
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

1-1-2011

CAT detect (computer activity timeline detection): A tool for CAT detect (computer activity timeline detection): A tool for

detecting inconsistency in computer activity timelines detecting inconsistency in computer activity timelines

Andrew Marrington
Zayed University

Ibrahim Baggili
Zayed University

George Mohay
Queensland University of Technology QUT

Andrew Clark
Queensland University of Technology QUT

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Marrington, Andrew; Baggili, Ibrahim; Mohay, George; and Clark, Andrew, "CAT detect (computer activity
timeline detection): A tool for detecting inconsistency in computer activity timelines" (2011). All Works.
842.
https://zuscholars.zu.ac.ae/works/842

This Conference Proceeding is brought to you for free and open access by ZU Scholars. It has been accepted for
inclusion in All Works by an authorized administrator of ZU Scholars. For more information, please contact
Yrjo.Lappalainen@zu.ac.ae, nikesh.narayanan@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/842?utm_source=zuscholars.zu.ac.ae%2Fworks%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Yrjo.Lappalainen@zu.ac.ae,%20nikesh.narayanan@zu.ac.ae

CAT Detect (Computer Activity Timeline Detection): A tool
for detecting inconsistency in computer activity timelines

Andrew Marrington a,*, Ibrahim Baggili a, George Mohay b, Andrew Clark b

aCollege of Information Technology, Zayed University, United Arab Emirates
b Information Security Institute, Queensland University of Technology, Australia

Keywords:

Timeline inconsistency

Event correlation

Precondition event

Happened-before

CAT detect

a b s t r a c t

The construction of timelines of computer activity is a part of many digital investigations.

These timelines of events are composed of traces of historical activity drawn from system

logs and potentially from evidence of events found in the computer file system. A potential

problem with the use of such information is that some of it may be inconsistent and

contradictory thus compromising its value. This work introduces a software tool (CAT

Detect) for the detection of inconsistency within timelines of computer activity. We

examine the impact of deliberate tampering through experiments conducted with our

prototype software tool. Based on the results of these experiments, we discuss techniques

which can be employed to deal with such temporal inconsistencies.

ª 2011 Marrington, Baggili, Mohay & Clark. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the issue of temporal inconsis-

tencies in digital evidence, and their impact on digital inves-

tigations. By temporal inconsistency, wemean an incongruity

in the digital evidence pertaining to the sequence of events in

the history of the computer system, which could lead to the

history being inaccurately reconstructed. Temporal inconsis-

tencies can impede digital investigations inwhich timelines of

computer activity are an important part of the digital evidence

under consideration. This includes any sort of investigation in

which determining an accurate sequence of events is crucial

to understanding the crime and building a case.

The most common inconsistency in digital evidence is

naturally occurring, that is to say, inconsistency which is not

the result of deliberate tampering. This includes data per-

taining to an event or file which simply is not recorded, ormay

have been over-written during the normal operation of the

computer system. It also includes “naturally” erroneous or

inaccurate data, perhaps due to a hardware characteristic,

software misconfiguration or bug. Such natural inconsis-

tencies pose difficulties for investigators, even if they are not

the result of deliberate action taken by a suspect.

Timestamps generated by computer clocks are an example

of data of such unreliable accuracy. Where multiple clocks

pertaining to a case generate timestamps, the normal

behaviour of computer hardware clocks (that is to say clock

skew and drift) will cause inconsistency between the different

time sources. Schatz et al. discuss an approach for dealing

with such inconsistencies. Their approach baselines the

behaviour of inconsistent computer clocks via correlation

with records from devices with more authoritative time-

stamps (Schatz et al., 2006). In single-computer investigations,

clock drift and skew can still lead to inconsistent timestamps

in the evidence. Despite the fact that there is only one clock

providing the timestamps in a single-computer system

investigation, severe cases of clock drift and skew can cause

the timelines that are constructed to be misleading. In

* Corresponding author.
E-mail addresses: andrew.Marrington@zu.ac.ae (A. Marrington), ibrahim.baggili@zu.ac.ae (I. Baggili), g.mohay@qut.edu.au

(G. Mohay), a.clark@qut.edu.au (A. Clark).

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 5 2eS 6 1

1742-2876/$ e see front matter ª 2011 Marrington, Baggili, Mohay & Clark. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2011.05.007

mailto:andrew.Marrington@zu.ac.ae
mailto:ibrahim.baggili@zu.ac.ae
mailto:g.mohay@qut.edu.au
mailto:a.clark@qut.edu.au
http://www.sciencedirect.com
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2011.05.007
http://dx.doi.org/10.1016/j.diin.2011.05.007
http://dx.doi.org/10.1016/j.diin.2011.05.007

extreme casese if there is a clock reset at reboot or some other

mishap and time “goes backwards” e then events may appear

out of the sequence in which they actually occurred.

The deliberatemodification of computer records to obscure

records of suspicious activity creates another, and generally

more concerning, sort of inconsistency in digital evidence. For

example, a user who downloads illegal material may attempt

to obscure that fact by deleting web browser history and

caches, event log records showing their login, opening the

browser application, and logging off. If, in a subsequent

forensic investigation, the illegal material is discovered, but

the user was successful in his/her destruction of log data, then

the illegal material will appear to have been downloaded

outside of a user session.

The rest of this paper is organised as follows. Section 2

introduces related work which informed our research.

Section 3 examines approaches for the detection of inconsis-

tency in timelines, dealing both with inconsistencies in event

timestamps and events omitted from the system’s record.

Section 4 describes our experiments with our tool for testing

the approaches discussed in Section 3. Section 5 describes the

results of those experiments and evaluates the detection

techniques. In Section 6 we list the limitations of the CAT

Detect tool at the time of writing this paper, as well as limi-

tations of the research described in this paper. Section 7 is

a discussion of future work in the area of detecting inconsis-

tency in computer activity timelines, and Section 8 is our

conclusion.

