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Research Article
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Due to unavoidable environmental factors, wireless sensor networks are facing numerous tribulations regarding network coverage.
These arose due to the uncouth deployment of the sensor nodes in the wireless coverage area that ultimately degrades the
performance and confines the coverage range. In order to enhance the network coverage range, an instance (node)
redeployment-based Bodacious-instance Coverage Mechanism (BiCM) is proposed. The proposed mechanism creates new
instance positions in the coverage area. It operates in two stages; in the first stage, it locates the intended instance position
through the Dissimilitude Enhancement Scheme (DES) and moves the instance to a new position, while the second stage is
called the depuration, when the moving distance between the initial and intended instance positions is sagaciously reduced.
Further, the variations of various parameters of BiCM such as loudness, pulse emission rate, maximum frequency, grid points,
and sensing radius have been explored, and the optimized parameters are identified. The performance metric has been
meticulously analyzed through simulation results and is compared with the state-of-the-art Fruit Fly Optimization Algorithm
(FOA) and, one step above, the tuned BiCM algorithm in terms of mean coverage rate, computation time, and standard
deviation. The coverage range curve for various numbers of iterations and sensor nodes is also presented for the tuned
Bodacious-instance Coverage Mechanism (tuned BiCM), BiCM, and FOA. The performance metrics generated by the
simulation have vouched for the effectiveness of tuned BiCM as it achieved more coverage range than BiCM and FOA.

1. Introduction

Wireless sensor networks (WSNs) have been widely consid-
ered as one of the most important technologies for the
twenty-first century. The sensor nodes are deployed to
observe the surrounding events for some phenomenon of
interest and thereby process the sensed data and transmit it.
These sensor nodes are typically smaller in size with inbuilt
microcontrollers and radio transceivers. The fundamental
issue in observing such an environment is the area coverage
that reflects how well the region is being monitored. Cover-

age is usually defined as a measure of how well and how long
the sensors are able to observe the physical space. The quality
of coverage in static sensors is significantly affected by the
initial deployment location of the sensor nodes [1]. Unfortu-
nately, sensor deployment cannot be performed manually in
most applications, for instance, the deployment in disaster
areas, harsh environments, and toxic regions. Thus, sensors
are usually deployed by scattering them from an aircraft;
however, the actual landing position cannot be uniform due
to the existence of obstacles like buildings, trees, and wind
causing some areas of the sensing region to be denser than
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others. Therefore, even if a large number of redundant nodes
are deployed, the desired level of coverage still cannot be
achieved [2]. Therefore, it is essential to make use of sagacious
sensors that can move iteratively to a better location and can
achieve the substantial coverage. In order to address the sens-
ing coverage area, it is important to understand the attributes
of the sensor node mobility control mechanism. Indeed, the
sensor nodes have two types of mobility control attributes,
i.e., centralized and distributed. For the centralized attribute,
the bunch of nodes is centrally monitored by a sink node that
overhears the sensing data from neighboring nodes, while in
distributed networks, the sensors are self-controlled [3].

All sensor nodes have limited sensing and communication
abilities whichmake the sensor nodes unable to obtain the entire
network information. Due to that, sensors are being deployed
randomly and allowed to move and communicate with respec-
tive neighbors by exchanging information among them. Minia-
turized robotics has overcome some hurdles regarding sensor
mobility. Thereby, mobile sensors have the same sensing capa-
bility as static sensors and can move freely to correct locations
for providing the required coverage [4], but on the other hand,
it is not a cost-effective solution. Considering all aforementioned
challenges, we were motivated to design a sagacious sensor node
deployment strategy which should enhance the coverage area by
consuming the confine energy metrics. Considering the pattern
of a hybrid sensor network [5], which has the dual mechanism
of mobile and static sensors, we have proposed a Bodacious-
instance Coverage Mechanism (BiCM) for wireless sensor net-
works. For this purpose, a BiCM algorithm has been designed
which focuses on how to redeploy the sensor nodes to improve
the network coverage area in the hybridWSN environment. It is
indeed a cost-effective solution for improving the coverage of
unevenly deployed sensor nodes.

Initially, the proposed algorithm presages where the sen-
sor nodes should be moved to while incurring the trivial
moving cost. This will only result in a confined moving cost
including the accumulated moving distance, total number
of moves, and communication rounds. This algorithm can
maintain a balance between coverage and resource consump-
tion during the node redeployment process. The BiCM func-
tions in two stages: In the first stage, the intended target
positions of the instance (sensor node) are being computed
through the Dissimilitude Enhancement Scheme (DES) [6].
The second stage is called the depuration [7], where the
instance moving distance is sagaciously reduced; thereby,
the final positions are attainable.

