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Abstract: The linear correlation coe�cient of Bravais-Pearson is considered a powerful indicator when the
dependency relationship is linear and the error variate is normally distributed. Unfortunately in �nance and
in survival analysis the dependency relationship may not be linear. In such case, the use of rank-based mea-
sures of dependence, like Kendall’s tau or Spearman rho are recommended. In this direction, under length-
biased sampling, measures of the degree of dependence between the survival time and the covariates appear
to have not received much intention in the literature. Our goal in this paper, is to provide an alternative in-
dicator of dependence measure, based on the concept of information gain, using the parametric copulas. In
particular, the extension of the Kent’s [18] dependence measure to length-biased survival data is proposed.
The performance of the proposed method is demonstrated through simulations studies.

Keywords: Length-biased sampling, covariate distribution, length-biased distribution, information gain, de-
pendence measure, kernel density estimation, copulas

MSC: 62F40, 62F12, 62G07, 62H05, 62H12, 60H20

1 Introduction
Survival data occur in many areas such as medicine, epidemiology, biology, economics and manufacturing.
The principal goal in survival analysis is the study of the occurrence of a speci�c event. Most of the literature
on length-biased sampled data concentrates on statistical methods for the survival function (e.g., [7]; [32],
estimating the density function (e.g., [4]; [17]), kernel smoothing [33], proportional hazards models [35] and
covariate bias induced by length-biased sampling of failure times (e.g., [3]). The phenomena of length-biased
sampling appears naturally in many areas of research, see for instance [24] in land economics, [36] in screen-
ing and early detection of disease, [34] in epidemiology and geriatric medicine. There are many situations
where length-biased data arise without censoring, for example quality control problems for estimating �ber
length distribution [7], shopping center sampling and mall intercept surveys [25]. For further examples of
length-biased sampling see for example [26].

The analogue of Kent’s measure for length-biased survival data (see, e.g., [18]) has not received much
attention in the literature. In this context, for example, it is of interest to know if there exists any correlation
between survival timeswith dementia and associated covariates such as age at onset, sex and years of educa-
tion. In this sense, formore general regressionmodels used in survival analysis ameasure of dependence can
be de�ned using the concept of information gain (see, e.g., [18]; [19]). This concept generalizesmore common
measures such as the multiple correlation coe�cient. The purpose of this paper is to extend the dependence
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measure of [18] under length-biased sampling. More speci�cally, we propose a new measure of dependence
between survival time and one continuous covariate without censoring. Themain idea consists in expressing
the extended dependence measure in terms of the underlying copula under length-biased sampling.

The remainder of the paper is organized as follows: In Section 2,we introduce notations andpresent some
preliminaries. In Section 3, we derive the dependence measure for length-biased data without censoring for
the case of one continuous covariate. We develop an estimation procedure for the proposed measure based
on parametric copulas and bootstrap technique. Section 4 presents a simulation study allowing to investigate
the performance of the proposed method.

2 Notations and preliminaries
In this section, we �rst introduce the concept of information gain and then, under length-biased sampling,
we review distributions for length-biased data and we expose some general notions of copulas.

2.1 Concept of information gain

Let (X, Y) be a random vector with true joint density g(x, y) modelled by a parametric family{
f (x, y; θ), θ ∈ Θ1

}
. Suppose that X and Y are modelled as independent random variables under Θ0 ⊂ Θ1.

For the comparison between the best �tting models under Θ0 and Θ1, [18] used Fraser information [10] to
extend the work of [21] and provided the joint information gain to be

Γ = 2
{
Φ(θ1) − Φ(θ0)

}
,

where Φ(θ) =
∫∫

log
{
f (x, y; θ)

}
g(x, y)dxdy and θi maximizes Φ(θ) over Θi. As information gain increases,

the model under Θ1 gets closer to the true density g(x, y) compared with the model under Θ0. [18] proposed

ρ2J (X, Y) = 1 − exp {−Γ} ,

as a measure of dependence between X and Y . On the other hand, if X is modelled conditionally on Y by a
parametric family

{
f (x|y; θ), θ ∈ Θ1

}
, [18] used conditional Fraser information [10] on the expected condi-

tional log-likelihood ΦC(θ) =
∫∫

log
{
f (x|y; θ)

}
g(x, y)dxdy in order to adapt the joint information gain to a

conditional information gain, de�ned as

ΓC = 2
{
ΦC(θ1) − ΦC(θ0)

}
,

and the conditional dependence measure of [18] is

ρ2C (X|Y) = 1 − exp {−ΓC} .