2. Related work

This work employs some of the concepts from the computer

profiling model described by Marrington et al. (2010). This

model of a computer system consists of objects representing

the various entities which form part of the computer system’s

operation. These entities include users, data files, system

software, hardware devices, and applications. The objects

discovered on the computer system under examination

(together comprising the setO) are classified according to their

type. In Marrington et al’s model, there are four broad types of

objects (Application, Principal, Content and System) with

increasingly specific subtypes. We represent each of these

categories as sets. The set of Application objects,A, consists of

all the application software on the computer system. The set

of Principal objects, P, consists of all the computer system’s

users and groups, and all of the people and organisations

otherwise discovered in the examination of the computer

system. Of these objects, some Principal objects are described

as canonical if they represent definite entities on the

computer system which are actors in their own right, such as

users and groups. Principal objects may be described as non-

canonical if they represent people or groups of people who

may not be actors on the system, but may be for instance

peoplementioned in documents. The set of Content objects, C,

consists of all the documents, images and other data files on

the computer system. The set of System objects, S, consists of

all the configuration information, system software and hard-

ware devices on the computer system. A, S, C, and P are all

subsets of O. The model also describes relationships between

these objects, but these are unrelated to this work.

Themodel also includes the set of all times in the history of

the computer system, T, and the set of all events, Evt, which

have taken place in the history of the computer system. Let t

be a time in T, x be the object which instigated the event, y be

the object which was the target of the event, 3 describes the

action of the event, and a describe the result of the event

(either successful, unsuccessful, or unknown). An event evt in

the set Evt consists of the quintuple:

evt ¼ ðt; x˛O; y˛O; 3;aÞ:
In the model, the finite set Evt consists of two enumerable

subsets, and one subset which cannot be enumerated. The

first subset consists of events which are recorded in the

computer system’s logs. The second consists of events which

are not recorded in logs, but which can be inferred on the basis

of other digital evidence on the system (such as relationships

between different objects). These are the recorded events1

(EvtR) and the inferred events (EvtI) respectively. These two

sets do not exhaustively describe the complete history of the

computer system. There may be other events which took

place which were unrecorded and left no artefact from which

they could be inferred. These events are obviously unknown,

and comprise the final subset of Evt.

The set EvtI is particularly vulnerable to inconsistency or

incompleteness in the data obtained from the target

computer’s file system. Contradictory, inaccurate or missing

information can lead to an incomplete timeline of a user’s

activity. EvtR is a direct representation of the contents of the

computer system’s logs, and consequently, will incorporate

any inaccurate event records in the system logs. Further, if an

event is not logged, and cannot be inferred, it will not be an

element of either EvtR or EvtI. Such an event will therefore be

an unknown event, and the more unknown events in the

history of the computer system, the less complete the time-

line of the target computer’s activity will be. This paper

provides a means for the automated detection of inaccuracy

or incompleteness leading to chronological inconsistency in

timelines of computer activity.

In another work, Marrington et al. (2007) discussed a time-

stamp-based technique for building a timeline about a given

object in the profile of the computer system. A timeline is

a sequence over the set Evt ordered by the timestamp t of each

event where the subject or target of the event was the object

being time-lined o. Such a timeline is constructed by querying

adatabase of all the recorded events andall the inferred events

in the computer system’s history with the object being time-

lined as either the subject or target of the event, and then

ordering the results by the event timestamp. This approach is

not resilient to inaccuracies in timestamps, which may cause

events to appear out of sequence. Missing events, whether

removedmanually or simply never recorded, lead to timelines

which may present events out of the context in which they

actuallyoccurred.Consequently, thisapproachtoconstructing

timelines of computer activity must be supplemented with

1 Marrington et al. (2007) used the term “discovered events”
instead of “recorded events”. We prefer the latter term as it more
accurately describes the nature of such events.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 5 2eS 6 1 S53

http://dx.doi.org/10.1016/j.diin.2011.05.007
http://dx.doi.org/10.1016/j.diin.2011.05.007

techniques to detect and deal with inconsistency and incom-

pleteness. We note that as a general principle, the failure to

detect an inconsistency in a timeline is a greater problem for

the purposes of computer activity time-lining than falsely

identifying an event as inconsistent. This is simply because

false positives can be manually investigated and dismissed,

whereas false negatives will never receive further attention.

Nevertheless, it is obviously desirable to minimise the rate of

false positives in all detection techniques.

An obvious limitation of any time-lining activity based on

timestamps provided by a computer’s system clock is the

inaccuracy inherent in such clocks. This inaccuracy in

computer-generated timestamps is “natural”, that is to say, it

is the result of the normal operation of the computer system.

The solution for addressing this issue suggested most

frequently in the literature is to note the system clock time of

a computer under investigation at the time of its examina-

tion and to determine the discrepancy between that time and

the time of a reference clock (Boyd and Forster, 2004; Nolan

et al., 2005). However, this solution does not address the

issue of clock skew varying over time prior to the examina-

tion of the computer system, and it is this variance which

may lead to inaccuracies in timelines. Studies of large

numbers of hosts on the Internet suggest that many

computer clocks are significantly inaccurate (by a margin of

more than 10s) and that the clocks of many hosts do not

conform to the existing models of clock behaviour (Buchholz

and Tjaden, 2007). Willassen (2008a,b, 2009) proposes an

algebra for the formal expression of falsifiable hypotheses

about the discrepancy between a computer’s clock and

physical time. The term proposed for such a hypothesis is

a clock hypothesis. In practice, it would be necessary to form

a clock hypothesis for every moment in time throughout the

history of the computer system. Our tool is intended to detect

internal inconsistency in timelines. An investigator could

potentially be assisted in the formation of clock hypotheses

using the output of our tool.

