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Research Article
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Chronic kidney disease (CKD) is known to be associated with cardiovascular dysfunction. Dietary adenine intake in mice is also
known to induce CKD. However, in this experimental model, the mechanisms underlying the cardiotoxicity and coagulation
disturbances are not fully understood. Here, we evaluated cardiac inflammation, oxidative stress, DNA damage, and coagulation
events in mice with adenine (0.2% w/w in feed for 4 weeks)-induced CKD. Control mice were fed with normal chow for the
same duration. Adenine increased water intake, urine output, relative kidney weight, the plasma concentrations of urea and
creatinine, and the urinary concentrations of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. It also
decreased the body weight and creatinine clearance, and caused kidney DNA damage. Renal histological analysis showed
tubular dilation and damage and neutrophilic influx. Adenine induced a significant increase in systolic blood pressure and the
concentrations of troponin I, tumor necrosis factor-α, and interleukin-1β in heart homogenates. It also augmented the levels of
markers of lipid peroxidation measured by malondialdehyde production and 8-isoprostane, as well as the antioxidants
superoxide dismutase and catalase. Immunohistochemical analysis of the hearts showed that adenine increased the expression of
nuclear factor erythroid-derived 2-like 2 by cardiomyocytes. It also caused cardiac DNA damage. Moreover, compared with the
control group, adenine induced a significant increase in the number of circulating platelet and shortened the thrombotic
occlusion time in pial arterioles and venules in vivo, and induced a significant reduction in the prothrombin time and activated
partial thromboplastin time. In conclusion, the administration of adenine in mice induced CKD-associated cardiac
inflammation, oxidative stress, Nrf2 expression, and DNA damage. It also induced prothrombotic events in vivo. Therefore, this
model can be satisfactorily used to study the cardiac pathophysiological events in subjects with CKD and the effect of drug
treatment thereon.
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1. Introduction

There is a worldwide substantial increase in the prevalence of
chronic kidney disease (CKD) attaining as much as 13%, and
more than seven million people with end-stage kidney dis-
ease are requiring renal replacement therapy [1, 2]. The latter
has been associated with the increase of prevalence of ageing,
obesity, diabetes mellitus, hypertension, and metabolic syn-
drome [1, 2].

Kidney and cardiovascular diseases are tightly intercon-
nected, and injury in one of these organs leads to adverse
effects on the other one [1, 2]. In fact, it is well established
that patients with CKD present cardiovascular complications
including hypertension, thromboembolic disorders, cardiac
hypertrophy and failure, and their pervasiveness augments
with deteriorating kidney function [1, 2].

Animal models of CKD have been shown by several
workers to be extrapolatable and useful (albeit imperfect)
to the human disease [3]. In order to provide biological
plausibility and better understanding on the mechanisms
underlying CKD and their extrarenal impact, animal models
with CKD are often utilized including the adenine-induced
CKD [4]. When adenine is ingested by rodents, it is oxidized
to 2,8-dihydroxyadenine by xanthine oxidase, which pro-
duces precipitates and crystals in the renal tubules which
consequently induce tubular damage, inflammation, and
fibrosis [5, 6].

Rats treated with adenine-induced CKD have been
shown to develop cardiovascular complications including
increase of systolic blood pressure (SBP) starting at week
four, and at week 16, the SBP is further augmented and is
associated with left ventricular hypertrophy and interstitial
and perivascular inflammation and fibrosis and compro-
mised vascular reactivity [4, 7, 8]. However, the mechanisms
of action of cardiovascular injury in adenine-induced CKD
are not fully understood.

Moreover, a recent study has shown a prolongation in tail
bleeding time and delay in thrombus formation in cremaster
arterioles following vascular injury in mice with CKD
induced by 5/6th nephrectomy- or adenine (0.25% for two
weeks)-induced CKD [9]. On the contrary, other studies have
reported platelet hyperactivity and increased thrombogeni-
city in a rat or mouse model of CKD induced by 5/6 ablatio-
n/infarction [10, 11].