Note that, if g(x, y) = f (x, y; θ*) for some θ* ∈ Θ1, then the information gain with respect to [18] reduces
to twice the [20] information gain (see, e.g., [18]; [19]). When the concept of information is used, we need to
assume that Γ < ∞ (Φ(θi) < ∞) and ΓC < ∞ (ΦC(θi) < ∞). Furthermore, since Θ0 ⊂ Θ1, Γ and ΓC are always
nonnegative. The measures ρ2J and ρ2C have the following properties (see, [18]):
• if X and Y are two independent random variables, then ρ2J = 0 (ρ2C = 0 in conditional models);
• 0 ≤ ρ2J < 1 in continuous models. This is also true for ρ2C;
• under normal models, ρ2J reduces to the product-moment correlation and ρ2C is the squared multiple cor-

relation coe�cient.

2.2 Length-biased sampling and Length-biased distributions

Length-biased sampling occurs when one naturally collects samples from a given population, but the sam-
pling distribution is di�erent from the target population. It such case, not every unit in the population has
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an equal chance to be sampled when the natural sampling plan is adopted. For example, suppose in a boy
school, data are collected on the number of brothers and sisters in the family of each boy in this school. Since
this is a boy school and each family has at least one boy, the collected data are clearly a biased representation
of the target population. We will give examples of length-biased distribution derived from the discrete and
continuous distributions. To do this, let X be a discrete random variable representing the size of some group
from a target population with probability mass function

f (k) = P(X = k), k = 1, 2, ....

Suppose that a group from this target population is observed only when at least one of the individuals in
the group is sighted and each individual has an independent probability p of being observed. From [27] the
probability that the observed group has X = k individuals is given as

P(A group is sighted|group size = k) = 1 − (1 − p)k =: w(k).

The distribution of the observed group size is

P(X = k|A group is sighted ) = w(k)f (k)∑∞
k=1 w(k)f (k)

=: fw(k).

If p → 0, then w(k) ≈ kp. Consequently,

fw(k)→ kf (k)∑∞
k=1 kf (k)

.

This distribution is called the length-biased distribution derived from f (k).
Next we give an example of length-biased distribution derived from a continuous distribution, (see, [1]).

Let U be a continuous random variable taking values in (0, c), with density function fU(u). Let T be the left
truncation time, with density function g(t), and independent of U. Suppose that a unit U of size u in the
population is recorded only if U > T. Then, the joint density of (U, T) given U ≥ T can be expressed as

fU,T (u, t|U ≥ T) =
fU,T (u, t)
P (U ≥ T) =

fU (u) g (t)
P (U ≥ T) ,

if U ≥ T and 0 otherwise. Now,

P (U ≥ T) =
∞∫
0

P (U ≥ t|T = t) g(t)dt =
∞∫
0

SU (t)g(t)dt.

If the onset times follow a stationary Poisson process, the truncation times are uniformly distributed over the
interval (0, c) and P (U ≥ c) = 0, see [35]. It follows that

P (U ≥ T) = µc ,

where µ is the mean failure time. Therefore,

fU,T (u, t|U ≥ T) =
fU (u)
µ ·

The density function of U conditional on U ≥ T is then

f (u|U ≥ T) =
u∫

0

fU,T (u, t|U ≥ T)dt =
u∫

0

fU (u)
µ dt = ufU (u)µ .

Note that, f (u|U ≥ T) is a length-biased density derived from fU(u).
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[7] discussed several procedures used in sampling of textile �bres. One procedure is called length-biased
and occurs when the chance of selection is proportional to �bre length. From [7], the length-biased density
of a positive random variable (r.v) U, which denotes the failure lifetime or survival time, is de�ned by

fLB (u) =
ufU (u)
µ , (1)

where fU (u) is the unbiased density and µ =
∫
ufU(u)du < ∞. According to (1), we de�ne the length-biased

density of U conditional on the covariate Z = z as

fLB (u|z) =
ufU (u|z)
µ (z) , (2)

where µ (z) =
∫
ufU(u|z)du < ∞ and fU (u|z) denotes the unbiased density corresponding to fLB (u|z) . Under

length-biased sampling, the covariate associated with the survival time follows a biased density

fB (z) =
µ (z) fZ (z)

µ , (3)

where fZ (z) is the unbiased density of the covariate (see, [3]).

