performance differences. Especially, the hot spot ratio of MTARP becomes higher
and higher as the traffic bit rate increases. The reason is that each source node tries to forward the data
packet to a node which locates near to the destination rather than a node with lower temperature. It is
brought that the weight of the hop count metric is higher than other metrics. On the other hand, if the
temperature of the node with lower hop count is high, it will not be selected as a next hop. However,
higher traffic load makes it difficult to prevent the temperature rise of the node with lower hop count.
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Figure 4. Performance comparison for difference traffic bit rate and hello packet interval. (a) Impact of
varying traffic bit rate on hot spot ratio, (b) Impact of varying hello packet interval on hot spot ratio.

On the other hand, EMTARP determines the relative importance of the temperature metric
according to the type of nodes constituting the network. From Figure 4, we can observe that the hot
spot ratio of case 1 is lower than case 2 because the weight of the temperature metric is higher than
that of case 2. Based on this result, it is required to increase the relative importance of the temperature
metric if we want to prevent the temperature rise of the node. However, the objective of our protocol is
to improve the overall performances by determining the relative importance of the metrics efficiently.
Especially, if the network consists of critical medical sensors, we have to increase the weight of the link
metric to prevent the packet loss due to node movement. However, the hot spot ratio may affect the
packet delivery ratio and end-to-end delay because the number of available routing paths decrease as
the number of hot spot increases. These side effects are described together in the following subsection.

In addition, the hello packet interval also affects the hot spot ratio. In Figure 4b, we can see
that all comparative protocols show the best performance when the hello packet interval is set to 5 s.
Since the neighbor table is frequently updated as the hello packet interval is shorter, it is advantageous
to be sensitive to the temperature rise of the neighbor node. However, as mentioned before, since the
temperature rise of the node is most influenced by radio signals, the hot spot ratio increases as the
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hello packet is transmitted frequently. On the other hand, if the hello packet interval is set to long, it is
difficult to respond quickly to the temperature rise of the neighbor node, so that the hot spot ratio
increases gradually.

5.3.2. Packet Delivery Ratio

In the previous subsection, we argued that hot spot ratio will affect packet delivery ratio because
the number of available routing paths decreases as the hot spot ratio increases. Especially, since
the number of nodes constituting WBAN is very small, the influence of hot spot ratio on the packet
delivery ratio will be great.

Table 10 illustrates the packet loss ratio with increasing traffic bit rate. Obviously, case 2 of
EMTARP shows the best performance in Figure 5a because the weight of link metric is higher than
other metrics. More specifically, if the selected next hop moves out the transmission range of the source
node, MAC layer could not receive any ACK for the retransmissions. This implies that the retry counts
for packet will reach limitation of MAC. Since both MTARP and case 1 of EMTARP try to forward the
data packet to the node with lower hop count or lower temperature, the performance is lower than in
case 2 of EMTARP. However, it is notable that the ratio of no available node sharply increases as the
traffic bit rate increases in case 2 of EMTARP. The reason is that the traffic load will be concentrated on
the stable node as the traffic bit rate increases so the node becomes a hot spot quickly and the number
of available routing paths becomes insufficient. As a result, the performances of case 1 and case 2 do
not show great difference even though the weight of link metric in case 2 is the highest. Figure 5c
supports this claim that as the hot spot ratio increases, the number of available nodes and the packet
delivery ratio decrease together.

Table 10. The reasons for packet loss varying traffic bit rate.

Protocol Traffic Bit Rate (bits/s) No Available Node (%) Retry Threshold Exceeded (%)

MTARP 1000 0 100
MTARP 2000 13 87
MTARP 3000 17 83
MTARP 4000 25 75
MTARP 5000 32 68
MTARP 6000 40 60

EMTARP-case 1 1000 0 100
EMTARP-case 1 2000 10 90
EMTARP-case 1 3000 14 86
EMTARP-case 1 4000 20 80
EMTARP-case 1 5000 26 74
EMTARP-case 1 6000 34 66