We have recently shown that administration of adenine
(0.2% w/w in feed for 4 weeks) in mouse-induced CKD is
accompanied by lung oxidative stress, DNA damage, and
fibrosis [12]. However, the impact of the latter model of
CKD on the cardiovascular system has received only scant
attention [4]. Therefore, the aim of this study conducted
in mice was twofold: (1) to assess the effects of adenine
(0.2% w/w in feed for 4 weeks)-induced CKD on SBP, heart
histology, inflammation, oxidative stress, nuclear factor ery-
throid 2-related factor 2 (Nrf2) expression, and DNA dam-
age and (2) to evaluate the impact of the adenine-induced
CKD on circulating platelets, photochemically induced
thrombosis in pial microvessels in vivo and prothrombin
time (PT), and activated partial thromboplastin time
(aPTT) in vitro.

2. Material and Methods

2.1. Experimental Animals and Treatments. Male C57BL/6
mice aged between 8 and 10 weeks, weighing in the beginning
about 20-25 g (UAEU, College of Medicine and Health Sci-
ences animal house), were housed at the Animal House of
the College of Medicine and Health Sciences, UAEU, in light
(12 h light : 12 h dark cycle), relative humidity of 50–60%, and
temperature-monitored (21 ± 2°C) rooms. Animals had
unrestricted access to tap water and commercial laboratory
chow. They were indiscriminately separated into two groups
of mice and put in cages. The control mice were given stan-
dard food for four weeks. The second group consisting of
the adenine-treated group received the same diet in the form
of powder containing adenine 0.2% w/w (0.2 g of adenine in
100 g of powder diet) for four weeks. The dose and duration
of adenine treatment used in the present study were selected
from our previous publications and have been shown to be
effective in causing CKD in mice [6, 12–15]. It has been
shown that when adenine is consumed by mice or rats, it gets
metabolized to 2,8-dihydroxyadenine, which precipitates and
produces tubular crystals that consequently induce kidney
injury [5, 6, 16]. The weights of the animals were taken at
the start of the study and just prior to sacrifice. Mice were
relocated in metabolic cages on day 28 and kept there for
24 h to allow the quantification of water intake and urine vol-
ume. Twenty-four hours later, numerous renal and cardio-
vascular parameters were assessed. Mice were cared for
under the protocol of the Animal Research Ethics Committee
of our college and as per the NIH Guide for the Care and Use
of Laboratory Animals, NIH publication no. 85-23, 1985.

2.2. Measurement of SBP. A computerized noninvasive
tail-cuff manometry system was used to assess SBP in con-
trol and adenine-treated mice (ADInstruments, Colorado
Springs, USA) [17]. To circumvent technique-induced stress,
animals were adapted to the technique and trained for three
successive days earlier to the experimental procedure.

2.3. Blood Collection, Histology, Immunohistochemistry, and
Biochemical Analysis. After the measurement of SBP, mice
were anesthetized by intraperitoneal injection of sodium
pentobarbital at a dose of 45mg/kg, and then, the blood
was collected from the inferior vena cava in citrate solution
(3.2%). A sample was used for platelet count in a VET ABX
Micros with mouse card (ABX, Montpellier, France), and
the rest was spun at 4°C for 15min at a speed of 900 g. The
plasma samples acquired after centrifugation were kept at
-80°C awaiting analysis.

The kidneys and hearts were excised following sacrifice,
washed with ice-cold saline, blotted with filter paper,
weighed, and fixed with 10% buffered formalin for 24 h.
The latter was followed by dehydration in cumulative con-
centrations of C2H5OH, cleared with xylene, and embedded
in paraffin. Sections of 3μm were prepared from paraffin
blocks and stained with hematoxylin and eosin. These were
examined by light microscopy by a histopathologist who con-
tributed in this study (SA).
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Concerning the detection of Nrf2 by immunohistochem-
istry, 5μm heart sections were made ready and mounted on
aminopropyltriethoxysilane-coated slides. Subsequent to
dewaxing with xylene and rehydrating with graded alcohol,
slides were put in a 0.01M citrate buffer solution (pH = 6:0)
and the pretreatment processes to unmask the antigens were
accomplished in a water bath at 95°C (30min). Then, the sec-
tions were treated for 30min with peroxidase block followed
by protein block for 30min. After that, sections were incu-
bated for one hour at room temperature (RT) with anti-
Nrf2 (Rabbit Polyclonal, 1 : 300, Abcam, USA). Following
the conjugation with primary antibodies, sections were incu-
bated with secondary antibody (EnVisionTM Detection Sys-
tem, DAKO, Agilent, USA) for 20min at RT followed by
DAB chromogen (EnVisionTM Detection System, DAKO,
Agilent, USA) addition and counter staining achieved with
hematoxylin. Suitable positive controls were utilized. Regard-
ing the negative control, the primary antibody was not sup-
plemented to sections. Both controls (negative and positive)
were utilized in each set of slides which were stained (not
shown in figures). The heart tissue immunohistochemical
staining was scored according to the % of staining of heart
muscles and endothelial cells of each section of the heart [18].

