
Zayed University Zayed University 

ZU Scholars ZU Scholars 

All Works 

3-8-2019 

Cationic antimicrobial peptides: Alternatives and/or adjuvants to Cationic antimicrobial peptides: Alternatives and/or adjuvants to 

antibiotics active against methicillin-resistant Staphylococcus antibiotics active against methicillin-resistant Staphylococcus 

aureus and multidrug-resistant Pseudomonas aeruginosa aureus and multidrug-resistant Pseudomonas aeruginosa 

Regina Geitani 
Saint Joseph University 

Carole Ayoub Moubareck 
Saint Joseph University 

Lhousseine Touqui 
Faculté de Médecine Paris Descartes 

Dolla Karam Sarkis 
Saint Joseph University 

Follow this and additional works at: https://zuscholars.zu.ac.ae/works 

 Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons 

Recommended Citation Recommended Citation 
Geitani, Regina; Ayoub Moubareck, Carole; Touqui, Lhousseine; and Karam Sarkis, Dolla, "Cationic 
antimicrobial peptides: Alternatives and/or adjuvants to antibiotics active against methicillin-resistant 
Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa" (2019). All Works. 844. 
https://zuscholars.zu.ac.ae/works/844 

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All 
Works by an authorized administrator of ZU Scholars. For more information, please contact 
Yrjo.Lappalainen@zu.ac.ae, nikesh.narayanan@zu.ac.ae. 

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F844&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=zuscholars.zu.ac.ae%2Fworks%2F844&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=zuscholars.zu.ac.ae%2Fworks%2F844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/844?utm_source=zuscholars.zu.ac.ae%2Fworks%2F844&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Yrjo.Lappalainen@zu.ac.ae,%20nikesh.narayanan@zu.ac.ae


RESEARCH ARTICLE Open Access

Cationic antimicrobial peptides: alternatives
and/or adjuvants to antibiotics active
against methicillin-resistant Staphylococcus
aureus and multidrug-resistant Pseudomonas
aeruginosa
Regina Geitani1* , Carole Ayoub Moubareck1,2, Lhousseine Touqui3† and Dolla Karam Sarkis1†

Abstract

Background: Methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa are
becoming difficult to treat with antibiotics whereas Cationic Antimicrobial Peptides (CAMPs) represent promising
alternatives. The effects of four CAMPs (LL-37: human cathelicidin, CAMA: cecropin(1–7)-melittin A(2–9) amide,
magainin-II and nisin) were investigated against clinical and laboratory S. aureus (n = 10) and P. aeruginosa (n = 11)
isolates either susceptible or resistant to antibiotics. Minimal Inhibitory Concentrations (MICs), Minimal Bactericidal
Concentrations (MBCs), and bacterial survival rates (2 h post-treatment) were determined by microbroth dilution.
The antipseudomonal effects of the antibiotics colistin or imipenem combined to LL-37 or CAMA were also studied.
The toxicity of CAMPs used alone and in combination with antibiotics was evaluated on two human lung epithelial
cell lines by determining the quantity of released cytoplasmic lactate dehydrogenase (LDH). Attempts to induce
bacterial resistance to gentamicin, LL-37 or CAMA were also performed.

Results: The results revealed the rapid antibacterial effect of LL-37 and CAMA against both antibiotic susceptible
and resistant strains with almost a total reduction in bacterial count 2 h post-treatment. Magainin-II and nisin were
less active against tested strains. When antibiotics were combined with LL-37 or CAMA, MICs of colistin decreased
up to eight-fold and MICs of imipenem decreased up to four-fold. Cytotoxicity assays revealed non-significant LDH-
release suggesting no cell damage in all experiments. Induction of bacterial resistance to LL-37 was transient,
tardive and much lower than that to gentamicin and induction of resistance to CAMA was not observed.

Conclusion: This study showed the potent and rapid antibacterial activity of CAMPs on both laboratory and clinical
isolates of S. aureus and P. aeruginosa either susceptible or resistant to antibiotics. Most importantly, CAMPs
synergized the efficacy of antibiotics, had non toxic effects on human cells and were associated with transient and
low levels of induced resistance.

Keywords: Methicillin-resistant Staphylococcus aureus, Multidrug-resistant Pseudomonas aeruginosa, Cationic
antimicrobial peptides, Alternative to antibiotics
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Introduction
Infections associated with methicillin-resistant Staphylo-
coccus aureus (MRSA) and multidrug-resistant Pseudo-
monas aeruginosa (MDRPA) are becoming difficult to
treat due to limited therapeutic options and are requir-
ing alternative antimicrobial strategies [1, 2]. MRSA and
MDRPA are part of the world health organization
(WHO) list of the families of bacteria posing the greatest
threat to human health and for which new drugs are ur-
gently needed [3].
MRSA is constitutively resistant to all ß-lactam antibi-

otics except cefotetan and ceftaroline due to the mecA
gene encoding penicillin binding protein PBP2a with a
significantly reduced affinity to ß-lactams, rendering
these antibiotics ineffective [4]. While several agents in-
cluding daptomycin, linezolid, tigecycline, and quinu-
pristin/dalfopristin show a certain efficacy against
MRSA, vancomycin remains the drug of choice for the
treatment of MRSA [5]. Unfortunately,
vancomycin-resistant Staphylococcus aureus (VRSA)
strains have been reported for 15 years and
vancomycin-dependent Staphylococcus aureus (VDSA)
have even been described later [6, 7] proving that sur-
veillance of MRSA-associated hospital and community
infections is a serious challenge worldwide [8, 9].
The incidence of hospital acquired infections due to