2.3 Some general notions of copulas and goodness-of-�t procedures

In this section, we recall some basic de�nitions and properties of copulas. Also, we provide some examples
of parametric copulas and we discuss goodness-of-�t procedures.

In several research areas such as �nance, medicine and biology, researchers are constantly striving to
understand the dependence structure between two or more random variables. The relationship is described
by the joint cumulative distribution function (CDF). However, determining this joint CDF can be a very tedious
task. The concept of copulas is an innovative tool formodeling this dependence structure. Indeed, the knowl-
edge of this concept is essential to understanding many areas of application in particular, survival analysis.
Thus, whenever it is necessary to model the dependence structure, we can use the copulas.

LetH be a joint distribution function of a randompair (X, Y) and let F and G be themarginal distributions
of X and Y, respectively. The copula C is simply the distribution corresponding to the random vector (U, V)
with uniform margins de�ned by U = F(X) ∼ U[0,1] and V = G(Y) ∼ U[0,1]. Note that [31] provides an
important link between the joint CDF H, the marginal distributions F and G, and copula C described by the
following representation

H(x, y) = C(F(x), G(y)), ∀(x, y) ∈ R2. (4)

If F and G are continuous then C is unique; otherwise, C is uniquely determined on RanF×RanG, where RanF
is the range of F. Moreover, if a copula C is twice di�erentiable then it admits a density de�ned by

c(u, v) = ∂
2C(u, v)
∂u∂v · (5)

From Sklar’s theorem [31] with representation in (4), we can see that the copula C is independent of the
marginal distributions. In addition, C is considered as the dependence function associated to the random
vector (X, Y). In practice, Sklar’s Theorem is very interesting because it models F, G and the dependence
structure separately. The following two examples illustrate some applications of this theorem.

Example 2.1. (Construction of bivariate distribution): Consider the following copula which is given in [23]

C(u, v) = uv
u + v − uv ·

If the marginal distributions of the random variables X and Y are given by F(x) = G(x) = 1 − e−x, x ≥ 0 then
from (4), we get the next joint distribution of the random vector (X, Y)

H(x, y) = C
(
1 − e−x , 1 − e−y

)
=
(

1
1 − e−x +

1
1 − e−y − 1

)−1
·
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Example 2.2. (Extraction of copula from a given joint distribution). Let Hθ(x, y) be the joint distribution func-
tion of Gumbel’s bivariate exponential distribution [16] given by

Hθ(x, y) =


1 − e−x − e−y − e−(x+y+θxy), x, y > 0,

0, otherwise.

where θ is a parameter in [0, 1]. Clearly, the marginals are exponentially distributed: F(x) = H(x,∞) = 1 − e−x,
G(y) = H(∞, y) = 1 − e−y, with inverses F−1(u) = − ln {1 − u}, G−1(v) = − ln {1 − v} , u, v ∈ [0, 1]. Hence the
corresponding copula is

Cθ(u, v) = Hθ(F−1(u), G−1(v)) = u + v − 1 + (1 − u)(1 − v)e−θ ln{1−u} ln{1−v}.

The parameter θ ∈ [0, 1] of the copula Cθ can be viewed as a dependence parameter.

An important property of copulas comes from the fact that for strictly monotone transformations of the ran-
dom variables, copulas are invariant. In other words, If f and g are strictly increasing transformations on
RanX and RanY, respectively, then the random vectors (X, Y) and (f (X), g(Y)) have the same copula.

Next, we discuss an important class of copulas known as Archimedean copulas de�ned in [11]. In fact,
these copulas �nd a wide range of applications, in practice, for number of reasons: the ease with which they
can be constructed; the great variety of families of copulas which belong to this class; the many nice prop-
erties possessed by the members of this class. Furthermore, the dependency structure depends on a single
parameter of the generator function ϕ de�ned below. Formally, an Archimedean copulas is de�ned by the
relation

Cϕ(u, v) = ϕ−1{ϕ(u) + ϕ(v)}, u, v ∈ [0, 1], (6)

where ϕ denotes a continuous, strictly decreasing convex function de�ned from [0, 1] to [0,∞) such that
ϕ(1) = 0. The function ϕ−1 represents the inverse of ϕ. The mapping ϕ is so-called the generator of the
copula Cϕ. In what follows, we present some relevant examples of copulas widely used in practice. These
parametric copulas will be utilized, in simulation part, to illustrate the proposed estimation method.
• (Clayton copula). The family of Clayton copulas are expressed by