The strenuous contributions in regard to the objective of
this study are given below.

(1) The proposed BiCM algorithm tends to overcome
related issues with the network coverage range by
shifting already deployed sensor nodes from previous
to new positions

(2) In some cases, it makes substitutions of nodes to
adjust the coverage hole

(3) The unnecessary sensor movement is also being moni-
tored to reduce the movement distance between nodes
which prevents the wastage of the energy resource

(4) The simulation results generated through MATLAB
have vouched for the succulent performance of BiCM
and tuned BiCM when compared with previous work
such as FOA

(5) The proposed mechanism accomplished the opera-
tion in two junctures: During the first juncture, the
intended target positions of the sensor node are com-
puted through the Dissimilitude Enhancement
Scheme (DES). The second juncture is referred to as
depuration, where the moving distance between
nodes is sagaciously reduced; thereby, the target posi-
tions are achieved

The rest of the findings are structured as follows: The pre-
vious work has been rummaged out in Section 2 and the pro-
posed methodology has been explained in Section 3, while
Section 4 renders the output performance and the discussion.
Finally, overall achievements have been summarized in the
form of a conclusion in Section 5.

2. Literature Review

Usually, the sensor nodes are deployed to cover the area
between distinct boundaries; however, selection of the most
suitable area has remained an ever present challenge. In order
to achieve the sufficient coverage area, the distributed deploy-
ment strategy is commonly used to improve the coverage
interest by moving the sensor nodes from one location to
another. For this purpose, the distributed movement algo-
rithms [8] are being used wherein the coverage area is allo-
cated in multiple segments. If any sensor node was unable
to detect the event happenings within the deployed segment,
no other sensor node can detect it. Eventually, the monitor-
ing of each segment area for the coverage gap (hole) [9]
and calculation of a new instance location are the prime lia-
bilities of the deployed sensor node.

All distributed movement algorithms are facing numer-
ous tribulations regarding new instance calculations within
the segment area while relocating the new location. No
researcher could ever address overcoming the instance real-
location challenge in a hybrid environment. Therefore, no
wireless network having coverage holes can successfully carry
out its monitoring operation [10]. The researcher tried to
incorporate more iterations in their designed model to
address the new allocation issue, but it drastically increases
the implications and causes higher energy consumption [11].

To some extent, numerous researchers have made sub-
stantial contributions to avoid such issues, for example, the
motion capability of sensor nodes with relocation ability
and dealing with sensor failure have been identified by Zhang
and Fok [12]; they suggested a two-phase sensor relocation
solution. The redundant sensors are first identified and then
relocated to the target location. They proposed a grid-
quorum solution to locate the closest redundant sensor and
then use the cascaded movement to relocate the redundant
sensors. In fact, the suggested model could not control the
exorbitant energy drainage, and thereby, the entire network
might die after the few transmission rounds. On the other
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hand, Storn and Price [13] tried to address the coverage and
load balancing issues by minimizing the moving distance and
argued for a centralized movement solution, based on the
Hungarian method. However, the centralized movement
technique revealed that those sensor nodes already have

appropriate positions when impelled to leave the position
creating energy holes.

Wang et al. [14] proposed three different distributed
movement-assisted sensor deployment algorithms, VEC,
VOR, and Minimax, to improve the total area coverage.

Table 1: Comparative analysis among various algorithms with the proposed BiCM.

Algorithm Working ground Expediency Impairments
Comparison with proposed

BiCM

Genetic
algorithm
(GA)

Stochastic search
methodology through generic
system: within a population, it
impels the recombination and

mutation.

It is faster and has the ability
to find the best quality
solution in trivial time,

possesses parallel capabilities,
and easily discovers the global

optimum.

It never guarantees an
optimal solution. It is hard to

choose parameters like
number of generations and

population size. It is
expensive.

It functions in a hybrid
environment and ensures
relocation of the intended
instance position within the
coverage area; therefore,

energy consumption remains
confined.

Particle
swarm
optimization
(PSO)

Inspired by bird flocking and
fish schooling: the particles
move in a multidimensional
search space, and the single
intersection of all dimensions

forms a particle.

It can overcome the
unconstrained minimization

issue. Providing the
derivative-free technique, it is

less sensitive and less
dependent on a set of initial
points. It can generate high-

quality solutions.

