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Abstract. In the context of range–independent solid media, we propose a well–conditioned
dynamic stiffness matrix for an elastic layer sitting over an elastic half–space. This formulation
overcomes the well–known problem of numerical ill-conditioning when solving the system of
equations for deep-layered strata. The methodology involves the exact solutions of transformed
ordinary differential equations in the wavenumber domain, a projection method based on the
transformed equations with respect to the depth coordinate. By re–arranging the transformed
equations the solutions remain numerically well-conditioned for all layer depths. The inverse
transforms are achieved with a numerical quadrature method and the results presented include
actual displacement fields in the near-field of the load.

1. Introduction

A two–dimensional model is considered to demonstrate the effect of a harmonic finite strip–load
over layered strata, [1]. The results derived by Fourier transform are valid for any frequency and
more importantly any depth of layer. In principle, following the well-known traditional methods,
[2], we could use displacement and stress–continuity boundary conditions at the bottom of the
layer with equations at the ground surface to generate equations for four subsequent unknowns of
stress and displacement. However, this direct approach leads to formidable numerical problems.
The reason for this work is that if traditional expressions for the characteristic wave functions,
such as cosh or sinh, are employed these can have a dramatic effect on the numerical evaluation
of solutions. Problems arise due to the cancellation or division of either very small or very
large numbers. To overcome this Karasalo [3] derived a well–conditioned propagator matrix
for radially symmetric problems. In this work, though, we construct a single stiffness matrix
for the physical layer for plane–strain problems which conveniently avoids these difficulties. We
therefore deduce a new global dynamic stiffness matrix for functions that do not cause numerical
problems. A scaled dynamic stiffness matrix for the layer is derived. To do this the vibration
components in the wavenumber domain for layer depths and a half–space are considered and
arranged into a single matrix formulation. For the forced response, the load is modelled as an
infinite strip, so that the problem is plane. The purpose of the present study is to present a
computational method which does not suffer numerical evaluation difficulties when predicting
vibration transmission, in particular its attenuation on the surface of a deep layer. The usefulness
of the method is illustrated by presenting numerical results from two potentially computationally
intensive application examples.

http://creativecommons.org/licenses/by/3.0
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Figure 1. Diagram of the model

Although not developed in this short–communication, solutions to characteristic equations
which establish wave propagation parameters can now be determined more efficiently for
dynamic [4] or moving–load problems [5], for example, due to the reduced number of equations.

2. Vibration transmission

The model considered is shown in Figure 1. The strip load has a length 2b, and is aligned
with respect to the z-axis. It rests on an homogeneous, isotropic, elastic layer, with material
properties E (Young’s modulus), ρ (density) and ν (Poisson’s ratio). An harmonic vertical
load acts uniformly over the strip. The elastic layer of finite depth, H, of homogeneous and
isotropic material, overlies a half–space of flexible material. The model is two–dimensional, and
the co–ordinate system and parameters are shown in Figure 1.

Much of the analysis necessary for the derivation of the dynamic stiffness matrix has been
presented in references [1], [2] and [6], so this will only be briefly summarized. For plane strains
the behaviour of the elastic material is described by Navier’s elastodynamic equations, [1]. In
the absence of body forces, these can be written as:

(λ+ µ)
∂∆

∂x
+ µ∇2u = ρ

∂2u

∂t2
, (λ+ µ)

∂∆

∂z
+ µ∇2w = ρ

∂2w

∂t2
, (1)

where u, w are the components of the displacement in the x and z directions and ∆ is the
dilatation, ρ is the density of the material and λ, µ are complex Lamé constants. The stress–
strain relations are also included here :

σzx = µ

(

∂u

∂z
+

∂w

∂x

)

, σzz = λ

(

∂u

∂x
+

∂w

∂z

)

+ 2µ
∂w

∂z
, (2)

The quantities c1 and c2 are respectively the P and S wave speeds, given by:

c21 =
λ+ 2µ

ρ
=

E(1− ν)

ρ(1 + ν)(1− 2ν)
, c22 =

µ

ρ
=

E

2ρ(1 + ν)
. (3)
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Table 1. Material properties

Soil A B
E (Pa) 2.69× 108 204× 108

ρ (kgm−3) 1550 2450
ν 0.257 0.179
cR (ms−1) 242 1706
c2 (ms−1) 263 1879
c1 (ms−1) 459 3005

the boundary conditions for this problem are a uniform strip–load if width 2b acting over the
surface and at z = H continuity of displacement and traction between the upper and lower–
media. Equation (1) may be solved by introducing potentials φ and H such that

u = ∂φ/∂x − ∂H/∂z and w = ∂φ/∂z + ∂H/∂x (4)

where, given wavenumbers k1 = ω/c1 and k2 = ω/c2

α2
1 = ζ2 − k21 and α2

2 = ζ2 − k22. (5)

It is common practice to write solutions to the ensuing ordinary differential equations in terms
of cosh and sinh functions. For computational purposes this choice of characteristic functions is
not convenient for problems involving spatial domains chosen to be extremely deep. Hence, we
propose the general solutions may be written as a scaled formulation:

φ = A1 e
−α1z + A2 e

α1(z−H), 0 < z < H

(6)

H = B1 e
−α2z + B2 e

α2(z−H), 0 < z < H.