Cθ(u, v) =
(
u−θ + v−θ − 1

)− 1
θ for θ ∈ [−1,∞)\ {0} , (7)

where the generator of this family is given by ϕθ(t) = θ−1t−θ − 1·
• (Frank’s copula). The analytic expression of Frank’s copula is

Cθ(u, v) = −
1
θ ln

{
1 − (1 − e−θu)(1 − e−θv)

1 − e−θ
}

for θ ∈ R\ {0} , (8)

where the generator of this family is ϕθ(t) = − ln
{
(1 − e−θ)(1 − e−θt)−1

}
.

• (Gumbel’s copula). Gumbel’s copula is formulated as

Cθ(u, v) = exp
{
−
(
(− log {u})θ + (− log {v})θ

) 1
θ
}

for θ ∈ [1,∞[, (9)

with generator ϕθ(t) = (− log {t})θ .

Let us now discuss goodness-of-�t (GOF) procedures for copula. The concept of copulas, particulary
Archimedean copulas, is frequently used as a good tool for describing the dependence between two ran-
dom variables X and Y with continuous marginal distributions F and G,respectively. Given a random sample
(X1, Y1), . . . , (Xn , Yn) with joint CDF

H(x, y) = C(F(x), G(y)), ∀(x, y) ∈ R2,
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themost frequent question is which copula family is associatedwithH(x, y)? The GOF procedures for copula,
which we explain below, can be considered as a good practical answer to this question.

Consider a continuous random vector (X, Y)withmargins F, G and bivariate CDF H. Assume further that
the copula C of (X, Y) belongs to a class of parametric copula C0 = {Cθ , θ ∈ Θ}, where Θ is the parameter
space. Let (Xi , Yi), i = 1, . . . , n denote independent copies of (X, Y). Suppose one wants to choose between
the null and alternative hypotheses of belonging or not to a given parametric family, namely

H0 : C ∈ C0 versus H1 : C ∈ ̸ C0. (10)

Several goodness-of-�t procedures allowing to testH0 versusH1 have been developed in the literature, e.g.
[12], [29], [5], [8], [13], [28], [22], [15] and [2].

The formal GOF tests are rank-based. In other words, instead of using the observations (Xi , Yi), i =
1, . . . , n, one considers the pseudo-observations Ui = (Ui1, Ui2) =

(
Ri/(n + 1), Si/(n + 1)

)
, i = 1, . . . , n,

where Ri = nFn(Xi) is the rank of Xi among X1, . . . , Xn and Si = nGn(Yi) is the rank of Yi among Y1, . . . , Yn .
Here, Fn and Gn denote empirical CDF of X and Y, respectively. Note that, the pseudo-observations can be
expressed as

Ui =
( n
n + 1Fn(Xi),

n
n + 1Gn(Yi)

)
for i = 1, . . . , n, (11)

and considered as a sample from the copula C. In addition, they are not mutually independent and their
components are only approximately uniformon (0, 1).Wenote that, the factor n/(n+1) in (11) is introduced to
avoid problems with Cθ blowing up at the boundary [0, 1]2. The idea behind using the pseudo-observations
is that the copula C of a random vector is invariant by continuous, strictly increasing transformations of its
components.

The study of some GOF tests for copula and their implementation using the copula package leads to
describe one method which is very useful in survival analysis. This approach gave the best results overall, as
mentioned by [15] and later, [2] con�rmed this remark resulting from examination and comparison of several
GOF tests. In what follows, we describe a copula GOF based on the empirical copula:

For testing H0 : C ∈ C0, [15] used the pseudo-observations U1, . . . ,Un and proposed to work with a
consistent estimation of an unknown copula C. In particular, the empirical copula

Cn (u) = 1
n

n∑
i=1

1 (Ui1 ≤ u1, Ui2 ≤ u2) , u = (u1, u2) ∈ [0, 1]2. (12)

[9] showed under various conditions that Cn is a consistent estimator of the true underlying copula C. The
idea in this approach is to compare Cn with an estimator of C underH0 : C ∈ C0. In a goodness-of-�t setting,
[15] suggested to use the empirical process

Cn =
√
n
(
Cn − Cθ̂n

)
, (13)

where θ̂n = Υn (U1, ...,Un) is an estimator of θ. FromGenest et al. (2009), a Cramér-vonMises statistic for this
approach is