MDRPA, strains defined as non-susceptible to at least
one agent in three or more antimicrobial categories [10],
has increased and led to high morbidity and mortality in
healthcare settings [11, 12]. P. aeruginosa infections are
often severe, life threatening and difficult to treat be-
cause of the limited susceptibility to antimicrobial agents
due to the numerous mechanisms of resistance that this
organism has accumulated [13]. Multiple studies have
demonstrated that resistance to carbapenems, aminogly-
cosides, and fluoroquinolones, the remaining antibiotics
with activity against this Gram-negative bacilli, has crit-
ically increased during the past few years [11, 14].
The search for more sophisticated systems to effect-

ively treat multidrug-resistant (MDR) bacteria is essen-
tial. Cationic Antimicrobial Peptides (CAMPs) appear to
be promising candidates to overcome resistance [15–17].
CAMPs are a large group of low molecular weight nat-
ural peptides that play a major role in innate immunity
of most living organisms [17, 18]. More than 2400
CAMPs (see Antimicrobial Peptide Database: http://
aps.unmc.edu/AP/main.php) have been identified in
various species ranging from insects to plants and ani-
mals including humans [19]. These agents have a broad
spectrum of activity; they exhibit a rapid action against
both Gram-positive and Gram-negative bacteria, fungi,
viruses, and parasites [17, 20]. Furthermore, CAMPs
play a major modulatory role in the innate immune re-
sponse and support wound healing [21, 22]. Compared

to conventional antibiotics, CAMPs cause the death of
bacteria quickly by involving many bacterial targets [23].
Mechanisms of action of these peptides vary dramatically;
they can either exhibit direct antimicrobial activity or exert a
mediator function [24]. CAMPs display a direct activity by
disrupting the plasma membrane and/or act on specific
intracellular targets to inhibit DNA, RNA or protein synthe-
sis processes, to inactivate essential intracellular enzymes, or
to disrupt the plasma membrane formation and cell wall
synthesis [25, 26]. One of the major advantages of these pep-
tides lies in their action on both antibiotic susceptible (AS)
and MDR bacterial strains [27]. It has been also demon-
strated that the efficacy of conventional antibiotics could be
further boosted through combination with CAMPs and
some studies revealed synergistic relationships between anti-
biotics and CAMPs [20, 28].
The purpose of this study was to investigate the in

vitro antibacterial activities of four CAMPs against clin-
ical and laboratory strains of S. aureus and P. aerugi-
nosa. We explored the effects of these peptides against
both methicillin-susceptible and -resistant S. aureus as
well as AS and MDRPA strains alone and in combin-
ation with antibiotics. The toxicity of antibiotics and
CAMPs combinations was evaluated on two human cell
lines. The ability of these peptides to induce resistance
was also assessed.
This work was, in part, presented orally at the ECC-

MID 2018 congress (European Congress of Clinical
Microbiology and Infectious Diseases) in Madrid, Spain
(April, 21–24; presentation number O0253).

Results
In vitro antibacterial activity of CAMPs
The in vitro activities of CAMPs LL-37, CAMA,
magainin-II and nisin against all S. aureus and P. aerugi-
nosa are summarized in Table 1. The MIC values ob-
tained were between 2 and > 128 μg/ml. Among the four
CAMPs, CAMA had the lowest MICs against both
Gram-positive and Gram-negative bacteria, with values
ranging between 2 to 8 μg/ml for all tested strains and
no major statistical differences between Methicillin-
susceptible S. aureus (MSSA) and MRSA as well as AS
and MDRPA (P = 1.000 for S. aureus and P = 0.545 for P.
aeruginosa). One clinical MSSA was susceptible to
CAMA with an MIC of 2 μg/ml. LL-37 was more effi-
cient on P. aeruginosa than S. aureus; its MICs varied
between 32 and 64 μg/ml for both AS and MDRPA with
no significant statistical differences (P = 0.242). Besides,
magainin-II and nisin displayed MICs higher than
128 μg/ml for all S. aureus and P. aeruginosa except for
two clinical AS P. aeruginosa with MICs of magainin-II
equal to 128 μg/ml. As shown in Table 1, there were no
major differences between MBCs and MICs of the
CAMPs tested. MBC values, in the majority of cases,
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were equal to MIC values. In the cases where they were
different, MBC values were only two-fold higher than
the MICs.