The concentrations of urea and creatinine in plasma and
creatinine in urine were spectrophotometrically measured
using commercial kits (Roche Diagnostics, Indianapolis, IN,
USA). ELISA kits were utilized to quantify the levels of kid-
ney injury molecule-1 (KIM-1) and neutrophil gelatinase-
associated lipocalin (NGAL) in the urine (R&D Systems,
MN, USA).

2.4. Assessment of Markers of Injury, Inflammation, and
Oxidative Stress in Heart Homogenates. Preparation of heart
homogenates for the assessment of markers of injury inflam-
mation and oxidative stress was achieved as previously
reported [19]. The levels of troponin I (Life Diagnostics,
West Chester, PA, USA), tumor necrosis factor α (TNF-α;
R&D Systems, Minneapolis, MN, USA), interleukin-1β (IL-
1β; R&D systems, Minneapolis, MN, USA), 8-isoprostane
(Cayman Chemicals, Michigan, USA), malondialdehyde
(MDA; Sigma-Aldrich Fine Chemicals, St. Louis, MO,
USA), superoxide dismutase (SOD; Cayman Chemicals,
Michigan, USA), and catalase (Cayman Chemicals, Michi-
gan, USA) were assayed according to the protocols described
by the respective manufacturers.

2.5. DNA Damage Evaluation by COMET Assay. In a separate
set of mice, the hearts and kidneys were removed from each
mouse immediately after sacrifice and processed for the
quantification of DNA injury by COMET assay according
to a previously reported technique [17, 20].

2.6. In Vivo Experimental Pial Cerebral Microvessel
Thrombosis Model. In vivo pial arteriolar and venular throm-
bogenesis was assessed on day 29 of the experiment in con-
trol and adenine-treated mice according to a previously
described technique [17, 21].

2.7. In Vitro Assessment PT and aPTT.On day 29, all animals
were anesthetized, and the blood was withdrawn from the

inferior vena cava and placed in citrate solution (3.2%) (ratio
of the blood to anticoagulant: 9 : 1). The PT was assayed on
freshly collected platelet-poor plasma with human relipi-
dated recombinant thromboplastin (Recombiplastin; Instru-
mentation Laboratory, Orangeburg, NY, USA) along with a
coagulometer (MC 1 VET, Merlin, Lemgo, Germany) [22].
The aPTT was assessed with the automated aPTT reagent
from bioMerieux (Durham, NC, USA) with the identical coa-
gulometer [22].

2.8. Statistics. All statistical analyses were carried out using
GraphPad Prism Software version 7. To assess whether
the measured parameters were normally distributed, the
Shapiro-Wilk normality test was first used. Normally dis-
tributed data were tested using the unpaired t-test for dif-
ferences between the two groups. Data which were not
normally distributed (TNF-α, IL-1β, MDA, and throm-
botic occlusion time in venules) were tested using the
Mann-Whitney test for differences between groups. All
the data in figures and table were expressed as the mean
± SEM. P values < 0.05 are considered significant.

3. Results

3.1. Renal Endpoints. Tables 1 and 2 depict data related to
physiological and biochemical parameters assessed in control
and adenine-treated mice. Adenine treatment significantly
decreased the body weight (P < 0:001) and significantly

Table 1: Daily water intake, urine volume, body weight change, and
relative kidney weight in control and adenine-treated mice.