S(E)n =
∫

[0,1]2

Cn (u)2 dCn (u) =
n∑
i=1

{
Cn (Ui) − Cθ̂n (Ui)

}2
. (14)

[14] established the convergence of (13), and showed that the test based on S(E)n is consistent. A speci�c para-
metric bootstrap procedure, developed by [15] can be used to approximate the P-value for this statistic. The
validity of this method has been shown in [14].
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3 Information gain under length-biased sampling based on
copulas

The objective of this section is to exploit the concept of information gain, based on the parametric copulas
method, to derive the joint and conditional dependence measures, under length-biased sampling without
censoring for the case of one continuous covariate and provide an estimation method for these measures. To
do this, let U denote length-biased survival time with CDF GLB(u, λ) and PDF gLB(u, λ) while Z represents
a continuous covariate with CDF FB(z,ψ) and PDF fB(z,ψ). Suppose that the random vector (U, Z) has a
parametric copula Cα . Using Sklar’s Theorem, a joint length-biased CDF of (U, Z) is

FLB (u, z; θ) = Cα
(
GLB(u; λ), FB(z;ψ)

)
, (15)

where θ = (α, λ,ψ) is the parameter vector of the model. The corresponding joint length-biased density of
(U, Z) is given as

fLB (u, z; θ) = cα
(
GLB(u; λ), FB(z;ψ)

)
gLB(u; λ)fB(z;ψ), (16)

where cα is the parametric copula density given in (5). Consequently, the conditional density of U given Z = z
can be expressed in terms of the parametric copula density as

gLB (u|z; θ) = cα
(
GLB(u; λ), FB(z;ψ)

)
gLB(u; λ)· (17)

The most copula families Cα, α ∈ Θ, contain the independence copula, that is, Cα0 coincides with the inde-
pendence copula for some α0 ∈ Θ. This means that the r.v.’s U and Z are independent which implies that
fB(z;ψ0) = fZ(z;ψ0) and FB(z;ψ0) = FZ(z;ψ0), where FZ(z;ψ0) and fZ(z;ψ0) are, respectively, CDF and
PDF of the unbiased covariate under the independencemodel. Therefore, if the covariate sample from the in-
cident cases is available, one can estimateψ0 by theMLE ψ̂0. In this case, the parameter of the independence
model becomes θ0 = (α0, λ0) which leads to
• Cα0

(
GLB(u; λ0), FZ(z; ψ̂0)

)
= GLB(u; λ0)FZ(z; ψ̂0).

• cα0
(
GLB(u; λ0), FZ(z; ψ̂0)

)
= 1.

• fLB (u, z; θ0) = gLB(u; λ0)fZ(z; ψ̂0).
• gLB (u|z; θ0) = gLB (u; λ0) .

When the covariate sample from the incident cases is not available, one can use the bootstrap techniques to
obtain a new sample Z*1, . . . , Z*n following approximately fZ(z). First, consider a random sample (Ui , Zi), i =
1, . . . , n, from fLB(u, z). In particular,U = (U1, . . . , Un) from fLB (u). Then, use the bootstrap techniques with
replacement for the original sample U to obtain a new sample U* =

(
U*1, . . . , U*n

)
following approximately

fU (u) . The idea is that, Ui is chosen to be included in the new sampleU* with probability pi. For j = 1, . . . , n,
the probability pi, i = 1, . . . , n can be found using (1) as

pi = P
(
U*j = Ui|U1, . . . , Un

)
= µ̂

P
(
U*j = Ui

)
Yi

= µ̂1/nUi

=
(
1
n

n∑
i=1

U−1i

)−1
n−1
Ui
·

= U−1i
n∑
i=1
U−1i

· (18)

Here, µ̂ = n
(∑n

i=1 U
−1
i
)−1 is an estimator of µ in (1) (see [7]). Note that, the bootstrap technique described

above converges as shown by [7].
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Now, from (Ui , Zi), i = 1, . . . , n, �nd Z* =
(
Z*1, . . . , Z*n

)
associated with U* =

(
U*1, . . . , U*n

)
. Therefore,

given this new sample Z*, one can use the standard kernel density estimator method in order to estimate the
unbiased PDF fZ(z):

f̂Z (z) =
1
n

n∑
i=1

Kh
(
z − Z*i

)
, (19)

where the function Kh (s) = h−1K
(
h−1s

)
, h is the bandwidth of the estimator and K : R→ R is de�ned to be

any smooth function satisfying the following assumptions.