It can easily fall into the local
optimum in high-

dimensional space and has a
low convergence rate in the
iterative process. It is difficult
to adopt the best topology.

At the beginning, it
rummages where the sensor
nodes should be moved;

therefore, local minima can
easily be avoided.

Tabu search
(TS)

It works on the principle of
adaptive memory and
responsive exploration.

It has simple implementation
and provides robust solution

for complex issues.

It vanishes in a local
minimum, requires large

computing time, and cannot
give an upper bound for the

computation time

Within a trivial period, it
maintains the network

coverage range.

Bacterial
foraging
algorithm
(BFA)

It works on search and
optimal foraging decision-

making capabilities; problems
and movement take place
either in clockwise or

counterclockwise direction.

It is used for unconstrained
numerical optimization,

having dual movement, i.e.,
swimming and tumbling

called chemotaxis.

It has a weak ability to
perceive the environment

and is vulnerable to
perception of the local

extreme; it is hard to deal
with complex optimization

problems.

As it operates in two stages,
thereupon, no vulnerabilities

can slow down the
performance, and each stage
performs independently.

Ant colony
optimization
(ACO)

Based on social behaviour of
the insects, the optimization

process is initialized by
random solutions.

It allows rapid discovery of
good solutions with

guaranteed convergence.

It has dependent sequences of
random decisions, a

complicated theoretical
analysis, and uncertain time

to convergence.

The depuration technique in
second stage reduces the

moving distance, and there
exists no uncertainty.

Harmony
search (HS)

It is based on musical
instrument harmony and is a
process for better harmony

movement.

No setting value is required; it
can deal with discrete and

continuous variables and can
ignore the local optima.

It encounters a high-
dimensional multimodal
issue, causes unproductive

iterations, and has poor local
search.

Due to the hybrid
environment, the local search
is free of being followed by
factors; thus, there are no

impeaching hurdles.

Artificial bee
colony
(ABC)

Search optimization consists
of three essential

components: employed and
unemployed foraging bees

and food sources.

It minimizes the expense of
deploying nodes inside the

monitoring region, deals with
local solution, and has broad
applicability and complex

functions.

It has a low process and a
higher number of objective
function evaluations; number
of dimensions might change.

It maintains the network
dimension by reducing the
moving distance between

instance nodes.

Jenga-
inspired
optimization
algorithm
(JOA)

Based on greedy fast
convergence, it selects the
minimum cost node subset
through the roulette method
and is a bridge between the
optimal solution and a short

computation time.

It addresses the energy-
efficient coverage issues,

having stochastic approach to
conduct random exploration;
if a sensor node cannot cover
an area, the other node will

avail of the chance.

The detection probability
decreases exponentially as the
distance becomes greater.

It has shrewd control over the
moving distance; therefore,
no uncouth movement can

degrade the overall
communication.
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Thereby, they used the Voronoi diagram to partition the
monitoring area into n convex polygons where every polygon
enclosed one sensor node only. This method utilizes the
local polygon information [15], to calculate the new instance
location to move the sensor node. The VEC approach uses
virtual force between two nodes to push them away from
each other at a certain distance. Minimax and VOR algo-
rithms are greedy and try to fix the largest coverage hole
by moving the sensor node towards the farthest polygon ver-
tex. The nodes approaching the polygon do not need to
move towards the farthest vertex. As a result, this movement
may not reduce the coverage hole but might increase the
complications.

The identification of a new instance location and its rela-
tive computation has been calculated through four local dis-
placement conditions byMahboubi and Aghdam [16], taking
into account the circles having a centered position within the
respective polygons. Some centers might lie out of the poly-
gon, and thereby, sensor nodes locating around those circles
may not have movement. Consequently, this issue demands
more rounds to overcome the coverage tribulation. The more
the rounds it demands, the more the resources are being con-
sumed; as a result, the sensor nodes will cause the network to
confine the lifespan before the specified time.