Parameters/group Control Adenine

Water intake (ml) 9:08 ± 0:55 22:83 ± 2:45∗∗∗

Urine volume (ml) 3:11 ± 0:05 14:32 ± 0:926∗∗

Body weight (% change) 6:25 ± 0:97 −22:26 ± 0:80∗∗∗

Relative kidney weight (g) 1:14 ± 0:02 1:23 ± 0:03∗

Values in the table are presented as themean ± SEM (n = 6 − 8). Adenine was
added to the feed at a concentration of 0.2% w/w, for 4 weeks. ∗P < 0:05,
∗∗P < 0:01, and ∗∗∗P < 0:001 (control vs. adenine group).

Table 2: Plasma concentration of urea and creatinine and
creatinine clearance, and urinary concentration of kidney injury
molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin
(NGAL), and kidney DNA damage in control and adenine-treated
mice.

Parameters/group Control Adenine

Urea (mmol/l) 4:05 ± 0:15 8 ± 1:08∗∗

Creatinine (μmol/l) 9:1 ± 0:72 17:63 ± 3:72∗

Creatinine clearance (ml/min) 0:50 ± 0:05 0:13 ± 0:03∗∗∗

KIM-1 (pg/ml) 86:25 ± 4:32 762:3 ± 54:58∗∗∗

NGAL (pg/ml) 4,477 ± 262 6,897 ± 308:4∗∗∗∗

DNA migration in kidney (mm) 5:23 ± 0:10 10:43 ± 0:05∗∗∗∗

Values in the table are presented as themean ± SEM (n = 5 − 8). Adenine was
added to the feed at a concentration of 0.2% w/w, for 4 weeks. ∗P < 0:05,
∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001 (control vs. adenine group).
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increased water intake (P < 0:001), urine volume (P < 0:01),
and relative kidney weight (P < 0:05) when compared with
control mice (Table 1). Table 2 depicts a significant increase
in plasma urea (P < 0:01) and creatinine (P < 0:05) concen-
trations, and a significant decrease in creatinine clearance
(P < 0:001) in the adenine group. Moreover, adenine treat-
ment induced a significant increase in the urinary concentra-
tions of KIM-1 (P < 0:001) and NGAL (P < 0:0001) and
DNA damage (P < 0:0001) assessed by COMET assay
(Table 2). Likewise, the histological analysis of the kidneys
collected from the adenine-treated group showed the pres-
ence of tubular dilation and damage and neutrophilic influx
(Figure 1).

3.2. Cardiovascular Endpoints. Figure 2 shows that adenine
treatment induced a significant increase in SBP (P < 0:0001).

Figure 3 illustrates the effect of adenine administration
on the concentrations of the marker of cardiac injury, tropo-
nin I, and the proinflammatory cytokines TNF-α and IL-1β.
Compared with the control group, the concentrations of tro-
ponin I (P < 0:05), TNF-α (P < 0:01), and IL-1β (P < 0:001)
were significantly increased in the heart homogenates of the
adenine-treated group.

Figure 4 shows the impact of adenine treatment on the
levels of markers of lipid peroxidation including 8-
isoprostane and MDA and the activities of the antioxidants
SOD and catalase. Compared with the control group, the
levels of 8-isoprostane (P < 0:01), MDA (P < 0:01), SOD

(P < 0:05), and catalase (P < 0:01) were found to be markedly
elevated in adenine-treated mice (Figure 4).

The assessment of DNA damage by COMET assay in the
heart of control and adenine-treated mice is shown in
Figure 5. Compared with the control group, adenine admin-
istration induced a significant augmentation of heart DNA
injury (P < 0:0001).

Light microscopy analysis of the heart sections stained
with H&E obtained from control mice exhibited normal
structure (Figure 6). Following adenine treatment, no mor-
phological changes have been observed in the hearts col-
lected from the adenine group (Figure 6). However, the

(a) (b)

(c) (d)