Colony count 2 h post-treatment
The antibacterial activity of LL-37, CAMA, magainin-II
and nisin against tested bacteria was assessed 2 h
post-treatment. The killing efficacies of various concentra-
tions of each peptide are shown in Fig. 1a for S. aureus
and Fig. 1b for P. aeruginosa. As shown in Fig. 1a, 2 μg/ml
of CAMA resulted in a decrease of approximately 2- to
3-log10 of MSSA and MRSA counts respectively with no
statistical difference between both groups (P = 0.431). Al-
most a total reduction in bacterial viability was observed
at 4 μg/ml of this peptide for both MSSA and MRSA and
no statistical difference was obtained between both groups
(P = 0.141). In contrast, LL-37, magainin-II and nisin had
no killing effects on S. aureus. As for P. aeruginosa, LL-37
and CAMA were found to have significant killing ability
at 32 and 4 μg/ml respectively, for both AS and MDRPA
strains (Fig. 1b). LL-37 killing efficacy was statistically
slightly higher on AS than on MDRPA strains while no
statistical differences between both groups were observed
for CAMA (P = 0.042 for LL-37, P = 0.169 for CAMA).
Magainin-II and nisin were almost ineffective on both AS
and MDRPA strains. The bacterial reduction at 128 μg/ml
of magainin on AS strains was due to the susceptibility of
two clinical P. aeruginosa strains at this tested concentra-
tion. Even though magainin-II showed bactericidal activity
on two AS P. aeruginosa at 128 μg/ml, this efficacy was
not statistically significant compared to that on MDRPA
strains (P = 0.055).

Activities of CAMPs and antibiotics combinations against
P. aeruginosa
The activity of the two most active peptides LL-37 and
CAMA were evaluated in combination with colistin and
imipenem against three clinical isolates P. aeruginosa
AS1 susceptible to all tested ß-lactams, P. aeruginosa

MDRPA1 intermediately resistant to imipenem with a
MIC equal to 32 μg/ml and P. aeruginosa MDRPA2
strongly resistant to imipenem with a MIC greater than
128 μg/ml. The variations in MICs of tested combina-
tions with peptides are indicated in Fig. 2. When antibi-
otics were combined with 1/10 ×MIC of LL-37, MICs of
colistin decreased by four-fold for P. aeruginosa AS1
and MDRPA1 and by eight-fold for MDRPA2 while
MICs of imipenem decreased by two-fold for AS1 and
MDRPA1 and remained greater than 128 μg/ml for
MDRPA2. When combined with 1/5 ×MIC of LL-37,
MIC of colistin for P. aeruginosa AS1 decreased by
eight-fold and MIC of imipenem decreased by four-fold
for MDRPA1. As for strain MDRPA2, the combination
of imipenem with 1/5 ×MIC of LL-37 decreased the
MIC value of this antibiotic to 128 μg/ml. The decrease
in MICs due to the combination of colistin with 1/10
and 1/5 ×MIC of LL-37 was statistically significant
(P-values equal to 0.047 and 0.034 respectively). When
antibiotics were combined with 1/10 ×MIC of CAMA,
the MIC of colistin decreased by two-fold for one strain
(AS1) out of the three strains while no decrease in the
MICs of imipenem was observed. When combined with
1/5 ×MIC of CAMA, MICs of colistin decreased by
two-fold for P. aeruginosa MDRPA1 and four-fold for P.
aeruginosa AS1 and MIC of imipenem decreased by
two-fold for the susceptible strain.

Synergy studies
To confirm the synergistic activity of antibiotics and
CAMPs combinations, checkerboard assays were assessed.
The calculated Fractional inhibitory concentration index
(FICI) for the tested strains using all the combinations are
shown in Table 2. The results indicated synergism be-
tween colistin and LL-37 for all the tested strains, either
AS or MDRPA, with FICIs < 0.5. For the combination of
colistin and CAMA, all three strains showed additive ef-
fects with FICIs between 0.5 and 1.5. As for the combin-
ation of imipenem and LL-37, only P. aeruginosa

Table 1 In vitro antibacterial activity of cationic antimicrobial peptides against methicillin-resistant and -susceptible S. aureus, and
antibiotic susceptible and multidrug-resistant P. aeruginosa

CAMPs S. aureus (number) MIC (μg/ml) MBC (μg/ml) P. aeruginosa (number) MIC (μg/ml) MBC (μg/ml)

LL-37 MSSA (5) > 128 > 128 AS (6) 32-64 32-64

MRSA (5) > 128 > 128 MDRPA (5) 32-64 32-64

CAMA MSSA (5) 2-4 4 AS (6) 4-8 4-8

MRSA (5) 4 4 MDRPA (5) 4-8 4-8

Magainin-II MSSA (5) > 128 > 128 AS (6) 128- > 128 128- > 128

MRSA (5) > 128 > 128 MDRPA (5) > 128 > 128

Nisin MSSA (5) > 128 > 128 AS (6) > 128 > 128

MRSA (5) > 128 > 128 MDRPA (5) > 128 > 128

AS antibiotic susceptible, CAMPs cationic antimicrobial peptides, MDRPA multidrug-resistant Pseudomonas aeruginosa, MRSA methicillin-resistant Staphylococcus
aureus, MSSA methicillin-susceptible Staphylococcus aureus
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MDRPA1 showed synergy (FICI = 0.375) while the two
remaining strains showed additive results. For the com-
bination of imipenem and CAMA, P. aeruginosa AS1 and
P. aeruginosa MDRPA2 showed additive results (0.5 <
FICI ≤ 1.5), while P. aeruginosa MDRPA1 showed indiffer-
ence (FICI = 2).