In order to increase the coverage rate of sensor nodes,
various researchers have proposed different optimization

Range

Instance node

Pi1

Pi0(si)

(a) Instance sensor node movement

Pi0(si) Pj0(sj)

d1 d2

Pi1Pj1

(b) Instance sensor node movement toward intended position

Pi0(si) Pj0(sj)

Pj1

d4d3

Pi1

(c) Instance sensor node movement achieving intended position

Network coverage area A

Pj0(sj)

Pj1

Pi0(si)

d2

(d) Moving distance reduction in coverage range A

Network coverage area B

Pj0(sj)

Pj1

Pi0(si)

d3

(e) Moving distance reduction achieved in coverage range B

Figure 1: Instance sensor node movements.
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techniques. A sensing and perception-based Fruit Fly Opti-
mization Algorithm (FOA) [17] was applied by Das et al. to
address the position issue of the sensor node which is aimed
at enhancing the coverage matter in ideal and obstacle envi-
ronments. As the fruit flies can reach the food source by
using their smell and vision organs, initially, they use osphr-
esis organs to find all kinds of scents in the air. Then, they fly
toward the food. When they get close to the food, they use
their vision organs to get closer. Similar action is adopted
for relocating the sensor positions. Despite its advantages,
there are critical issues, for instance, the first pointing loca-
tion remains poor. Further, the algorithm significantly traps
into the local optimum, and the update strategy is limited.

In pursuit of a better coverage technique, a majority of
scholars have tried to use intelligent algorithms, like Genetic
Algorithm (GA) [18] and Particle Swarm Optimization
(PSO) [19], to solve the issue. Though the Fruit Fly Optimi-
zation Algorithm is more simple and practicable than GA
and PSO, but due to unavoidable limitations, the researchers
are still exerting their efforts to develop a shrewder algorithm.
Keeping the coverage phenomenon at a high level, Huang
et al. [20] introduced a Multiworking Set Alternate Coverage
(MWSAC) mechanism that claims to achieve a continuous
partial coverage range. The author has achieved a maximum
number of working sets by applying a distributed algorithm.
The sleep and awakening mechanisms of nodes are adopted
which separate the number of active and inactive nodes and
keep them synchronous from time to time. Through this
method, the nodes appear to work in shifts because the work-
load has been greatly reduced and the consumption of energy
becomes trivial. The authors have however not addressed the
false detection occurring in multiworking wireless sensor
networks. Table 1 exhibits various comparisons among such
algorithms and shows a significant improvement by the pro-
posed algorithm.

3. Coverage Model

A coverage model explains the possible coverage range by the
sensor nodes in a coverage area [21]. All sensor nodes have
various coverage ranges characterized by area [22], where
these sensors are being deployed, the accuracy, the environ-

ment factors, and the resolution. The coverage area depends
on various factors such as the signal strength generated from
the source, distance between the sensor node and the source,
and the rate of attenuation in propagation [23]. For example,
for an acoustic sensor network establishing the coverage
range to detect the mobile vehicles, the sensor nearer to a
vehicle can detect higher acoustic signal strength than the
one farther away from the vehicle due to signal attenuation,
and as a result, there is higher confidence of detecting vehi-
cles [24].

3.1. Problem Formulation. For the proposed coverage model,
a two-dimensional coverage area [25] has been considered.
Further, the coverage area is divided into various segments
each having unit size. When n number of sensor nodes have
been deployed in the targeted area m, a full couplet of the
sensor node can be defined as given in

S = S1, S2,⋯::Snf g: ð1Þ

The position of the ith node is defined as Si = ðxi, yiÞ
where i = ð1, 2,⋯nÞ. The coverage range of sensor Si can be
expressed as a circle centered at its coordinates ðxi, yiÞ with
the radius of the sensing range Rs. Let Ei, be a random vari-
able for an event where a sensor node Si covers an area of seg-
ment AðxA, yAÞ. The presage factor for event Ei can be
written as PfEig which is equal to the coverage presage, i.e.,
PðSi, xA, yAÞ. Thereupon, the happening of a presage event
can be defined by the discrete coverage model expressed in

P Si, xA, yAð Þ =
1, d Si, xA, yAð Þ, ≤Rs,
0, other case:

(
ð2Þ

The Euclidean distance [26] of the ith sensor node from
segment area Aðx, yÞ can be computed by

P Si, xA, yAð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − xið Þ2 + y − yið Þ2

q
: ð3Þ

All coverage pints within the coverage range are mea-
sured as unity covered by the particular sensor, whereas the
points outside of this coverage range are regarded as 0. The
shrewd objective of the coverage optimization issue is to pro-
vide a sufficient coverage range (CR) [27], by using less num-
ber of sensor nodes. The CR is used to estimate the
performance of the sensor network. Generally, it is assumed
that the segment area point can be covered by any sensor
node only once.

3.2. BiCM Model. At present, among all optimization algo-
rithms, the DES is considered as the fastest optimization
scheme; therefore, we found it sagacious and were motivated
to take full advantage of it for our proposed BiCM algorithm.
Thus, the coverage range tribulations in WSN are being
resolved by redeployment of sensor nodes through DES strat-
egies, and therefore, the stages of the BiCM design model are
explained one by one.