Figure 1: Representative light microscopy sections of kidney tissues of control mice and those given with adenine mixed in the feed (0.2%
w/w, for four weeks), stained with H&E. (a, b) The control group shows unremarkable morphologic changes in renal tubules (thin arrow)
and glomeruli (arrowhead). (c, d) The adenine-treated group shows dilatation of the renal tubules (thin arrow), tubular damage
(arrowhead), and neutrophil polymorph infiltration of the affected tubules (thick arrow). Scale bars in (a, c): 200 μm and (b, d): 50μm.
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Figure 2: Systolic blood pressure in control mice and those given
with adenine mixed in the feed (0.2% w/w, for four weeks). Mean
± SEM (n = 8 in each group).
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immunohistochemistry analysis of the heart revealed the
presence nuclear expression of Nrf2 by cardiomyocytes
in the heart sections of all groups (Figure 7), with different
intensity and distribution. The control group shows mild

nuclear expression of Nrf2 by cardiomyocytes (Figure 7).
The adenine-treated group showed a significant increase
(P < 0:05) in the expression of Nrf2 by cardiomyocytes
when compared to the control group (Figure 7).
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Figure 3: Troponin I (a), tumor necrosis factor-α (TNF-α) (b), and interleukin-1β (c) concentrations in heart homogenates of control mice
and those given with adenine mixed in the feed (0.2% w/w, for four weeks). Mean ± SEM (n = 7‐8 in each group).
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Figure 4: 8-Isoprostane (a), malondialdehyde (MDA) (b), superoxide dismutase (SOD) (c), and catalase (CAT) (d) levels in heart
homogenates of control mice and those given with adenine mixed in the feed (0.2% w/w, for four weeks).Mean ± SEM (n = 8 in each group).
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Figure 8 shows the effects of adenine on the number of
circulating platelets and the thrombotic events in pial
microvessels in vivo. Compared with the control group,
the number of circulating platelets was significantly aug-
mented (P < 0:0001), and thrombotic occlusion time mea-
sured in pial arterioles significantly shortened (P < 0:0001)
in adenine-treated mice (Figure 8(a) and Figure 8(b),
respectively). Similarly, in pial venules of adenine-treated
mice, the thrombotic occlusion time was also significantly
shortened (P < 0:001) compared with the control group,
indicating a prothrombotic effect of adenine treatment
(Figure 8(c)).

Figure 9 depicts the impact of adenine administration on
PT and aPTT. Compared with the control group, adenine
treatment significantly shortened the PT (P < 0:0001;
Figure 9(a)) and aPTT (P < 0:0001; Figure 9(b)).

4. Discussion

In the present study, we showed that feeding adenine to mice
(0.2% w/w for four weeks) induced CKD which was associ-
ated with cardiac inflammation, oxidative stress, Nrf2
expression, and DNA damage. It also induced prothrombotic
events in vivo.

Renal and cardiovascular functions are tightly related
under physiological and pathophysiological situations [23,
24]. It is well-known that cardiovascular diseases are the
main cause of death in patients with impaired renal function
[23, 24]. Moreover, patients with CKD develop cardiovascu-
lar disease including hypertension, cardiac hypertrophy, and
thrombotic complications [23, 24].

Experimental animal models using rats or mice have
been widely utilized to enhance our knowledge about the
pathophysiology of CKD and develop pharmacological inter-
ventions aiming at mitigating or averting renal damage [4].
Although the majority of CKD animals models do not simu-
late totally the intricacy of human CKD and its accompany-
ing complications, the experimental CKD induced by
adenine supplementation to feed of rats or mice have been
shown to reproduce gastrointestinal, pulmonary, and cardio-
vascular complications seen in clinical situations [4, 7, 8, 12,
15, 25]. With respect to cardiovascular effects, it has been
shown that adenine treatment in rats (0.75% w/w for four

weeks) increased blood pressure and the absolute volume of
left ventricle and it decreased volume density and absolute
volume of myocardial capillaries [7, 25]. Moreover, Diwan
et al. [4, 8] showed that adenine added in diet at 0.25% for
16 weeks mimicked the cardiovascular changes seen in
humans with CKD, including elevation of blood pressure
(which was significant at four weeks) along with hypertrophy
of the left ventricle and augmentation in interstitial and peri-
vascular inflammation and fibrosis resulting in augmented
stiffness of the left ventricular. However, the mechanisms
underlying the cardiovascular events seen in CKD are not
fully understood.

In line with earlier reports describing the renal effects of
adenine treatment in mice [6, 12, 14], we found here that
the body weight and creatinine clearance were reduced,
whereas the water intake, urine volume, relative kidney
weight, the plasma concentrations of urea and creatinine,
the urinary concentrations of KIM-1 and NGAL, and renal
DNA damage were significantly elevated compared with the
control group. Moreover, histological analysis of the kidneys
collected from the adenine-treated group showed the pres-
ence of tubular dilation and damage and neutrophilic influx.