Percentage of cytotoxicity
CAMPs (LL-37 and CAMA) were screened for their
cytotoxicity when given alone and in combination with
antibiotics (colistin and imipenem), based on the LDH
release from the cytosol of IB3–1 and A549 cell lines 24
and 48 h post-treatment. When tested alone, both
CAMPs were not associated with a cytotoxicity effect on
both cell lines. Cytotoxicity % were equal to 4.7 and
4.3% for LL-37 (64 μg/ml) and CAMA (16 μg/ml) re-
spectively on IB3–1 at 48 h of treatment. As for A549,
cytotoxicity % were equal to 3.4% for both LL-37 and

CAMA at 48 h. When combined to antibiotics (Fig. 3),
all the obtained percentages were less than 5% and the
cytotoxicity % of the tested combinations were not sig-
nificantly different than those obtained for cells treated
with antibiotics or CAMPs alone (P > 0.05). A low effect
was noticed on A549 cells for imipenem and CAMA
combination 48 h post-treatment. Our results showed
that the tested concentrations of LL-37 and CAMA, as
well as the tested combinations, had minimal cytotoxic
effects on both IB3–1 and A549 cell lines 24 and 48 h
post-treatment.

Resistance studies
The reference strain P. aeruginosa ATCC® 27853™ and the
clinical P. aeruginosaMDRPA1 were treated daily with gen-
tamicin, LL-37, and CAMA at a concentration equal to half
the MIC of each agent. The weekly changes in MICs are
shown in Fig. 4a, b and c for gentamicin, LL-37, and

(See figure on previous page.)
Fig. 1 In vitro antibacterial activity of LL-37, CAMA, Magainin-II and Nisin 2 h post-treatment a. impact on methicillin-susceptible and -resistant S.
aureus; b. impact on antibiotic susceptible and multidrug-resistant strains of P. aeruginosa. The X-axis represents various concentrations of each peptide
in μg/ml and the Y-axis represents logarithmic bacterial count. AS: antibiotic susceptible; CFU: colony-forming unit; MDRPA: multidrug-resistant
Pseudomonas aeruginosa; MRSA: methicillin-resistant Staphylococcus aureus; MSSA: methicillin-susceptible Staphylococcus aureus

Fig. 2 MIC (μg/ml) variations of colistin and imipenem alone or in combination with 1/10 and 1/5 the MICs of LL-37 and CAMA against three
clinical isolates of P. aeruginosa. AS: antibiotic susceptible, MDRPA: multidrug-resistant Pseudomonas aeruginosa. *P < 0.05
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CAMA respectively. After 28 passages, the MICs of genta-
micin increased by eight-fold for both strains (Fig. 4a),
while the MICs of LL-37 increased by two-fold for the ref-
erence strain and by four-fold for P. aeruginosa MDRPA1
(Fig. 4b). Serial treatments with CAMA had no significant
effect on the MICs of this peptide (Fig. 4c).
Gentamicin-induced resistance occurred at week 1 for both
reference and clinical strains (Fig. 4a). LL-37-induced resist-
ance appeared at week 3 for the clinical strain and at week
4 for the reference strain. LL-37 resistance was transient
since a single passage of the resistant strains in the absence

of peptide led to a decrease of the MICs by two-fold (Fig.
4b). In contrast, gentamicin-induced resistance in both
strains persisted after a single passage without the antibiotic
(Fig. 4a).

Discussion
Antibacterial activities of CAMPs are becoming the
focus of numerous studies due to their high potency and
rapidity in destroying bacterial cells [17, 19]. We have
investigated the in vitro activity of four CAMPs against
MSSA and MRSA, and AS and MDRPA strains. The
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Fig. 3 LDH-based cytotoxicity percentages of colistin, imipenem, LL-37, CAMA and antibiotic/CAMP combinations on IB3–1 and A549 cell lines 24
and 48 h post-treatment

Table 2 MIC (μg/ml) variations of selected antibiotics, CAMPs and antibiotic/CAMP combinations with corresponding FICIs

Strains MIC MIC combination FICI

colistin LL-37 CAMA col/LL-37 col/CAMA col+LL-37 col+CAMA

P. aeruginosa AS1 0.25 32 4 0.0625/4 0.125/1 0.375 0.75

P. aeruginosa MDRPA1 0.5 64 4 0.125/4 0.25/2 0.3125 1

P. aeruginosa MDRPA2 0.5 64 8 0.125/8 0.25/2 0.375 0.75

imipenem LL-37 CAMA imp/LL-37 imp/CAMA imp+LL-37 imp+CAMA

P. aeruginosa AS1 16 32 4 8/8 4/2 0.75 0.75

P. aeruginosa MDRPA1 32 64 4 8/8 32/4 0.375 2

P. aeruginosa MDRPA2 256 64 8 128/16 128/4 0.75 1

Note: FICI was defined as follows: FICI ≤0.5, synergy; 0.5 < FICI ≤1.5, additive; 1.5 < FICI ≤ 2.0, indifference; FICI > 2, antagonism
AS antibiotic susceptible, FICI fractional inhibitory concentration index, MDRPA multidrug-resistant Pseudomonas aeruginosa