Table 2: Simulation parameters for BiCM.

Parameter identifiers Values

Deployment area 60 × 60m2

Number of sensor nodes 60

Grid point 0:4m ∗ 0:4m
Group size 20

Sensing radius 5m

Maximum iterations 25

Loudness 0.5

Pulse emission rate 0.5

fmin 0

fmax 2

5Wireless Communications and Mobile Computing



3.2.1. Stage 1: Locating Intended Target Positions of the
Instance. The Bodacious-instance Coverage Mechanism
(BiCM) is an investigative search technique that utilizes the
shrewd coverage mechanism. It exploits the instance of
potential solutions and individuals, to probe the search
range. It initializes the parameters while addressing the cov-
erage area issue as depicted in

Xi = xi1,⋯, xii,⋯, xiDð Þ, ð4Þ

considering 1 ≤ i, as the area range and xii ∈ ½ai, bi�, where
ai and bi denote the lower and upper bounds of the ith node,
respectively, and D represents the diameter of the sensor

range accompanied with surrounding positions [28]. After
every transmission round t, the corresponding reallocation
round presages the new expected position of the bodacious
instance node which is expressed as

Vi t + 1ð Þ = Xbodacious + F Xr2 tð Þ − Xr3 tð Þð Þ + F Xr4 tð Þ − Xr5 tð Þð Þ:
ð5Þ

The Xbodacious indicates the appropriate position of the
instance while r represents the transmission round and F
points to a scaling factor that is a distance control parameter
between the initial and the new instance position. To increase
the sensing range, the position parameter Vi ðt + 1Þ
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Figure 2: (a) The initial and (b) the final FOA sensor node deployment.

60

60

50

50

40

40

30

30
Deployment field X (m)

Initial stage of scattering sensor nodes

20

20

10

10
0

0

D
ep

lo
ym

en
t fi

el
d 
Y

 (m
)

(a)

60

60

50

50

40

40

30

30
Deployment field X (m)

Final stage of scattered sensor nodes

20

20

10

10
0

0

D
ep

lo
ym

en
t fi

el
d 
Y

 (m
)

(b)

Figure 3: (a) The initial and (b) the final deployment of sensor nodes by BiCM.
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incorporates the value of predicted instance XiðtÞ, thereby
yielding a temporal position Qi ðt + 1Þ as expressed in

Qi,j t + 1ð Þ = Vi,j t + 1ð Þ, if rand 0, 1½ � < CR or j = Jrandð Þ�
Xi, j tð Þ, for other case:

ð6Þ

The rand (0,1) represents a uniformly distributed ran-
dom positions, while jrand exhibits randomly predicted posi-
tions within the range ½1,D�. The CR came up as a fractional
control parameter ∈½0, 1�, which shows the inherited charac-
ters of previous instance position.

Proceeding towards the final position, the temporal posi-
tion Qiðt + 1Þ is being compared with predicted instance Xi
ðtÞ. The newly generated position that possessed a greater fit-
ness metric among the rest of the positions is our intended
position of the instance given in

Xi t + 1ð Þ =
Qi t + 1ð Þ, if f Qi t + 1ð Þð Þ ≥ f Xi tð Þð Þð Þ,
Xi tð Þ, other case,

(

ð7Þ

Here, f ðXÞ represents the intended target position of the
instance. In fact, the sensor network performs the virtual

movement, and as long as it achieves the intended position
of the instance sensor in accordance to the Equation (7),
physical displacement has been performed accordingly.

3.2.2. Stage 2: Depuration Process. The depuration process is
performed to reduce the moving distance of the instance.
This will reduce the number of instances (sensor nodes) that
need to move, as well as reduce the average moving distance;
however, it does not affect the network coverage. The moving
distance reduction strategy can be understood as the follow-
ing: consider the initial positions of an ith instance node si is
Pi0ðxi0, yi0Þ and the jth instance node sj have Pj0ðxj0, yj0Þ. The
length of the distance is defined as d1 = jpi0pi1j and d2 =
jpj0pj1j and so on. The BiCM algorithm searches the new
intended positions of all instance nodes in the coverage area
and systematically reduces the number of instance nodes that
are needed to be moved. The instance-sensing range may
even fully overlap with other instance nodes [29]; these nodes
are called redundant nodes and are illustrated in Figure 1(a).
The instance sensor node si displaces from pi0 to pi1; thereby,
the coverage rate RareaðSÞ shows that no substantial change
has been recorded which confirms that no movement is
required by the si instance node. Therefore, the substantial
instance nodes can be removed from the queue which even-
tually decreases the distance.