EMTARP-case 2 1000 0 100
EMTARP-case 2 2000 14 86
EMTARP-case 2 3000 20 80
EMTARP-case 2 4000 26 74
EMTARP-case 2 5000 34 66
EMTARP-case 2 6000 46 54

In addition, the hello packet interval affects the packet delivery ratio. In Figure 5b, we can see
the best performance when the hello packet interval is set to 5 s. Since we set the mobility interval
to 3 s, even if the hello packet interval is set to 5 s, it is unlikely that the node set to the next hop will
move out of the communication range of the source node. Therefore, frequent sending of unnecessary
hello messages leads to an increase in the hot spot ratio, which degrades performance. On the other
hand, as the hello packet interval increases, the node selected as a next hop can move out of the
transmission boundary of the source node because the node moves more frequently than the neighbor
table update rate.
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Figure 5. Performance comparison for difference traffic bit rate, hello packet interval and hot spot
ratio. (a) Impact of varying traffic bit rate on PDR, (b) Impact of varying hello packet interval on PDR,
(c) Impact of hot spot ratio on PDR.

5.3.3. End-To-End Delay

The hot spot ratio also affects the end-to-end delay because the processing delay will increase on a
specific node as the number of available paths decreases. In this simulation, we set the data processing
rate as 15,000 bits per second considering the limited hardware performance of WBAN devices.

As shown in Figure 6a, the end-to-end delay is higher as the traffic bit rate increases. MTARP
shows the best performance since it has the highest weight of hop count, however, the performance of
two protocols does not reveal great difference. The reason is related to the hot spot ratio. Since the
MTARP tries to forward the data packet to the node with lower hop count, the node becomes a hot
spot quickly. Accordingly, as the number of available routing paths decreases, the load distribution
will not be achieved efficiently. Therefore, the data processing delay gradually increases as the traffic
bit rate increases. Figure 6c shows the performance change with hot spot ratio. It should be noted
that the performance difference of the comparative protocols is not large when the hot spot ratio is
the same. The reason is that, even though the weight of hop count of MTARP is higher than other
protocols, the load distribution over temperature is not good.

The hello packet interval also affects the end-to-end delay. Figure 6b shows that when the hello
packet interval is set low, the processing delay increases because the hello packet is transmitted
frequently. However, if the hello packet interval is set high, the end-to-end delay due to retransmission
increases because the position change of the node cannot be recognized quickly.
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Figure 6. Performance comparison for difference traffic bit rate, hello packet interval and hot spot ratio.
(a) Impact of varying traffic bit rate on end-to-end delay, (b) Impact of varying hello packet interval on
end-to-end delay, (c) Impact of hot spot ratio on end-to-end delay.

In conclusion, we can reduce the end-to-end delay by increasing the weight of hop count metric.
However, the actual performance is not great because the data processing delay will increase when the
traffic load is concentrated on the node with lower hop count. In addition, additional performance
degradation occurs when the hot spot ratio increases because it is hard to perform load distribution as
the number of available routing paths decreases. Therefore, we have to consider the temperature rise
of the node more significant than the hop count metric.

6. Conclusions

In this paper, we propose an enhanced mobility and temperature-aware routing protocol based on
the MCDM method to improve network performance by adjusting the weights of each routing metric.
In the proposed scheme, we exploit three routing metrics such as hop count, temperature and link
quality and calculate the weights of each metric using AHP. In addition, we studied a weighted sum of
performance ratings on each alternative using the SAW method. The simulation is carried out under
two scenarios to prove that the MCDM method can achieve good performance while considering
transmission delay and data loss. The simulation results conclude that the proposed protocol shows
better performance than previous studies in terms of hot spot ratio and packet delivery ratio because
our study sets the relative importance of each metric’s flexibly according to the applications.
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In the future, we will determine the scale of proposed metrics dynamically to adapt the network
conditions. Although AHP is a logical way to help the relative importance of alternatives, there are
irregularities in ranking because the decision maker determines the relative importance between
alternatives. In addition, the irregularities in ranking depend on the conditions of the future because
the actual value of alternatives changes over time. To make a good decision, we will study dynamic
decisions in our future work.
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