Geitani et al. BMC Microbiology           (2019) 19:54 Page 6 of 12



activities of two of these peptides were evaluated in
combination with antibiotics. Cytotoxicity of CAMPs
when given alone and in combination with antibiotics
was analyzed and the ability of two peptides to induce
bacterial resistance was also assessed.
CAMA was the only active peptide against laboratory

and clinical S. aureus strains with MICs equal to 4 μg/ml
for both MSSA and MRSA strains. As for P. aeruginosa,
CAMA and LL-37 were active against the strains.

Interestingly, no major differences were noted between
MICs and MBCs of these CAMPs against bacteria inde-
pendently from their antibiotic resistance patterns. This
comparative study may be of high importance since it re-
ports that expression of studied antibiotic resistance
mechanisms does not alter the efficacy of CAMA and
LL-37 against pulmonary pathogens. CAMA and LL-37
may be considered as bactericidal agents since the MBC
values were in most of the cases equal to those of the
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MICs. In agreement with previous findings [29, 30], our
results confirm the efficacy of these two peptides in killing
laboratory and clinical strains of S. aureus and P. aerugi-
nosa while conventional antibiotics failed. In contrast, the
results concerning magainin-II and nisin showed almost
no potency. While the results obtained for magainin-II are
in full agreement with previous studies, those for nisin are
opposed [20, 30].
MIC and MBC values showed the effects of CAMPs

against S. aureus and P. aeruginosa, but did not provide
any evidence on the time required by the peptides to
achieve their antimicrobial activity and, therefore, to
overcome this issue, enumerations were performed [29,
30]. Our results demonstrated that CAMA and LL-37
tend to show some killing effects at concentrations
equivalent to half the MICs and achieve killing quite of
all bacteria within 2 h at concentrations equal to MICs
(Fig. 1). This reduction in bacterial viability not only
confirms the accuracy of the obtained MIC and MBC
values but also show the rapid bactericidal effects of
these peptides against both laboratory and clinical
strains with no major differences between AS and MDR
pathogens (P > 0.05).
An innovative approach that is gaining interest is the

use of combinations of an antimicrobial agent with a
CAMP to evaluate their synergistic effects [20, 29]. We
investigated the in vitro activity of colistin and imipenem
with LL-37 and CAMA separately at 1/10 and 1/5 of the
MIC values of each CAMP. The MIC values of these an-
tibiotics decreased up to eight-fold when combined to
CAMPs indicating synergism. These results suggest that
CAMPs could be used as tools to enhance antibiotic ef-
fectiveness against bacteria and decrease their toxicities
by lowering the dose required for therapeutic benefit.
When added to colistin, a minor amount of LL-37 was
able to significantly enhance the antibiotic activity and
decrease its MICs by up to eight-fold. This result was
observed against both AS or MDRPA strains. The syner-
gistic activity of colistin/LL-37 and colistin/CAMA com-
binations was further confirmed using checkerboard
technique (FICIs < 0.5). Colistin targets Gram-negative
bacteria by interfering with the lipopolysaccharide (LPS)
of the outer membrane; an essential component of the
cell wall [31]. Polymyxins have traditionally been used as
last resort to treat serious infections such as those
caused by P. aeruginosa. Acquired resistance to poly-
myxins is not common. Only in late 2015, the first trans-
ferable plasmid-borne resistance gene to colistin (mcr-1)
was discovered. More recently, novel colistin resistance
genes, mcr-2, mcr-3, mcr-4 have been reported [32–34]
causing significant concerns due to heavily compromised
therapeutic options [35]. The CAMPs tested in this
study have a direct action on the bacterial membrane
[20]. The overall net negative charge of the bacterial

outer membrane makes it an ideal target for these
CAMPs. The initial attraction occurs through electro-
static bonds between these cationic peptides and the
negatively charged phospholipids in the outer membrane
of Gram-negative bacteria. In Gram-positive bacteria, at-
traction occurs between CAMPs and peptidoglycan
components [36]. The CAMPs-induced stress on the
lipid bilayer results in destabilization of the bacterial
structure, thus allowing the intracellular uptake of anti-
biotics. In addition to its membrane-directed antimicro-
bial activities via ion-permeable channels formation,
LL-37 binds and neutralizes the LPS with effectiveness
comparable to that of polymyxin B; the well-recognized
LPS-binder [37]. The synergistic effect of LL-37 with co-
listin was likely due to the combined effect of these two
agents on a shared target resulting in a significant de-
crease in the MIC values of colistin. The combinations
with imipenem were less effective; that could be attrib-
uted to the fact that ß-lactams target the PBPs, which
are involved in the cross-linking of the bacterial cell wall
and are distinct from the target of LL-37. Therefore,
adding a minor amount of LL-37 to imipenem was most
likely not sufficient to improve significantly the potency
of this antibiotic. CAMA is a hybrid peptide that forms
ion-permeable channels in model lipid membranes [20].
This peptide had antimicrobial activity against both
Gram-positive and Gram-negative bacteria alone but this
activity was only marginally enhanced by combination
with antibiotics. Synergistic effect of CAMA with antibi-
otics is mainly due to the greater access of antibiotics to
the cytoplasmic membrane resulting from the direct ac-
tion of CAMA on the outer membrane. Hence, the
minor amount of this peptide added to colistin or imipe-
nem did not have a major effect.
Although the use of combinations of antibacterial agents