The reasons for choosing the scaled exponential characteristic functions over the hyperbolic
functions is clear. Essentially, this choice ensures the characteristic functions do not grow
unbounded with depth, H including other expressions involving variables, α1 or α2, Eq. (5)
.

Substituting the values z = 0 and z = H into the equations (6) yields the first matrix equation

{u} = [C] {A} . (7)

where u = [iw0, u0, iwH , uH ]T and the 4x4 complex-valued matrix [C] is given by

[C] =









−iα1 iα1e
−α1H −ζ −ζe−α2H

iζ iζe−α1H α2 −α2e
−α2H

−iα1e
−α1H iα1 −ζe−α2H −ζ

iζe−α1H iζ α2e
−α2H −α2









. (8)

Now, further developing the system of equations from the stress equations (2),

{σ} = [S] {A} , (9)

[S] =









−iα2
1 (λ+ 2µ) + iλζ2

(

−iα2
1 (λ+ 2µ) + iλζ2

)

g1 −2µζα2 2µζα2ζ g2
2iµζα1 −2iµζα1ζ g1 µ

(

α2
2 + ζ2

)

µ
(

α2
2 + ζ2

)

g2
i
(

α2
1 (λ+ 2µ)− λζ2

)

g1 i
(

α2
1 (λ+ 2µ)− λζ2

)

2µζα2 g2 −2µζα2

−2iµζα1 g1 2iµζα1 −µ
(

α2
2 + ζ2

)

g2 −µ
(

α2
2 + ζ2

)









(10)
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and gi = e−αiH , i = 1, 2 and σ = [−iσ0, −τ0, iσH , τH ]T . We now combine equations (7) and
(9), to arrive at a single matrix expression which expresses the displacements and stresses at the
surface and the interface in the wavenumber–domain:

[T ] {u} = {σ} . (11)

where [T ] = [S][C]−1. The algebraically complicated unstructured matrix [T ] is given in the
Appendix. Specifically [T ] is the dynamic stiffness matrix for a single elastic layer valid for any
depth H > 0. To include the half–space, we utilize the matrix equations presented in [6] which
leads to a matrix system

[P ] =
1

D

[

(λ+ 2µ)α2k
2
1 2µζ(α1α2 − ζ2) + (λ+ 2µ)ζk21

2µζ(α1α2 − ζ2) + µζk22 µα1k
2
2

] [

iwH

uH

]

=

[

iσH

τH

]

(12)

where D = 1/(α1α2 − ζ2) and it is understood the soil parameters are related to the half–space
below the upper–layer. Equations can now be combined to give a single matrix equation for an
elastic layer over an elastic halfspace, involving the scaled stiffness matrix for the elastic layer
[Tij ] and the matrix for the halfspace [Pij ]. The general matrix form for any global domain
becomes a 4x4 complex valued matrix

[T ]G =









T T T T
T T T T
T T T -P T -P
T T T -P T -P









(13)

It is straightforward to generalise this technique to n elastic layers over a half–space where the
size of the dynamic stiffness matrix will become a single complex–valued 2(n + 1) x 2(n + 1)
matrix.

3. Problems in numerical evaluation of stiffness matrix

Generally, for non–dimensional wavenumbers ksh ≥ 13, where ks is the shear wavenumber,
the conventional approach ”breaks down”. That is, for depths greater than around two shear
wavelengths, h ≥ 2λs a numerical bottleneck problem arises when solving the linear system of
algebraic equations. Equally for high frequency computations can become ill–conditioned. Note
that we cannot show results where ”bottleneck” occurs or is about to occur as matrix elements
can become unbounded so solutions are not presentable.

The choice of projected method permits a stable numerical evaluation for entries in the
stiffness matrix for all soil types, frequencies and layer–depths. This avoids numerical round–off
errors especially division of large numbers by small numbers and the subtraction of very large
numbers. For example, due to round–off errors, it can be shown that for large zeta1, ζ2 > 0
the relative error corresponding to the evaluation of the subtraction of two functions, such
as |cosh(ζ1)− cosh(ζ2)| can grow like exp(|ζ|), ζ1 < ζ < ζ2 where the difference |ζ1 − ζ2| is
small. In themselves the numerical evaluation of hyperbolic functions cosh and sinh can also be
problematic for large values of their arguments.