Assumptions 3.1. (a) K is a PDF; (b) K is symmetric; (c)
∫
sK (s)ds = 0; (d) ‖K‖22 =

∫
K2 (s)ds < ∞; (e)

µ2(K) =
∫
s2K (s) < ∞.

A practical estimator of the optimal bandwidth was proposed by Silverman (1986) as ĥopt = 0.9σ̂n−5, where
σ̂ = min

(
s, R/1.34

)
. Here, s andR are the standarddeviationand interquartile rangeof thedata, respectively.

Note that, the standard normal density is a very useful kernel function satisfying Assumptions 3.1.

3.1 Copula-based modelling of conditional information gain under length-biased
sampling

Hereafter, we express the conditional information gain under length-biased sampling in terms of the under-
lying copula of (U, Z). The resulting formula is used to estimate the conditional measure of dependence.

Proposition 3.2. Let (U, Z) be a pair of random variables possibly dependent with true density fLB (u, z; θ1)
given in (16). Under length-biased sampling, the conditional information, based on the parametric copula den-
sity, can be expressed as

ΓC = 2
{∫∫

log
{
cα1
(
GLB(u; λ1), FB(z;ψ1)

)
gLB(u; λ1)

}
fLB (u, z; θ1)dudz

−
∫

log {gLB (u; λ0)} gLB (u; λ1)du
}
. (20)

Proof. By testing the two hypotheses H0 : α = α0 versus H1 : α ≠ α0, the twice Kullback-Leibler (1951)
information gain is

ΓC = 2
{∫∫

log {gLB (u|z; θ1)} fLB (u, z; θ1)dudz

−
∫∫

log {gLB (u|z; θ0)} f (u, z; θ1)dudz
}

= 2
{∫∫

log
{
cα1
(
GLB(u; λ1), FB(z;ψ1)

)
gLB(u; λ1)

}
fLB (u, z; θ1)dudz

−
∫

log {gLB (u; λ0)} gLB (u; λ1)du
}
,

where gLB (u|z; θ1) is given by (17) and we used the fact that under the independence model: gLB (u|z; θ0) =
gLB (u; θ0) = gLB (u; λ0) . �

Consequently, from Proposition 3.2, the conditional dependence measure with respect to the work of [18] is

ρ2C (U|Z) = 1 − exp {−ΓC} · (21)

In order to estimate the conditional information gain and conditional dependence measure, let (Ui , Zi),
i = 1, . . . , n be a random sample from fLB(u, z; θ1) given in (16). Based on Proposition 3.2, the conditional
information gain can be formulated as

ΓC = 2
{
E
[
log
{
cα1
(
GLB(U; λ1), FB(Z;ψ1)

)
gLB(U; λ1)

}]
− E [log {gLB (U; λ0)}]

}
· (22)
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An estimator of ΓC is

Γ̂C = 2
n

{ n∑
i=1

log
{
cα̂1
(
GLB

(
Ui; λ̂1

)
, FB

(
Zi; ψ̂1

))
gLB

(
Ui; λ̂1

)}
−

n∑
i=1

log
{
gLB

(
Ui; λ̂0

)}}
, (23)

where θ̂1 =
(
α̂1, λ̂1, ψ̂1

)
and θ̂0 =

(
α0, λ̂0

)
are the parameter values that maximize, respectively, the ob-

served log-likelihood
n∑
i=1

log
{
cα1
(
GLB(Ui; λ1), FB(Zi;ψ1)

)
gLB(Ui; λ1)

}
,

and
n∑
i=1

log {gLB (Ui; λ0)}.

Therefore, an estimator of the conditional measure of dependence is then

ρ̂2C (U|Z) = 1 − exp
(
−Γ̂C

)
, (24)

where Γ̂C is given by (23).

3.2 Copula-based modelling of joint information gain under length-biased sampling

In this section, we provide a new way to estimate the joint information gain under length-biased sampling.
To this end, we �rst establish an expression of the twice [20] information gain in terms of parametric copula
density.