is nowadays of importance, to our knowledge, the possible
cytotoxicity of these combinations was not analyzed on
human lung epithelial cells. We demonstrated in this
study the nontoxic effect of the tested CAMPs alone and
in combination with antibiotics on human cell lines 24
and 48 h post-treatment. Our results confirm the non cyto-
toxic effect of LL-37 at 24 h of treatment as elsewhere re-
ported [38] and at 48 h of treatment. In fact, general
toxicity of LL-37 to eukaryotic cells is reported at concen-
trations > 65 μg/ml [39] while the tested concentration of
LL-37 in this study is 64 μg/ml. No data are available to
date concerning the cytotoxicity of CAMA on human
lung epithelial cells. CAMA is a cecropin-melittin peptide
found to display important bactericidal effects against
many bacteria. Few publications in this field have reported
the limited cytotoxicity effects of cecropin and melittin
alone. Our results display, for the first time, the absence of
cytotoxicity of this hybrid peptide on two human lung epi-
thelial cells for 48 h.
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Besides, strains of P. aeruginosa had, respectively low
or no potential to develop resistance to LL-37 and
CAMA at sub-MICs. In addition, LL-37-induced resist-
ance was reversible by contrast to gentamicin-induced
resistance. After daily passages in the presence of
sub-inhibitory concentrations, the MICs of LL-37 in-
creased by two- to four-fold after 21 days of passages
while resistance to gentamicin occurred at day 7 of treat-
ment resulting in an increase of the MIC values for this
antibiotic by eight-fold. Also, no induced resistance was
observed for CAMA.

Conclusions
In conclusion, CAMA exhibited the highest and broad-
est spectrum of activity against both Gram-positive and
Gram-negative bacteria with no significant differences
between strains showing various antibiotic resistance
phenotypes. LL-37 demonstrated potent antibacterial ac-
tivity on both laboratory and clinical P. aeruginosa
strains. The negligible cytotoxic effects of these two
CAMPs and their reduced tendency to develop resist-
ance makes them interesting alternative drugs, exhibit-
ing strong and rapid antibacterial activity either alone or
in combination with antibiotics. Nevertheless, CAMPs
may represent potential future therapeutic solutions for
infectious diseases associated to multi-resistant bacteria.

Materials and methods
Antimicrobial peptides and antibiotics
CAMPs LL-37, CAMA and magainin-II were obtained
from Bachem AG (Bubendorf, Switzerland) and nisin
from Sigma-Aldrich (Saint Louis, MO, USA). The antibi-
otics used were gentamicin (PAYAL, London), colistin
sulfate (Sigma-Aldrich), and imipenem (Merck Sharp &
Dohme B.V., Haarlem, Netherlands). Antimicrobial pow-
ders were dissolved in sterile water at a concentration of
2560 μg/ml then aliquoted and stocked at − 20 °C before
use. Diluted solutions were prepared on the day of use.
Peptides dilution was made in 0.01 to 0.02% of acetic
acid (Sigma-Aldrich) containing 0.2 to 0.4% of bovine
serum albumin (Sigma-Aldrich).

Bacterial strains
A total of 21 bacterial strains were tested and consisted of
10 S. aureus and 11 P. aeruginosa. Eight clinical isolates of
each bacterial species were obtained from human sputum
samples sent to Microbiology Laboratories of different
Lebanese Hospitals: Hôtel Dieu de France Hospital, Saint
George Hospital, Bellevue Medical Center, and Arz Hos-
pital. The following laboratory strains were obtained from
the American Type Culture Collection (ATCC): S. aureus
ATCC® 29213™ and ATCC® 43300™, P. aeruginosa ATCC®
27853™, ATCC® 15692™ and ATCC® 53308™.

Cell lines and culture conditions
Human bronchial epithelial IB3–1 cell line ATCC®
CRL-2777™ and human non-small cell lung adenocarcin-
oma A549 cell line ATCC® CCL-185™ were purchased
from the ATCC. IB3–1 cells, derived from a Cystic Fi-
brosis patient with a ΔF508/W1282X mutant genotype
and immortalized with adeno12/SV40, were grown in
LHC-8 (Gibco) supplemented with 10% of fetal bovine
serum (FBS) (Sigma- Aldrich), 100 units/ml of penicillin
and 0.1 mg/ml of streptomycin (Gibco), 1 mM of hepes
Buffer (Sigma) and 2mM of L-Glutamine (Gibco) at 37 °
C/5% CO2. A549 cells were cultured in Dulbeccos modi-
fied Eagles medium (DMEM) with Glutamax (Gibco)
supplemented with 10% FBS, 100 units/ml of penicillin
and 0.1 mg/ml of streptomycin, at 37 °C/5% CO2.