The position of the instance nodes is being updated by
changing the distance position of si and sj that is d1 + d2
before and after the displacement has been occurred, and it
will be updated to d3 + d4 accordingly as given in

Table 3: Influence of pulse emission rate on coverage rate.

Pulse emission rate
(r)

Initial coverage rate
(%)

Final coverage rate
(%)

0.1 0.8 0.8929

0.2 0.8124 0.905

0.3 0.787 0.9077

0.4 0.8281 0.9041

0.5 0.8097 0.908

0.6 0.8202 0.9025

0.7 0.8208 0.9218

0.8 0.8167 0.9108

0.9 0.8537 0.9354

1 0.8314 0.9153

Table 4: Effect of loudness on coverage rate.

Loudness, Ao
(db)

Initial coverage rate
(%)

Final coverage rate
(%)

0.1 0.8052 0.8931

0.2 0.8375 0.9291

0.3 0.8491 0.9056

0.4 0.8281 0.9107

0.5 0.8276 0.9167

0.6 0.828 0.9219

0.7 0.8273 0.9048

0.8 0.8308 0.9259

0.9 0.8343 0.9281

1 0.8169 0.9179

Table 5: Effect of fmax on coverage rate.

fmax (f ) Initial coverage rate (%) Final coverage rate (%)

0.1 0.8492 0.8698

0.2 0.819 0.8433

0.3 0.8135 0.8359

0.4 0.8115 0.8327

0.5 0.831 0.8602

0.6 0.8186 0.8507

0.7 0.8196 0.8414

0.8 0.8211 0.8417

0.9 0.8499 0.8712

1 0.8369 0.8549

1.1 0.8298 0.8888

1.2 0.822 0.9053

1.3 0.8134 0.9331

1.4 0.7965 0.898

1.5 0.8116 0.91

1.6 0.8367 0.9279

1.7 0.8145 0.9169

1.8 0.8267 0.9132

1.9 0.8296 0.9147

2 0.8127 0.9078
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Figure 1(b). It is worth mentioning that d1 + d2 > d3 + d4;
therefore, achieving the intended positions, the moving dis-
tance of si and sj can be confined but no change will occur
in the coverage area, but the coverage area distance rate will
be extended. The instance nodes that are eager to update
their moving position will be substituted with the moving
position of the nodes which are stationary and do not require
further movement. This step can prevent the instance nodes
frommaking unnecessary and longer movement. In this case,
the instance node does not possess sufficient energy while
reaching the intended position; thereby, other surrounding
nodes will surrogate the liability. We should consider
Figure 1(c), where instance node si does not plan to leave
its position while at the same time instance node sj is eager
to shift its position from Pj0 to Pj1. Therefore, the instance
node si is displaced from Pi0 to Pj1 but sj remains in hiatus.
The coverage range B ≥ A and 3 < d2, instead of sensor node
sj, and the algorithm smartly shifts the instance node si to the
intended new position of node sj while keeping the sj node
stationary. This change will not affect the coverage range of

the network and does not impel the rest of the instance nodes
to move in the queue. Eventually, an average moving distance
of the instance node is reduced which enhances the coverage
area distance rate. This moving distance reduction is illus-
trated in Figures 1(d) and 1(e).

4. Simulation Results and Discussion

In order to validate the efficiency of node deployment based
on BiCM, the simulation trials are conducted using MATA-
LAB R2016a [30]. The performance among BiCM, tuned
BiCM, and FOA is carried out using the simulation setup
parameters given in Table 2. To observe the performance of
the aforementioned algorithms, nearabout 60 sensor nodes
were deployed randomly in the monitoring area of size 60
× 60m2. To demonstrate the performances of FOA, BiCM,
and tuned BiCM, the initial and final node deployments are
presented in Figures 2 and 3.