4. Numerical results

Soil characteristics values used are presented in Table 1, that is two sets of soil characteristics
which represent different conditions for a single frequency, 64 Hz on a strip of width 2b = 1.5 m
subjected to a uniform unit load P = 1 N.

Not shown here but functions in wavenumber domain which determine the vibration response
for elastic layers over half–space with the same material have been computed. The absolute
errors between various cases from shallow to very deep layers were all negligible. Nonetheless
the results presented, calculated using the Clenshaw–Curtis numerical quadrature method, are
related to the ground parameters shown in Table 1.
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5. Free vibration

In Figure 2 is shown the variation of wavenumber with frequency for the first six natural modes.
Included in the figure shows the variation of wavenumber for a thick layer of material, soil B,
which overlies the half–space of softer material, soil A. Figures 3(a) and (b) compare results

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 2. Variation of the wavenumber with frequency of the first six propagating modes for
the 7.0m layer over a half–space (dots) and the same layer over thick 9.0m hard strata.

from a simple half–space model [6], to the scaled layered models for 2.0m, 10.0m and 100.0m
layers over half–spaces. Especially comparing results between the elastic layer of depth 100.0m
compared to the half–space model it is clear that the scaled model approach allows analysis for
very deep layers.

6. Conclusions

A two–dimensional model has been developed for investigating the propagation of surface
vibration over arbitrary depth elastic–layers. The model consists of an elastic, isotropic and
homogeneous layer which overlies a half–space. A well-conditioned dynamic stiffness matrix has
been developed for this model, which is derived by projecting the characteristic functions onto
the end–points in the depth dimension.

Given the general validity of this formulation for dynamic stiffness matrices many new
problems may be modelled, where plane–strain conditions apply, are within easy reach. This
method may also be easily developed to take into account sub–layers of different material within
the strata and extended to three-dimensional problems..
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Appendix

We follow the notation that the element in the ith row and jth column is denoted Tij . The
matrix [T ] is however not symmetric but we have T31 = T13, T32 = −T14, T33 = T11,T34 =
−T12,T41 = −T23,T42 = T24, T43 = −T21 and T44 = T22. The remaining elements of the matrices
are as follows:

T11 = −α2 (λ+ 2µ) k21

(

(

ζ2 − α1α2

)2
(

e−2(α1+α2)H − 1
)

+ (14)

(

ζ2 + α1α2

)2 (
e−2α1H + e−2α2H

)

)

/D,

T12 = ζ
{

(

ζ2 − α1α2

) (

(λ+ 2µ)α2
1 − 2µα1α2 − λζ2

)

(

e−(α1+α2)2H + 1
)

+

4α1α2

(

(λ+ 2µ)α2
1 − (λ− 2µ) ζ2

)

e−(α1+α2)H −
(

ζ2 + α1α2

) (

(λ+ 2µ)α2
1 + 2α1α2 − λζ2

) (

e−2α12H + e−2α2H
)}

/D, (15)

T21 = −µζ
{

(

ζ2 − α1α2

) (

ζ2 + α2
2 − 2α1α2

)

(

e−2(α1+α2)H + 1
)

+

4α1α2

(

α2
2 + 3ζ2

)

e−(α1+α2)H +
(

ζ2 + α1α2

) (

ζ2 + 2α1α2 + α2
2

) (

e−2α1H + e−2α2H
)}

/D, (16)

T22 = µα1k
2
2

{

(

ζ2 + α1α2

) (

e−2α1H − e−2α2H
)

−
(

ζ2 − α1α2

)

(

e−2(α1+α2)H − 1
)}

/D,(17)

T13 = 2α2k
2
1 (λ+ 2µ)

{

ζ2e−α2H
(

e−2α1H − 1
)

+ α1α2e
−α1H

(

1− e−2α2H
)}

/D, (18)

T14 = −2α1α2ζk
2
1 (λ+ 2µ)

{

e−α1H
(

e−2α2H + 1
)

− e−α2H
(

e−2α1H + 1
)}

/D, (19)

T23 = 2µζα1α2k
2
2

{

e−α1H
(

e−2α2H + 1
)

− e−α2H
(

e−2α1H + 1
)}

/D, (20)

T24 = −2µα1k
2
2

{

ζ2e−α1H
(

1− e−2α2H
)

− α1α2e
−α2H

(

1− e−2α1H
)}

/D. (21)

Here

D =
(

ζ2 − α1α2

)2
(exp(−2(α1 + α2)H) + 1)−

(

ζ2 + α1α2

)2
(exp(−2α1H) + exp(−2α2H)) +

8ζ2α1α2 exp(−(α1 + α2)H) (22)
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