Characterization of the isolates
Antibiotic susceptibility was assessed by disc diffusion
according to the EUCAST (European Committee on
Antimicrobial Susceptibility Testing) recommendations
[40]. Antibiotic discs and MIC test strips were obtained
from BIO-RAD (Marne-la-Coquette, France) and Liofil-
chem (Roseto degli Abruzzi, Italy) respectively.
The antibiotic susceptibility patterns of the clinical

and laboratory S. aureus and P. aeruginosa are shown in
Table 3. Four clinical isolates of S. aureus were consid-
ered as MRSA due to their resistance to cefoxitin, while
the remaining clinical strains were considered as MSSA.
The ATCC S. aureus ATCC® 29213™ and ATCC® 43300™
were respectively the reference for MSSA and MRSA
strains. Certain MRSA strains were resistant to erythro-
mycin, quinolones, fusidic acid and rifampicin. Five clin-
ical P. aeruginosa isolates classified as MDRPA were
resistant to ß-lactams including third-generation cepha-
losporins, imipenem and meropenem, to fluoroquino-
lones and to rifampicin. The remaining P. aeruginosa
were considered as AS strains and were susceptible to
third-generation cephalosporins and to carbapenems
among ß-lactams, to tobramycin and amikacin among
aminoglycosides, to ciprofloxacin and to fosfomycin. P.
aeruginosa ATCC® 27853™, ATCC® 15692™, and ATCC®
53308™ were used as reference strains for the AS P. aer-
uginosa strains.

Antimicrobial assays of CAMPs
The MIC values of the peptides were determined by
microbroth dilution [41, 42]. Bacteria were cultured in
Mueller Hinton Broth 2 (MHB2, Cation-adjusted, Fluka
Analytical) and grown overnight to exceed the turbidity
of 0.5 McFarland. The obtained culture was diluted with
sterile MHB2 to achieve a turbidity equivalent to 0.5
McFarland then diluted in MHB2 to give a final concen-
tration of 2–7 × 105 CFU/ml. Bacteria were incubated
with different concentrations of the peptides; the highest
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tested concentration of each CAMP being 128 μg/ml.
Since peptides have a tendency to bind polystyrene [42],
mixtures were incubated at 37 °C in sterile 96-well poly-
propylene microtiter plates (Sigma-Aldrich) with shaking
to prevent precipitation of CAMPs [43]. After 2 h of in-
cubation, serial dilutions were plated onto Mueller Hin-
ton Agar (MHA, MAST Group) plates and the number
of colony-forming unit (CFU) was enumerated after in-
cubation for 24 h at 37 °C. A control well without drugs
was done for every strain. A reference strain was used in
each test as a control to ensure reproducibility. After
16–24 h of incubation, MICs of CAMPs were deter-
mined. The MBCs were determined by plating out the
contents of the first 3 wells showing no visible growth of
bacteria onto MHA plates and were incubated for the
following day. The MBC was defined as the lowest con-
centration of an antimicrobial agent that kills 99.9% of a
particular organism [29, 42, 44].

MICs of antibiotics and CAMPs combinations
The in vitro activities of the peptides (LL-37 and
CAMA) in combination with colistin or imipenem were
assessed against three clinical isolates of P. aeruginosa.
The above obtained MICs of LL-37 and CAMA for each
strain were used to calculate the concentrations needed
for this experiment. Each strain was incubated with 1/10
or 1/5 its MIC of the peptide along with different con-
centrations of colistin or imipenem. After 16–24 h of in-
cubation, the antibiotic MIC was determined for each
combination experiment [30].

Synergy studies by checkerboard technique
To highlight the enhanced activity of colistin and imipe-
nem due to CAMPs combination, checkerboard assays
were performed [45]. In brief, the experiments were
done using 96-well microtiter plates containing CAMPs
and antibiotics in two-fold serial concentrations. All

plates were set up with increasing concentrations of
CAMPs (LL-37 and CAMA) in the horizontal wells and
antibiotics (colistin and imipenem) in the vertical wells.
Bacterial suspensions were prepared to yield final inocu-
lum of 2–7 × 105 CFU/ml and added into the wells. The
plates were incubated at 37 °C for 18–24 h and visually
inspected for turbidity to determine the growth. The
synergy interactions were evaluated by determining the
FICI, calculated as follows:

FICI ¼ MIC of drug Acombination=MIC of drug Aaloneð Þ
þ MIC of drug Bcombination=MIC of drug Baloneð Þ:

FICI values were then interpreted as: synergy for FICI
≤0.5; additive for FICI between 0.5 and 1.5; indifference
for values of FICI between 1.5 and 2; and antagonism
was linked to values above 2 [46].