These Figures 2 and 3 signify the initial and final node
deployments after executing the FOA and BiCM algorithms.
Thereupon, it can be clearly understood that node deploy-
ment based on BiCM has minimum redundancy and is most
uniform compared to node deployment by the FOA mecha-
nism. Table 3 signifies the influence of pulse emission rate (r)
on the coverage of sensor nodes. The value of r changes from
0.1 to 1 whereas the value of other instance mechanism
parameters such as loudness, maximum frequency, and sens-
ing radius is kept constant to 0.5, 2, and 5, respectively. To
beat the effect of arbitrariness [31], the instance mechanism
is simulated 50 times, and greatest value of coverage is picked
every time. The maximum value of coverage after performing
BiCM is attained as 93.54% at a pulse emission rate of 0.9. As
instances move towards their respective target (grid points),
they emit a greater number of pulses [32]; therefore, the pulse
emission rate will be high when sensor nodes move close to
the grid points [33]. Thereupon, the value of the pulse emis-
sion rate is kept at 0.9. Further, to see the effect of the loud-
ness parameter of the instance mechanism on the coverage
rate of sensor nodes, the value of loudness (Ao) is varied from
0.1 to 1 while the pulse emission rate (r) is set to 0.9 and the
value of other parameters is 0.5; the sensing radius (rs) is
fixed at 5meters. Table 4 shows the variations of loudness
and initial and final coverage rates of nodes after implement-
ing BiCM. The BiCM is run 50 times, and the best value of
the initial and final coverage rates is selected. The coverage
rate after executing BiCM is obtained as the highest at about
93.1% at the 0.2 value of loudness. When sensor nodes
(instance) get near to the grid point, the intensity of emitted
pulses is low; therefore, the loudness parameter should be
kept low [34]. Thereupon, the value of the loudness parame-
ter is fixed at 0.2.

In addition to this, Table 5 demonstrates the effect of
maximum frequency (fmax) [35], on coverage; its value has
been changed from 0.1 to 2. The constraints of the instance
mechanism for instance pulse emission rate, loudness, and
sensing radius are kept constant to 0.9, 0.2, and 5, respec-
tively. For each variation of maximum frequency, the
instance mechanism has been executed 50 times and
supreme values of coverage before and after the execution

Table 6: Influence of grid points on coverage rate.

Grid points
(m ∗m)

Initial coverage rate
(%)

Final coverage rate
(%)

0:1 ∗ 0:1 0.8306 0.9203

0:2 ∗ 0:2 0.7975 0.9006

0:3 ∗ 0:3 0.8006 0.9106

0:4 ∗ 0:4 0.8342 0.9132

0:5 ∗ 0:5 0.8012 0.9056

0:6 ∗ 0:6 0.8451 0.9341

0:7 ∗ 0:7 0.8052 0.9125

0:8 ∗ 0:8 0.8135 0.9181

0:9 ∗ 0:9 0.8142 0.9200

1 ∗ 1 0.8240 0.9212
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Figure 4: Coverage rate for varying sensing radii of sensor nodes by
BiCM.
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of the instance mechanism have been chosen. The best value
of coverage after implementing BiCM is 93.31% when fmax is
1.3. Thus, the value of fmax is set to 1.3. To observe the impact

of grid points on the coverage rate of nodes, the value of the
grid point has varied from 0:1m ∗ 0:1m to 1m ∗ 1m. The
various simulation factors such as pulse emission rate,

60

60

50

50

40

40

30

30
Deployment field X (m)

Initial stage of scattering sensor nodes

20

20

10

10
0

0

D
ep

lo
ym

en
t fi

el
d 
Y

 (m
)

(a)

60

60

50

50

40

40

30

30
Deployment field X (m)

Final stage of scattered sensor nodes

20

20

10

10
0

0

D
ep

lo
ym

en
t f

ie
ld

 Y
 (m

)

(b)

Figure 5: (a) Initial deployment of sensor nodes for tuned BiCM; (b) final deployment of sensor nodes by tuned BiCM.
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Figure 6: Coverage rate analysis by FOA, BiCM, and tuned BiCM.

Table 7: Deployment results for FOA, BiCM and Tuned BiCM.