Proposition 3.3. Let (U, Z) be a pair of random variables possibly dependent with true density fLB (u, z; θ1)
given in (16). Under length-biased sampling, the joint information gain, based on the parametric copula density,
is

Γ = 2
{∫∫

log
{
cα1
(
GLB(u; λ1), FB(z;ψ1)

)
gLB(u; λ1)fB(z;ψ1)

}
fLB (u, z; θ1)dudz

−
∫∫

log
{
gLB (u; λ0) fZ(z; ψ̂0)

}
fLB (u, z; θ1)dudz

}
. (25)

Proof. The twice [20] information gain, by testing H0 : α = α0 versus H1 : α ≠ α0, would be

Γ = 2
{∫∫

log {fLB (u, z; θ1)} fLB (u, z; θ1)dudz

−
∫∫

log {fLB (u, z; θ0)} fLB (u, z; θ1)dudz
}

= 2
{∫∫

log
{
cα1
(
GLB(u; λ1), FB(z;ψ1)

)
gLB(u; λ1)fB(z;ψ1)

}
fLB (u, z; θ1)dudz

−
∫∫

log
{
gLB (u; λ0) fZ(z; ψ̂0)

}
fLB (u, z; θ1)dudz

}
,

where fLB (u, z; θ1) is given by (16) and we used the fact that under the independence model: fLB (u, z; θ0) =
gLB (u; λ0) fZ (z;ψ0) . �

From Proposition 3.3, the joint dependence measure with respect to the work of Kent (1983), is

ρ2J (U, Z) = 1 − exp {−Γ} · (26)
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It can be shown that from Proposition 3.3, one can write

Γ = ΓC + ΓB , (27)

where ΓC is given by (20) and ΓB is expressed by

2
{∫

log
{
fB(z;ψ1)

}
fB(z;ψ1)dz −

∫
log
{
fZ(z; ψ̂0)

}
fB(z;ψ1)dz

}
(28)

is the information gain obtained through knowledge of the bias of covariate.
In order to estimate the conditional information gain and conditional dependence measure, let (Ui , Zi),

i = 1, . . . , n be a random sample from fLB(u, z; θ1) given in (16). There exist two ways for estimating the joint
information. The �rst method is based on (25). An estimator of Γ is

Γ̂ = 2
{
1
n

n∑
i=1

log
{
cα̂1
(
GLB

(
Ui; λ̂1

)
, FB

(
Zi; ψ̂1

))
gLB

(
Ui; λ̂1

)
fB
(
Zi; ψ̂1

)}
−1n

n∑
i=1

log
{
gLB

(
Ui; λ̂0

)
fZ
(
Zi; ψ̂0

)}}
, (29)

where θ̂1 =
(
α̂1, λ̂1, ψ̂1

)
and θ̂0 =

(
α0, λ̂0

)
are the parameter values that maximize the observed log-

likelihood, respectively,
n∑
i=1

log
{
cα1
(
GLB(Ui; λ1), FB(Zi;ψ1)

)
gLB(Ui; λ1)fB(Zi;ψ1)

}
,

and
n∑
i=1

log
{
gLB (Ui; λ0) fZ

(
Zi; ψ̂0

)}
.

The second method is based on (27). In this direction, an estimator of the joint information gain is

Γ̂ = Γ̂C + Γ̂B , (30)

where Γ̂C is given by (23) and the estimator of ΓB is

Γ̂B =
2
n

{ n∑
i=1

log
{
fB
(
Zi; ψ̂1

)}
−

n∑
i=1

log
{
fZ
(
Zi; ψ̂0

)}}
. (31)

Hence, an estimator of the joint measure of dependence is

ρ̂2J (U, Z) = 1 − exp
{
−
(
Γ̂C + Γ̂B

)}
· (32)

We note that, in the case where the covariate sample from the incident cases is not available, a natural esti-
mator of the unbiased density of the covariate, fZ , is given by (19) as

f̂Z (z) =
1
n

n∑
i=1

Kh
(
z − Z*i

)
.

4 Simulation study
In this section, we develop some useful simulation algorithms in order to simulate length-biased survival
times with one continuous covariate using parametric copula method. Also, we investigate the performance
of this method by providing some results of several simulations assessing the behaviour of the estimated
information gain and dependence measure given length-biased data.
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4.1 Simulation algorithms

The following algorithm allows us to simulate length-biased survival times from the length-biased distribu-
tion, if the CDF GLB and its inverse G−1LB admit a closed form.

Algorithm 4.1.
For i = 1, . . . , n
1. Wi ∼ U(0, 1).
2. Ui = G−1LB (Wi) .