It has been previously shown that adenine-treated rats
(0.25% or 0.75% w/w) induce an increase of blood pressure
at four-week time point and continues up to 16 weeks [8,
25, 26]. Likewise, adenine administration in mice (0.2% for
four weeks) induced a significant increase of blood pressure
[6, 14]. The data of the present study confirmed the elevation
of SBP of mice given with adenine and further showed a sig-
nificant increase of troponin I, a biomarker of myocardial
damage, and two proinflammatory cytokines including
TNF-α and IL-1β in heart homogenates. The latter findings
indicate the occurrence of myocardial injury and cardiac
inflammation. Both inflammation and oxidative stress are
concurrently found to be elevated in cardiovascular diseases,
and each one can be readily triggered and potentiated by the
other one [27, 28]. Recently, inflammation and oxidative
stress have attracted much interest as crucial pathophysiolog-
ical players in the cause and progression of various cardiovas-
cular diseases [27, 28]. Despite the fact that reactive oxygen
species exert signalling functions under physiological condi-
tion, a disproportionate and decontrolled generation of these
molecules may trigger oxidative stress and cardiomyocyte
injury [27, 28]. Therefore, to gain more insights into the
mechanisms underlying the observed cardiac injury and
inflammation, we measured various markers of oxidative
stress in heart homogenates, including 8-isoprostane, MDA,
SOD, and catalase. Our data showed that the hearts of
adenine-treated mice showed a significant increase of
markers of lipid peroxidation, namely, 8-isoprostane and
MDA, and the antioxidant enzymes SOD and catalase. The
latter indicate the occurrence of oxidative stress in the heart,
and the increase of antioxidants suggests an ongoing com-
pensatory mechanisms taking place in the heart and aiming
at mitigating the injurious effects of oxygen radicals. Further-
more, besides heart inflammation and oxidative stress, we,
presently, found a significant increase in cardiac DNA dam-
age. These results indicate that the treatment with adenine
caused oxidative stress milieu which in turns induced DNA
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Figure 5: DNA migration (mm) in the heart tissues assessed by
COMET assay in control mice and those given with adenine
mixed in the feed (0.2% w/w, for four weeks) (a). Data are
presented as the means ± SEM (n = 5).
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injury. As far as we are aware, these findings have not been
reported before. Using the same model of adenine-induced
CKD in mice, we have recently reported the occurrence of
lung oxidative stress and DNA damage [12].

Despite the occurrence of inflammation, oxidative stress,
and DNA damage seen in the adenine group, the histological
analysis of the hearts revealed a lack of clear morphologic
alterations in H&E-stained sections. This effect can be related
to the duration of adenine treatment (4 weeks at 0.2% w/w)
applied in this study. Moreover, the apparent absence of
morphological alteration is not in disagreement with the
occurrence of biochemical changes shown presently in heart
tissue of mice treated with adenine (Figures 3–5). The latter
biochemical alterations can plausibly pave the way of mor-
phological change of the heart which may be seen after treat-
ment with adenine for a longer period of time [29]. In fact, in
rats exposed to adenine for sixteen weeks at 0.25w/w, various
cardiac morphological changes have been reported encom-
passing compromised vascular responses, elevated left ven-
tricular stiffness, and augmented left ventricular mass [8].
The immunohistochemistry analysis of the heart obtained
from the adenine-treated group revealed a significant
increase in the nuclear expression of Nrf2 by cardiomyocytes.
Nrf2 is an important transcription factor involved in antiox-
idant enzyme activation after the manifestation of oxidative
stress [30, 31]. Following the occurrence of oxidative stress,
Nrf2 is freed from the regulatory Keap1-Nrf2 complex and
moves from the cytoplasm to the cell nucleus, where it

attaches to the antioxidant response element, a regulatory
enhancer region within gene promoters [32]. This attach-
ment triggers the production of antioxidant enzymes that
play a protective role against oxidative stress-induced cell
injury [32]. We have recently demonstrated the increase of
expression of Nrf2 in the lung of mice treated with adenine
[12]. Moreover, Nrf2 expression was found to increase in
the heart of mice exposed to waterpipe tobacco smoke, and
that the treatment with the antioxidant gum Arabic potenti-
ated Nrf 2 expression [18].