3. Detecting inconsistency in timelines

This section describes the approaches our tool employs to

detect inconsistency in timelines. Inconsistency in computer

activity timelines can arise because events in the timeline are

out of sequence, or because events which should be in the

timeline are missing. The approaches we describe in this

section address both of these scenarios.

Before testing for inconsistency employing the approaches

described in this section, our tool has to perform several tasks.

First, it parses the Windows Event Logs (our tool is intended

for the examination of Windows computers, although the

approach could easily be adapted to other operating systems).

Each event in each of the three logs is normalised and stored

in a database table of recorded events. Each event is stored as

a database row including an ID, a timestamp, the user/appli-

cation which instigated the event, the object of the event, the

action of the event, and the result of the event. Second, our

tool walks the computer’s hard drive and extracts MAC

(modified-accessed-created) times and file metadata con-

taining timestamps. Third, our tool creates a table of inferred

events in the database for each of the timestamps found in the

walk of the file system. These events are normalised accord-

ing to the same pattern as recorded events extracted from

logs. The tool then has enough data to both construct

a computer activity timeline and to test it for internal

inconsistency.

3.1. Detecting out-of-sequence events

It is self-evident that there are some events which can only

take place after some other another event. This sort of relation

is described by Lamport (1978) as the happened-before relation.

Gladyshev and Patel (2005) discuss the application of the

happened-before relation to a forensic context. An example of

such a relation (represented by/) between two events would

be that a user x must log into the computer system before the

user x can execute the application y. Applied to computer

activity time-lining, the real time, if not the timestamp, of the

execution event must be after the real time of the login event.

Let x˛P, y˛A, tn˛T and tm˛T:

ðtn; x; system; login; successÞ/ðtm; x; y;execute; successÞ
0tm > tn:

After the construction of a timeline (which is a sequence over

the set Evt) in the tool’s execution process, an evaluation can

be applied to all events ordered by their timestamp. If an event

evtA has a happened-before relation to evtB, but the timestamp

(tB) of evtB suggests that evtB occurred before evtA then we can

say that tA and tB are inconsistent. In order to detect this

inconsistency, a rules base must be created which describes

the happened-before relations for the various types of events.

When the timeline is evaluated against the rules base, the

inconsistent events can be identified and assertions about

their timestamps can be made. Consider two rules:

evtA/evtB
evtB/evtC

Where x is a User object, a is an Application object, and system

is a System object representing the target computer system

itself, and:

evtA ¼ ðtA˛T; x; system; login; successÞ
evtB ¼ ðtB˛T; x;a; execute;a˛fsuccess; fail;unknowngÞ
evtC ¼ ðtC˛T; x; system; logout; successÞ:
Note that the happened-before relation is transitive (Lamport,

1978; Gladyshev and Patel, 2005):

ðevtA/evtBÞ^ðevtB/evtCÞ0evtA/evtC:

For the purposes of this example, let the time-lining function

H(x) produce a timeline corresponding to a single user session

of the user x. The first rule states that a user x must be logged

in before executing any application. The second, that user x

cannot have logged out before performing that execution. If

the execution event evtB occurs, the login event evtA must

happen-before it, and evtB must happen-before the logout event

evtC. Therefore the physical time tC at which the event evtC
must have occurred must be after the physical time tB at

which the event evtB must have occurred, which must in turn

be after the physical time tA at which the event evtA must have

occurred. This is stated:

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 5 2eS 6 1S54

http://dx.doi.org/10.1016/j.diin.2011.05.007
http://dx.doi.org/10.1016/j.diin.2011.05.007

HðxÞJfevtA; evtB; evtCg0ðtC > tB > tAÞ:
If, given the two rules evtA / evtB and evtB / evtC, it is not the

case that tC > tB > tA, then the timestamps tA, tB, and tC do not

reflect the physical times at which the events must have

occurred. The timestamps are therefore inaccurate, as they

suggest an internally inconsistent chronology. From this

example, the utility of the happened-before relation as a basis

for proposing rules for the detection of inconsistent events is

apparent. A hypothesised chronology of a computer system

can be evaluated for internal inconsistencies by testing the

hypothesised sequence of events against a set of happened-

before rules.

3.2. Detecting missing events

There are some happened-before relations where the first event

is a precondition for the second. In such relations, the pres-

ence of the second event necessarily implies the presence of

the first. In the example in Section 3.1, the login event evtA
must occur before the application execution event evtB, such

that if evtB occurred, then evtA should also have occurred. This

does not hold true for all happened-before relations, however.

This can be seen in the same example, where although the

execution event evtB must happen-before the logout event evtC
in order for evtB to happen at all, the occurrence of the logout

event evtC does not imply that evtB also happened. This is

because evtB is not a precondition for evtC. Where such

a precondition does exist, it is expressed with the predicate

“precondition”, as shown below. A second predicate,

“happened”, is employed to assert that some event occurred.

ðevtA/evtBÞ^ðhappenedðevtBÞ0happenedðevtAÞÞ
rpreconditionðevtA; evtBÞ:

Willassen (2008a,b) extends the use of the happened-before

relation of Lamport (1978), Fidge (1991) and Gladyshev and

Patel (2005) to imply causality. Willassen’s version of the

happened-before relation is therefore equivalent to the

“precondition” predicate. For the purposes of the tool we

developed, it is preferable to maintain the happened-before

relation as described by Lamport (1978), Fidge (1991) and

Gladyshev and Patel (2005), and to employ the “precondition”

predicate to imply a causal relationship. The happened-before

relation allows for the detection of events which are listed in

the timeline out of the sequence in which they must have

occurred, whereas the “precondition” predicate allows for the

detection of missing events.