Algorithms FOA BiCM Tuned BiCM

Parameters
Initial
results

Final results after
execution

Initial
results

Final results after
execution

Initial
results

Final results after
execution

Average coverage
rate

75.56% 85.16% 82.72% 91.91% 91.54% 98.29%

Standard deviation 0.0286 0.0251 0.0187 0.0126 0.0126 0.0055

Best coverage value 78.92% 87.49% 87.10% 94.30% 93.45% 99.46%

Worst coverage
value

68.40% 78.20% 79.38% 90.02% 89.55% 97.31%
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maximum frequency, sensing radius, and loudness are kept
constant at 0.9, 1.3, 5, and 0.2, respectively. In Table 6, every
value of grid point BiCM runs 50 times and the uppermost
values of the coverage rate have been taken. The highest value
of the coverage rate at about 93% is obtained after running
the BiCM when grid points were set to 0:6m ∗ 0:6m. Fur-
ther, the sensing radius is varied from 1m to 10m. Figure 4
signifies the variations of the coverage rate after applying
BiCM w.r.t. changes in the sensing radius of the node. The
parameters of BiCM, for example, grid points, loudness,
pulse emission rate, and maximum frequency, are set as 0:6
m ∗ 0:6m, 0.2, 0.9, and 1.3, respectively. It is clear from
Figure 4, as the sensing radius has increased, that the cover-
age rate of sensor nodes is also increased, and its value is
100% when the sensing radius is increased beyond 7m. But
there is a trade-off between the sensing radius and cost: while
the sensing radius of the node is increased, the cost of sensor
nodes also increased.

The tuned values of various constraints of BiCM such as
loudness, maximum frequency, sensing radius, pulse emis-
sion rate, and grid points are 0.2, 1.3, 6, 0.9, and 0:6m ∗ 0:6
m, respectively. To validate the performance of node deploy-
ment based on BiCM after setting the above constraint
values, the initial and final node deployments after executing
the tuned BiCM are shown in Figure 5. Thereupon, it can be
obviously seen that node deployment based on tuned BiCM
has the lowest redundancy compared with BiCM and FOA.
To further demonstrate the effectiveness of tuned BiCM, the
coverage rates for the tuned BiCM, BiCM, and FOA for vari-
ous iterations are shown in Figure 6. The iterations are varied
from 0 to 500. The convergence speed of the tuned BiCM is
more compared to FOA. The tuned BiCM converged around
150 iterations, whereas FOA converges around 350 iterations
due to exploitation characteristics of the instances.

The tuned BiCM has achieved a higher coverage rate at
about 99.46% compared to 93.37% and 88.33% of BiCM
and FOA, respectively. In order to overwhelm the effect of
randomness of tuned BiCM, instance mechanism optimiza-
tion and Fruit Fly Optimization Algorithms are run 15 times.
The deployment results in terms of average coverage rate,
standard deviation, and best and worst coverage values for
tuned BiCM and FOA are represented in Table 7. It can be
obviously seen from Table 7 that tuned BiCM has achieved
the average coverage rate of about 98.29% compared to
91.91% and 85.16% of BiCM and the Fruit Fly Optimization
Algorithm. Further, the standard deviation for node deploy-
ment based on tuned BiCM is lowest, so tuned BiCM is more
stable compared to FOA and BiCM. The best and worst cov-
erage values for tuned BiCM are 99.46% and 97.31% com-
pared to 94.30% and 90.02% and 87.49% and 78.20% for
the BiCM- and FOA-based node deployments, respectively.

Further, the comparison of tuned BiCM, BiCM, and FOA
in terms of computation time is represented in Table 8. The

computation time for tuned BiCM is less, i.e., 0.016 seconds,
compared to 0.019 seconds and 0.28 seconds for BiCM and
FOA, respectively. The tuned BiCM and BiCM converge at
25 iterations whereas FOA converged at 500 iterations; there-
fore, the speeds of tuned BiCM and BiCM are more and con-
verge faster at an earlier stage because of their exploitation
feature compared to the Fruit Fly Optimization Algorithm.

5. Conclusion

In order to enhance the coverage rate of the sensor nodes, an
innovative sensor deployment technique based on
Bodacious-instance Coverage Mechanism (BiCM) has been
purposed that accomplished the desired goal with limited
energy consumption. The analysis of various factors of BiCM
such as loudness, grid points, emission rate and radius of
nodes, and frequency has been identified, and shrewd values
of the above parameters are discovered. Node deployment
based on tuned BiCM and BiCM shows that both algorithms
converge at an earlier stage compared to the Fruit Fly Opti-
mization Algorithm. The simulation results demonstrate that
tuned BiCM has attained a mean coverage rate of about
98.29% which is higher compared to FOA and BiCM. Fur-
ther, various simulations have been done by varying the
number of sensor nodes and iterations, and a coverage rate
curve is plotted for tuned BiCM, BiCM, and FOA. The com-
parison of the computation time is also represented in this
paper. Tuned BiCM has a high coverage rate and less compu-
tation time compared to FOA and BiCM. In the future, the
various evolutionary optimization algorithms can be applied
to the node deployment problem to increase the coverage
rate of sensor nodes.
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The data to support the findings of this study is available
inside the manuscript.
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