Patients with CKD present various defects in hemostasis
and coagulation including the elevation platelet aggregation
and von Willebrand factor activity, and the plasma concen-
trations of D-dimer, fibrinogen, and plasminogen activator
inhibitor that prevents the activation of the fibrinolytic sys-
tem [33, 34]. The latter effects induce increase of thrombo-
genicity in CKD [33, 34]. On the other hand, as the CKD
progresses to a greater extent, the bleeding risk augments in
relation to platelet defect [33, 34]. Experimental studies using
rat and mouse model of CKD induced by 5/6 ablation/infarc-
tion showed an increase of platelet activity and a prothrom-
botic tendency assessed 4 weeks after the surgery [10, 11].
Conversely, a recent study has shown a prolongation of tail
bleeding time and delay in thrombus formation in cremaster
arterioles following vascular injury in mice with CKD
induced by 5/6th nephrectomy or fed with 0.25% adenine
(for two weeks) [9]. In the present work, similar to our previ-
ous studies using the same dose and duration of treatment

(a) (b)

(c) (d)

Figure 6: Representative light microscopy sections of heart tissues of control mice and those given with adenine mixed in the feed (0.2%w/w,
for four weeks), stained with H&E. (a, b) The control group shows unremarkable heart morphology and architecture. (c, d) The adenine-
treated group shows unremarkable heart morphology and architecture. Scale bars in (a, c): 200 μm and (b, d): 50μm.
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Figure 7: Immunohistochemical analysis of the heart tissue sections for the detection of nuclear factor erythroid-derived 2-like 2 (Nrf2) in
control mice and those given with adenine mixed in the feed (0.2%w/w, for four weeks). (a) Representative section of the heart of control mice
showing mild nuclear expression of Nrf2 by cardiomyocytes (arrow). (b) Representative section of the heart of adenine-treated mice showing
a significant increase of nuclear expression of Nrf2 by cardiomyocytes (arrow). (c) Semiquantitative assessment of the %
immunohistochemical staining of the heart tissue for Nrf2 in control mice and those given with adenine mixed in the feed. Data are
presented as the means ± SEM (n = 6). Scale bars in (a, b): 50 μm.
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Figure 8: Circulating platelet numbers (a) and thrombotic occlusion time in pial arterioles (b) and venules (c) in control mice and those given
with adenine mixed in the feed (0.2% w/w, for four weeks). Mean ± SEM (n = 7‐8 in each group).
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(0.2% for four weeks), we did not notice any mortality related
to the adenine treatment [6, 12, 14]. Our data show a signif-
icant increase in the number of circulating platelet. In
patients with CKD, relative thrombocytosis has been associ-
ated with the severity of cardiovascular disease [35, 36].
Interestingly, our data also showed a significant shortening
in the thrombotic occlusion time in pial arterioles and
venules in vivo indicating an increased thrombogenicity.
Additionally, we assessed the PT and aPTT in plasma of con-
trol and adenine-treated mice. PT evaluates the production
of the fibrin clot through the activity of the extrinsic and
common coagulation pathways, and aPTT assesses the activ-
ity of the intrinsic and common pathways of coagulation. We
found a significant shortening of the PT and aPTT in the
plasma of the adenine-treated group, demonstrating a pro-
pensity to hypercoagulability and confirming our in vivo
findings. The discrepancy between our study and that of
Makhloufi et al. [9] could be ascribed to the difference in
the dose and duration of treatment of adenine (4 weeks at
0.2% in our study versus 2 weeks at 0.25%). In the latter
study, the reason why the duration of treatment with adenine
was limited to 2 weeks was related to high animal mortality
observed at 4 weeks of treatment [9]. Additional studies are
needed to understand the reason of this discrepancy and to
further investigate the mechanism of increased thrombotic
tendency in adenine-treated mice.

In conclusion, our data show that administration of ade-
nine in mice induced CKD which is associated with cardiac
inflammation, oxidative stress, Nrf2 expression, and DNA
damage. It also induced prothrombotic events in vivo. Fur-
ther studies are required to establish whether adenine can
have direct harmful effects on the heart.
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