If the event evtA which “happened” does not exist in either

the set of recorded events EvtR or the existing set of inferred

events EvtI, then it is a missing event. It is a missing event

because it was removed from or never recorded in the

computer system’s logs, and it was not previously inferred on

the basis of relationships and object fields. These events could

also be called inferred events, but it is convenient to preserve

a distinction between events detected using this approach and

other inferred events.

The rules base in the example in Section 3.1 can be

expanded to include all pairs of events for which the “precon-

dition” predicate is true. If an event evtx has a precondition

event specified by a rule, then the presence of the precondition

event can be inferred, even if it is absent from EvtR and EvtI.

Precondition eventswhichare absent fromEvtRandEvtI canbe

added to the set of missing events, which we call EvtM.

The new rules base, expanded from that in Section 3.1, is:

evtA/evtB
evtB/evtC
preconditionðevtA; evtBÞ
The login event evtA, the application execution event evtB, and

the logout event evtC have the same definitions as in the

previous example. The new rule states that if the event evtB
occurred in the timeline of the User object x, then the event

evtA must also have occurred. This is expressed:

ðevtB˛HðxÞÞ0happenedðevtAÞ
revtA˛EVT

rðevtA;ðEVTRWEVTIÞÞ0evtA˛EVTM:

Detecting missing events is important, as such an event may

have been deliberately deleted from system logs, which may

in itself be suspicious. Detecting that an event is missing

allows for the construction of a more complete timeline,

helping the investigator gain a more complete understanding

of the computer system. By automatically indicating that

a particular point in the timeline an event was either not

recorded or its record was deleted, such software could

provide a lead for subsequent manual investigation, which

may determine why the record is missing. If the event record

was deliberately deleted, this may indicate that the user was

attempting to conceal suspicious activity.

There are, of course, many instances where an event may

be missing as a result of non-suspicious computer activity.

Our tool infers events to describe an action by or on an object

with associated temporal data. These inferred events are

combined with events recorded in system logs in order to

provide as complete a timeline as possible. In our experi-

ments on computers running Microsoft Windows, our tool

inferred many events which occurred prior to the enabling of

many logging options in the Windows event logs. There were

therefore very few recorded events from that early time

period in the computer’s history, and thus these inferred

events were out-of-context. Such inferred events may appear

to have occurred outside of user sessions, or in an otherwise

inconsistent fashion, however, the absence of complete

information must obviously be considered in the investiga-

tor’s assessment as to whether or not the event is suspicious.

This scenario is an example of how the normal config-

uration of the computer system may make an event seem

inconsistent.

4. Detection experiments

This section describes experiments in which the approach to

detecting temporal inconsistency in user sessions described

in Section 3 was tested. We examine timelines as developed

by our prototype software in the following experiments:

� The unmodified timeline of a user session during which the

user creates a document, and does not attempt to obscure

his/her actions.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 5 2eS 6 1 S55

http://dx.doi.org/10.1016/j.diin.2011.05.007
http://dx.doi.org/10.1016/j.diin.2011.05.007

� The unmodified timeline of a user session during which the

user creates a document with deliberately misleading

authorship information.

� Modified timelines of the above two user sessionswhere the

system logs have been tampered with.

4.1. Prototype software

As mentioned in previous sections, we developed CAT Detect

in order to detect inconsistency in computer activity time-

lines. The prototype software examines the target computer

system’s file system (which is mounted read-only) and

enumerates the applications, files, and users of the target

computer system. The Windows Event Logs are parsed, and

the events described in those logs are stored as the set of

recorded events (EvtR) in the database table Recorded Events.

Finally, a set of events are inferred from the temporal data

associated with each file. These events are the inferred events

(EvtI), and are saved in a separate table in the database called

Inferred Events. After conducting this automated process, the

software prototype provides a basic interface for the purpose

of detecting temporal inconsistency in a given timeline,

shown in Fig 1.

The detection techniques described in Section 3 match the

events in a timeline against the events in each rule being

tested (as listed in Section 4.2). Programmatically, every rule is

implemented by a Java object2, and every event is imple-

mented by a Java object. Rule objects have two event objects

as fields, one called evtA and another called evtB. The objects

evtA and evtB are archetype events, against which real events

are compared. A real event is compared against the arche-

types on the basis of the fields of each. The fields of the

archetype events can have a specific value, or be null. If the

archetype has a specific value for a particular field, then any

real event which matches the archetype must have the same

value. If the archetype has a null value for a particular field, it

can match any value for the real event’s corresponding field.

The rule object can also be set to match subject and target

fields, that is to say, to require that bothmatching events have

the same subject or target field. The rule can also specify that

that the subject field of one event is the target of the other

event, or vice versa. This allows for the definition of generic

rules. Consider the following example rule, which expresses

the concept that a user object (u˛PIU) must log into the

computer system (s˛S) before modifying any file:

precondition

� ðti˛T;u; s; logon; successÞ;
ðtk˛T;u; c˛C;modified; successÞ

�
:

Fig. 1 e CAT Detect prototype for inconsistency checking.