LDH based cytotoxicity assay
Cell lysis due to treatment of IB3–1 and A549 cell lines by
CAMPs alone or in combination with antibiotics was deter-
mined in vitro using the LDH based CytoTox 96®Non-Ra-
dioactive Cytotoxicity Assay according to manufacturer’s
instructions (Promega). Cells were seeded in 12-well plates
(TPP® tissue culture plates) in media and cultured for 1 day
to obtain a concentration of 1.6× 106 cells/ml (1ml per
well). Before treatment, supernatants were removed and 1
ml of serum-free medium was added to each well; cells
were then rested for 1 h. To assess the cytotoxicity of
CAMPs alone, cells were treated subsequently with two
concentrations of LL-37 (32 and 64 μg/ml) and CAMA (8
and 16 μg/ml). To evaluate the cytotoxicity of the tested
combinations, cells were treated with the highest concen-
trations of antibiotics and CAMPs for each combination.
All treated cells were incubated for 24 and 48 h. After the
desired incubation time, supernatants were aliquoted, cen-
trifuged at 3500×g, 4 °C for 5min to obtain cell-free

Table 3 Susceptibility of S. aureus and P. aeruginosa to antimicrobial agents by disc diffusion

Antibiotics

β-lactams aminoglycosides macrolides
lincosamides

fluoroquinolones tetracyclines others

S. aureus (number) PEN FOX GEN AMK ERY CLI OFX LVX CIP TGC FAD RIF LZD VNC

MSSA (5) R S S S S/I S/I S S S S/R S/R S S S

MRSA (5) R R S/R S/R S/I/R S/R S/R S/R S/R S S/R S/I/R S S

β-lactams aminoglycosides quinolones others

P. aeruginosa (number) PIL PTZ TIC TCC CZD FEP ATM IPM MEM AMK GEN TMN CIP NAL RIF FOF

AS (6) S/R S/R S/R S/R S S I S/I S S/I S/R S S/I/R R R S/R

MDRPA (5) R R R R R R I/R I/R I/R S/I/R S/R S/R R R R S/R

AS antibiotic susceptible, MDRPA multidrug-resistant P. aeruginosa, MRSA methicillin-resistant S. aureus, MSSA methicillin-susceptible S. aureus, I intermediate, R
resistant, S susceptible, AMK amikacin, ATM Aztreonam, CIP ciprofloxacin, CLI clindamycin, CZD ceftazidime, ERY erythromycin, FAD fusidic acid, FEP cefepime, FOF
fosfomycin, FOX cefoxitin, GEN gentamicin, IMP imipenem, LVX levofloxacin, LZD linezolid, MEM meropenem, NAL nalidixic acid, OFX ofloxacin, PEN penicillin, PIL
piperacillin, PTZ piperacillin+tazobactam, RIF rifampicin, TCC ticarcillin+clavulanate, TIC ticarcillin, TGC tigecycline, TMN tobramycin, VNC vancomycin
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samples and immediately analyzed for LDH. The dynamic
range of the assay was determined using as control LDH
release non-treated cells and as maximum LDH release
cells lysed with Triton X-100. The average values of the cul-
ture medium background were subtracted from all values
of experimental wells. The corrected values were used in
the following formula recommended by the manufacturer
to compute the cytotoxicity %.

Cytotoxicity % ¼ 100�Experimental LDH release ðOD490Þ=
Maximum LDH release ðOD490Þ:

The treatment was considered not cytotoxic with less
than 10% of LDH.

Resistance induction in vitro
LL-37- and CAMA-induced resistance was assessed on
two P. aeruginosa. The strains were grown independently
in the presence of one half the MICs, diluted with MHB2,
and inoculated for the next round of resistance induction
for 28 days [47]. Resistance was assessed by determining
the MICs of each antimicrobial agent on days 7, 14, 21,
and 28 of treatment. The stability of induced-resistance
was evaluated by determining the MICs after a single pas-
sage of each resistant strain in the absence of peptide.
Gentamicin was used for comparison.

Statistical analysis
MICs were determined in duplicate in 96-well microtiter
plates. All experiments were performed in at least three
independent assays and the data were analyzed with a
general linear model procedure of Statistical Package
Software for Social Science (SPSS, version 20.00, SPSS In-
stitute Inc., Chicago, IL, USA). Statistically significant
differences of MICs and MBCs between AS and MDR
pathogens were further analyzed and compared using
Chi-square and Fisher’s exact test. In colony count stud-
ies, results were presented as mean ± standard deviations
between strains. Student and Mann-Whitney tests were
used to compare the bactericidal activity of each concen-
tration of the tested CAMPs on AS and MDR bacteria.
Analyses of MIC variations due to different combina-
tions were conducted using Wilcoxon and Paired t tests.
Results of LDH based cytotoxicity assay were presented
as the average of cytotoxicity % ± standard deviations be-
tween the three independent assays. Kruskal-Wallis test
was used to evaluate the variation of cytotoxicity % com-
pared to the control. P values ≤0.05 were considered sta-
tistically significant.
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