2 We anticipate that in future versions, rules will be user-
specifiable either through a graphical interface or XML configu-
ration file. In the version used for the experiments described here,
rules were hard-coded.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 5 2eS 6 1S56

http://dx.doi.org/10.1016/j.diin.2011.05.007
http://dx.doi.org/10.1016/j.diin.2011.05.007

In the object which represented this rule, evtAwould represent

the “logon” event, and evtB would represent the “modified”

event. A Boolean field of the rule object would be set to true to

indicate that the subject of each event had to be the same

object, u. Given this, the values of the fields of the objects evtA
and evtB would be as follows:

evtA ¼ ðnull;null; s; logon; successÞ
evtB ¼ ðnull;null;null;modified; successÞ:
The prototype CAT Detect software does not yet implement

the concept of a user session. A logon or logoff event is treated

the same as any other event. This means that the user needs

to specify which events are to be treated as the beginning and

end of the user session timeline. In order to check timelines of

a computer system’s complete history, the prototype software

would need to have a concept of user session built into it. This

is an item of future work (Fig. 2).

4.2. Rules base for experiments

The software prototype incorporates a small set of rules to

check for temporal inconsistency. It provides an interface

which allows the user to specify a timeline to be checked for

inconsistency. It then checks that timeline against the rules

base. The rules built into the prototype software for the

purposes of these experiments are as follows:

preconditionðuserlogin; userlogoutÞ
preconditionðuserlogin; filecreatedÞ
preconditionðuserlogin; filemodifiedÞ
preconditionðuserlogin; filemodifiedÞ
filecreated/userlogout
filemodified/userlogout
fileaccessed/userlogout

Where x is a Principal object representing the user, y is

a Content object representing a file, system is the System

object which represents the computer system, tA through tE
are times in the history of the computer, and:

userlogin ¼ ðtA; x; system; logon; successÞ
userlogout ¼ ðtB; x; system; logoff; successÞ
filecreated ¼ ðtC; x; y; created; successÞ
filemodified ¼ ðtD; x; y;modified; successÞ
fileaccessed ¼ ðtE; x; y;opened; successÞ:
The data structures in our implementation which repre-

sented each of the archetype events in the rules base had null

values in place of the fields x, y and tA through tE. As dis-

cussed in Section 4.1, null values are wild card values in our

prototype software. Each rule had a Boolean field set to true,

which specified that the subject of every event, x, had to be

the same.

4.3. Data

In order to obtain data for these experiments, we employed

a suspect test computer running Windows XP. All system

logging options were turned on in order to give us as complete

a set of Windows Event Logs as possible. We logged onto the

computer twice for the purpose of generating two different

user sessions: the first, an “innocent” user session, and the

second, a user session in which a document was created with

misleading authorship information. The details of these two

sessions are described below.

We also wanted to explore the detection of meddling with

Windows Event Logs. For this purpose, we copied the case file

and database about the test computer system generated by

our tool, and then manually modified the database table

containing the discovered events. As these discovered events

are derived from the Windows Event Logs, the removal or

modification of recorded events in the set EvtR effectively

simulates the removal or modification of event records in the

Windows Event Logs. We removed the log-on/log-off events

from the first user session, and modified the timestamps of

these events on the second user session so that they would be

presented out of their real sequence if ordered by timestamp.

The modified timelines are described below.

5. Evaluation of detection technique

This section describes each of the timelines examined in these

experiments, and presents the results of the prototype soft-

ware’s analysis of inconsistency. There are four timelines (two

unmodified, and two modified) which correspond directly to

user sessions. Each of the timelines is a combination of the

inferred events and the recorded events in the history of the

computer system between two boundary events, ordered by

timestamp. In regards to the inferred events, it should be

noted that the software assumes that people can be assumed

to be unique by their name. This means that when the tool

extracted the author name “baddie” from some Microsoft

Word documents on the target computer, the tool assumed

that this person was the same as the user “baddie”.

5.1. Timeline A: normal user session

Timeline A was a normal user session during which a Micro-

soft Word document was created. The user “baddie” logged

into the computer system at 6:47pm on 9 October 2008, and

created the file “invoice.doc” at 6:51pm. The user then

browsed the Internet for a few minutes and logged off at

6:59pm. Nothing suspicious happened in the user session. The

timeline consisted of all of the events which took place during

the user session, both recorded and inferred. Our software

inserted these events into its event database during its auto-

mated examination of the target system.

evtA = (null, null, s, “logon”, “success”)
evtB = (null, null, null, “modified”, “success”)

rule = evtA happened-before evtB

where field 2 of evtA == x
and where field 2 of evtB == x

for each evt in H(x)
if evt = (*, x, s, “logon”, “success”)

a = index of evt
if evt = (*, x, *, “modified”, “success”)

b = index of evt
next evt

if a > b then
rule has been broken

Fig. 2 e Example inconsistency detection.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 5 2eS 6 1 S57

http://dx.doi.org/10.1016/j.diin.2011.05.007
http://dx.doi.org/10.1016/j.diin.2011.05.007

Most events in timeline A were discovered events (i.e.

discovered in the Windows Event Logs), however, the events

with “CREATED”, “MODIFIED” or “OPENED” as their actions

were inferred events (i.e. inferred on the basis of an object, its

relationships, or other information about the object).

An inconsistency check of timeline A against the rules

provided in Section 4.2 demonstrated no inconsistencies. The

results of the analysis of timeline A were as expected.

5.2. Timeline B: deliberate misattribution of authorship

Timeline B was a user session during which the user created

a Microsoft Word document with misleading authorship

information, in an effort to shift responsibility for that docu-

ment to an innocent third party. The user “crook” logged into

the computer system at 7:04pm on 9 October 2008, and at

8:15pm a Word document was created with “baddie” as the

listed author. The user “crook” then logged off.

Timeline B was analysed for inconsistency with our proto-

type software. Table 1 shows the inconsistent events detected

in this timeline along with the rule from our rules base which

were broken by each event. These events all related to the

authorship of the Word document “WORDDOC letter from

baddie to nefarious.doc14850080”. The “baddie” user was not

logged in at the time theWord document was created, and yet

the author field listed “baddie” as the document’s author.

Therefore, “baddie” could not have been the author of

“WORDDOC letter from baddie to nefarious.doc14850080”.

It can be seen in Table 1 that there are two sets of

“CREATED” events for both the suspect Word document and

its template. This is because there are two sources of infor-

mation which lead the prototype software to inferring such

an event. The earlier timestamp is obtained from the Word

document’s metadata, and is the time at which the docu-

ment was first created in Microsoft Word. The later time-

stamp is obtained from the target computer’s file system, and

is the time at which the document was first saved as a file on

the disk. Both sets of “CREATED” events derive their subject

field from the same source, the Word document’s author

field.

5.3. Timeline C: user session with logon/logoff events
deleted

Timeline C was derived from timeline A. The recorded and

inferred events table in the prototype software’s events data-

base were copied and manually modified. The resulting time-

line, timeline C, was identical to timeline A without the logon/

logoff events. The removal of these two discovered events left

user activity outside of a logon/logoff-bound user session.

The prototype software’s temporal inconsistency check

listed all of the inferred events with “USER baddie27660658” as

the subject as inconsistent. These events were all listed as

inconsistent on the basis of violating precondition rules with

a user login event as the precondition. The inconsistent

events from timeline C are listed in Table 2. These results were

as expected. This demonstrates that removing user session

information from the Windows Event Log will draw attention

to the inferred events which took place during the session.

5.4. Timeline D: user session with modified timestamps

Timeline D was derived from timeline A, with the timestamp

of the user’s logoff event deliberately modified so as to appear

to have taken place prior to the creation of the “WORDDOC

invoice.doc19509473” document. The timestamp of “USER

Table 1 e The inconsistent events detected in timeline B and the rules they violated.

Time Subject Target Action Rule

9/10/08 20:13:00 USER baddie27660658 WORDDOC letter from baddie to

nefarious.doc14850080

CREATED precondition(userlogin, filecreated)

9/10/08 20:13:00 USER baddie27660658 WORDDOC Normal.dot20348456 CREATED precondition(userlogin,filecreated)

9/10/08 20:15:21 USER baddie27660658 WORDDOC letter from baddie

to nefarious.doc14850080

MODIFIED precondition(userlogin, filemodified)

9/10/08 20:15:21 USER baddie27660658 WORDDOC letter from baddie

to nefarious.doc14850080

OPENED precondition(userlogin, fileaccessed)

9/10/08 20:15:23 USER baddie27660658 WORDDOC letter from baddie

to nefarious.doc14850080

CREATED precondition(userlogin, filecreated)

9/10/08 20:15:23 USER baddie27660658 WORDDOC Normal.dot20348456 CREATED precondition(userlogin, filecreated)

9/10/08 20:15:23 USER baddie27660658 WORDDOC Normal.dot20348456 MODIFIED precondition(userlogin, filemodified)

9/10/08 20:15:23 USER baddie27660658 WORDDOC Normal.dot20348456 OPENED precondition(userlogin, fileaccessed)

Table 2 e Inconsistent events detected in timeline C, as a result of the login precondition not being met.

Time Subject Target Action Rule

9/10/2008 18:50:46 USER baddie27660658 WORDDOC invoice.doc19509473 MODIFIED precondition(userlogin, filemodified)

9/10/2008 18:50:46 USER baddie27660658 WORDDOC invoice.doc19509473 OPENED precondition(userlogin, fileaccessed)

9/10/2008 18:51:49 USER baddie27660658 WORDDOC Normal.dot3981922 CREATED precondition(userlogin, filecreated)

9/10/2008 18:51:49 USER baddie27660658 WORDDOC Normal.dot3981922 MODIFIED precondition(userlogin, filemodified)

9/10/2008 18:51:49 USER baddie27660658 WORDDOC Normal.dot3981922 OPENED precondition(userlogin, fileaccessed)

9/10/2008 18:51:49 USER baddie27660658 WORDDOC invoice.doc19509473 CREATED precondition(userlogin, filecreated)

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 5 2eS 6 1S58

http://dx.doi.org/10.1016/j.diin.2011.05.007
http://dx.doi.org/10.1016/j.diin.2011.05.007

baddie27660658”’s logoff was changed from 18:59:37pm to

18:51:23pm.

The prototype software’s inconsistency check of timelineD

listed “USER baddie27660658”’s logoff event as inconsistent, as

shown in Table 3. The event was listed as breaking three rules,

all of which ultimately assert that if a file ismodified, accessed

or created, it must be modified, accessed or created prior to

the user logging out of the computer system.

The results of the analysis of timeline D were just as ex-

pected. The detection of this event demonstrates the suit-

ability of this approach to detecting events whose timestamps

are modified.

5.5. Discussion of results

The results of the experiments demonstrate that automati-

cally detecting temporal inconsistency in computer activity

timelines constructed from realistic data is possible using our

tool. These experiments applied a simple rules set to

a computer system’s activity timeline, and the results

demonstrate that inconsistency can be detected in several

basic scenarios. The happened-before relation and the precon-

dition predicate can be used together to construct effective

rules to draw an investigator’s attention to suspicious events.

Timeline B demonstrated that such rules can be applied to

detect an event (in this case, the creation of a document)

initiated by a different user than first suggested by the file

system. Timeline C showed that the deletion of system log

entries pertaining to important events can be detected. If the

deleted events are preconditions for other events, which are

recorded or inferred, then they can be detected. Timeline D

demonstrated that, by applying a rational set of rules in an

automated analysis of a timeline, events can be detected

which should have occurred in another sequence than their

timestamps suggest.

The experiment’s use of data from a computer system

demonstrated that this approach to detecting temporal

inconsistency is robust enough to be tested in real cases. The

logical next step will be to perform experiments with CAT

Detect using real case data, which will test the robustness and

suitability of the approach with regards to real digital inves-

tigations. The noise in real event data is a lesser problem to

a software tool than it is to a human investigator. By distilling

event records down to the most important fields which are

common to most events, our approach reduces the

complexity and heterogeneity of the various types of events.

This makes the testing of a set of simple logical predicates

(such as the rules base employed in the experiments,

described in Section 4.2) against a timeline of recorded and

inferred events relatively straightforward. The results of these

experiments demonstrate that this method of testing for

inconsistency in timelines is effective in practical computer

systems. Further experimentation, as noted in the futurework

section below, will be necessary to determine whether this

effectiveness extends to real investigations.

6. Limitations

As acknowledged at several points throughout this paper, the

CAT Detect software has several limitations. We hope that

these limitations will be addressed in future versions of the

CAT Detect software.

The most serious of these limitations is the CAT Detect

prototype software’s inability to automatically detect user

sessions. This requires the user to provide the boundaries (i.e.

first and last event) of the computer activity timeline whose

consistency they wish to evaluate. This is a serious limitation

as it requires the investigator to have some knowledge, at

least with respect to the period, of the event under investi-

gation. If this limitation could be overcome and CAT Detect

could identify user sessions itself, then it could be used to

assess entire computer histories for inconsistency with no

prior knowledge.

The experiments described in this paper were limited as

they were not conducted using data from real cases. Instead,

the experiments were conducted using a simplistic test

scenario performed on a test machine as a “case”. Although

CAT Detect performed well in this case, we are not yet able to

validate its robustness or reliability with respect to real cases.

Further, our experiments using the data from the test

machine were limited in their extent only to the operating

system and software installed on that machine (Windows XP,

Microsoft Office 2007, and other common “office computer”

software). Results with newer versions of Windows or non-

Windows operating systems may vary. Further testing with

different data sets is required. This further testing will allow

investigators to establish confidence in the CAT Detect tool.

It is hoped that these limitations will be addressed by the

future work described in Section 7 below, and through the

release of the CAT Detect prototype as free and open source

software. We hope that publicly releasing CAT Detect as open

source software will achieve two things. First, we hope that

CATDetect will attract a community of users whowill use it in

a variety of cases and provide feedback. Second, we hope that

CAT Detect will attract contributions from developers and

researchers to address the tool’s shortcomings and improve

upon its functionality.

7. Future work

CAT Detect is still in the research in progress phase. There are

five main areas in which we hope to improve CAT Detect.

Primarily, we hope to create an interface in which rules for

inconsistency can be created and saved in a configuration file.

These rules can then be shared amongst investigator

communities so they can use them during their investigative

process using the CAT Detect tool.

Table 3 e The inconsistent event in timeline D, which
was detected on the basis of breaking three rules. The
target of the event is the system.

Time Subject Action Rules

9/10/2008

18:51:23

USER

baddie

27660658

LOGOFF filecreated / userlogout,

filemodified / userlogout,

fileaccessed / userlogout

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 5 2eS 6 1 S59

http://dx.doi.org/10.1016/j.diin.2011.05.007
http://dx.doi.org/10.1016/j.diin.2011.05.007

Second, we hope to build an automaticWindows Event Log

parser into CAT Detect to speed-up the overall process of

acquiring Event Log data, and improve the quality of this data.

This is primarily a development activity as opposed to

a research one.

Third, we hope to improve CAT Detect so that the software

can automatically detect user sessions. At the moment, the

prototype software requires the user to specify the bounds (i.e.

start and finish) of a user session before it is able to check the

timeline of that session for internal consistency.

Fourth, we hope to extend the CAT Detect process and

software to construct and consistency-check timelines of

computers running non-Windows operating systems.We also

would like to test and refine CAT Detect with data from

Windows Vista and Windows 7 computers, and compare the

results compared to otherwise similar cases where the

computer involved ran Windows XP.

Lastly, and perhaps most importantly, in order to further

validate and improve CAT Detect, it is important to conduct

experiments on known cases which involve some timeline

inconsistencies. We are particularly interested to test the

robustness of the CAT Detect approach in real cases involving

deliberate tampering. This can help validate our proposed

method with relation to real-life scenarios.

8. Conclusion

Inconsistencies in a computer activity timeline can compro-

mise the value of the timeline as an investigative tool. If an

investigator accepts the original digital evidence from the

target computer system uncritically, a time-lining tool may

produce a history of the computer system which is unusable

as a result of inaccuracy. Perhaps worse, the investigator may

fall victim to an adversary’s deliberate modification of system

logs and other temporal data, and create a misleading history

of the adversary’s own devising.

We have developed a tool, implementing techniques for

detecting contradictory and missing events in the history of

the computer system. Our experiments with this software

demonstrate that the techniques we have proposed can be

used successfully to detect temporal inconsistencies in

a computer activity timeline. The automatic detection of

inconsistencies which might indicate deliberate tampering

could assist a human investigator in a subsequent manual

examination of the system.

r e f e r e n c e s

Boyd C, Forster P. Time and date issues in forensic computing e

a case study. Digital Investigation; 2004:18e23.
Buchholz F, Tjaden B. A brief study of time. Digital Investigation

2007;4:31e42.
Fidge C. Logical time in distributed computing systems. Computer

1991;vol. 24:28e33.
Gladyshev P, Patel A. “Formalising event time bounding in digital

investigations. International Journal of Digital Evidence 2005;
vol. 4.

Lamport L. “Time, clocks, and the ordering of events in
a distributed system. Communications of the ACM 1978;21:
558e65.

Marrington A, Mohay G, Clark A, Morarji H. Event-based
computer profiling for the forensic reconstruction of computer
activity. In: AusCERT Asia Pacific Information Technology
Security Conference 2007 Refereed R&D Stream, Gold Coast;
2007. p. 71e87.

Marrington A, Mohay G, Morarji H, Clark A. A Model for Computer
Profiling. In: Third International Workshop on Digital
Forensics at the International Conference on Availability,
Reliability and Security, Krakow; 2010. p. 635e640.

Nolan R, O’Sullivan C, Branson J, Waits C. First responder’s guide
to computer forensics. Pittsburgh: Software Engineering
Institute, Carnegie Mellon University; 2005.

Schatz B, Mohay G, Clark, A. A correlation method for
establishing provenance of timestamps in digital evidence. In:
Digital Investigation e The Proceedings of the 6th Annual
digital forensic research workshop (DFRWS ’06), vol. 3; 2006/9.
p. 98e107.

Willassen SY. Hypothesis-based investigation of digital
timestamps. In: Advances in Digital Forensics IV, vol. 285.
Boston: Springer; 2008a. p. 75e86.

Willassen SY. Timestamp evidence correlation by model based
clock hypothesis testing. In: Proceedings of the 1st
international conference on forensic applications and
techniques in telecommunications, information, and
multimedia and workshop. Adelaide, Australia: ICST (Institute
for computer sciences, social-Informatics and
Telecommunications Engineering); 2008b.

Willassen SY. A model based approach to timestamp evidence
interpretation. International Journal of Digital Crime and
Forensics 2009;1:1e12.

Dr. Andrew Marrington is an Assistant Professor at the College of
Information Technology at Zayed University. Digital forensics is
his primary field of research, although he is also interested in
other aspects of information security. He is the primary
researcher in the Advanced Cyber Forensics Research Laboratory
at Zayed University’s Dubai campus. He teaches in a range of
forensics, security and general computer science courses at the
undergraduate and graduate level. Prior to taking up his present
position, Andrew was a Research Fellow at the Information
Security Institute at Queensland University of Technology.

Dr. IbrahimBaggili received his PhDwith emphasis in Information
Assurance and Cyber Forensics at Purdue University, West Lafay-
ette, IN, USA. He was also a researcher at CERIAS (The Center for
Educational Research and Education in Information Assurance).
Currently, Ibrahim Baggili is an Assistant Professor at Zayed
University in Abu Dhabi, UAE, at the College of Information Tech-
nology, at which he established and directs the first Advanced
Cyber Forensics Research Laboratory in the Arab world. He
consults, conducts research, trains and teaches in the areas of
Information Assurance, Computer Forensics, Small Scale Digital
Device Forensics, Penetration Testing and Network Forensics.
Ibrahim has trained and consulted in both the private and public
sectors. Besides his research interests in technical matters, he is
also keen on studying the social and psychological aspects of cyber
crime. Ibrahim is also on the editorial boards of journals. He has
alsoheld thegeneral chair positionof the International Conference
on Digital Forensics and Cyber Crime (ICDF2C ewww.d-forensics.
org) in 2010, and is now on the steering committee of that inter-
national conference. To learn more about Ibrahim’s work, and to
get in touch with him you can visit http://baggili.weebly.com.

Dr. George Mohay is an Adjunct Professor in the Information
Security Institute at the Queensland University of Technology,

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 5 2eS 6 1S60

http://www.d-forensics.org
http://www.d-forensics.org
http://baggili.weebly.com
http://dx.doi.org/10.1016/j.diin.2011.05.007
http://dx.doi.org/10.1016/j.diin.2011.05.007

Brisbane, Australia. Prior to this he was Head of the School of
Computing Science and Software Engineering from 1992 to
2002. His current research interests lie in the areas of computer
security, intrusion detection, and computer forensics. He has
worked as a visiting researcher while on sabbatical leave at
Stanford University in 1981, Loughborough University in 1986,
Bristol University in 1990 and the Australian National Univer-
sity in 2000. He graduated BSc (Hons) (UWA) in 1966 and PhD
(Monash) in 1970, and is a member of the ACM and of the IEEE
Computer Society. He supervises PhD and Masters students in
the above areas and is involved as chief investigator in
a number of related funded research projects. His publications
include the book Computer and Intrusion Forensics. He is

a program committee member for a number of international
conferences.

Dr. Andrew Clark is an Adjunct Professor at the Information
Security Institute at Queensland University of Technology (QUT).
Prior to his becoming adjunct, he was a Deputy Director of QUT’s
Information Security Institute where he led a team of researchers
investigating various aspects of network security and computer
forensics. His current research interests lie in the fields of intru-
sion detection, fraud detection and network forensics. He is the
author of over 70 academic publications covering various aspects
of information security and is currently supervising numerous
postgraduate research students in related areas.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 5 2eS 6 1 S61

http://dx.doi.org/10.1016/j.diin.2011.05.007
http://dx.doi.org/10.1016/j.diin.2011.05.007

	CAT detect (computer activity timeline detection): A tool for detecting inconsistency in computer activity timelines
	Recommended Citation

	 CAT Detect (Computer Activity Timeline Detection): A tool for detecting inconsistency in computer activity timelines
	1 Introduction
	2 Related work
	3 Detecting inconsistency in timelines
	3.1 Detecting out-of-sequence events
	3.2 Detecting missing events

	4 Detection experiments
	4.1 Prototype software
	4.2 Rules base for experiments
	4.3 Data

	5 Evaluation of detection technique
	5.1 Timeline A: normal user session
	5.2 Timeline B: deliberate misattribution of authorship
	5.3 Timeline C: user session with logon/logoff events deleted
	5.4 Timeline D: user session with modified timestamps
	5.5 Discussion of results

	6 Limitations
	7 Future work
	8 Conclusion
	 References