Often, it is di�cult to simulate length-biased data directly from length-biased distribution because in general
the CDF GLB(u) and its inverse G−1LB(u) may not have a closed form. In this case, we can use the following
algorithm which is based on the bootstrap techniques.

Algorithm 4.2.
1. Simulate a large sample U*1, . . . , U*N from a given unbiased density fU(u).
2. For i = 1, . . . , n, use the bootstrap techniques from the original sample U*1, . . . , U*N with probability

pi = U*i
(∑

U*i
)−1 to obtain a new sample U1, . . . , Un from the length-biased density gLB(u).

We note that the probability pi , given in the latter algorithm, can be obtained in the same way as for (18).
Now, we develop some useful algorithms for the parametric copula method. On one hand, we develop

a method allowing to simulate data from the joint unbiased density through its underlying copula. On the
other hand, we derive a practical approach, based on the bootstrap techniques, for simulating length-biased
data from the joint length-biased density. Speci�cally, let fU(u; λ) and FU (u; λ) denote unbiased PDF and
unbiased CDF of the continuous r.v. U (survival time). Also, let fZ(z;ψ) and FZ (z;ψ) be unbiased PDF and
unbiased CDF of the continuous r.v. Z (covariate). From Theorem 4, the joint unbiased CDF of the random
vector (U, Z) can be written as a function of a parametric copula as follows

FU (u, z, θ) = Cα (FU (u; λ) , FZ (z;ψ)) , ∀(u, z) ∈ R2 , (33)

where θ = (α, λ,ψ) . The joint unbiased density of the random vector (U, Z), denoted by fU (u, z, θ) , can be
derived from (4) provided ∂2Cα (u, v) /∂u∂v exists. Algorithm 4.3 can be used to simulate a random sample(
U*i , Z*i

)
, i = 1, . . . , N from fU (u, z; θ).

Algorithm 4.3.
For i = 1, . . . , N
1. (Vi ,Wi) ∼ Cα (v, w) .
2. U*i = F−1U (Vi , λ) .
3. Z*i = F−1Z (Wi ,ψ) .
4. The desired observation from fU (u, z; θ) is

(
U*i , Z*i

)
.

Note that, Algorithm 4.3 allows us to simulate a random sample
(
U*i , Z*i

)
i = 1, . . . , N directly from the joint

unbiased density fU (u, z; θ) . However, as we will show, we cannot simulate a random sample (Ui , Zi) i =
1, . . . , n directly from the joint length-biased density fLB (u, z; θ) . A bootstrap techniques will be proposed
as a simple solution for this simulation problem. Using the fact that µ(z) =

∫∞
0 ucα

(
FU(u), FZ(z)

)
fU(u)du, it

follows from (3) that

fB(z) =
∫∞
0 ucα

(
FU(u), FZ(z)

)
fU(u)du

µ fZ (z) · (34)

The length-biased density of U conditional on Z = z becomes

gLB(u|z) =
ufU(u|z)
µ(z) =

ucα
(
FU(u), FZ(z)

)
fU(u)∫∞

0 ucα
(
FU(u), FZ(z)

)
fU(u)du

· (35)
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Even for a given parametric copula associated with some known unbiased CDF FU(u, z), equations (34) and
(35) cannot be used to simulate, directly, a random sample (U1, Z1) , . . . , (Un , Zn) from fLB (u, z). Because,
in most cases, there is no closed forms of fB(z), FB(z), F−1B (z), gLB(u|z), GLB(u|z) and G−1LB(u|z). Hereafter, we
describe an alternative way based on bootstrap techniques enables to simulate length-biased data.

Algorithm 4.4.
For i = 1, . . . , N
1. Use Algorithm 4.3 to simulate

(
U*i , Z*i

)
from the joint unbiased density fU (u, z) .

2. Use Algorithm 4.2 to obtain length-biased survival times U1, . . . , Un .
3. From

(
U*i , Z*i

)
, i = 1 . . . , N �nd Z1, . . . , Zn associated with U1, . . . , Un .

4. The desired random sample from fLB (u, z) is
(
Uj , Zj

)
, j = 1 . . . , n.

If real data is available, then its application becomes very simple using the following suggested algorithm
(for the conditional dependence measure):

Algorithm 4.5.
Given real data are (Ui , Zi) i = 1, . . . , n
1. use GOF procedures for copulas to �nd the parametric copula family Cα associated with this data set;
2. use GOF procedures to �nd the appropriate distributions of the survival times and covariate, respectively

GLB(u, λ) and FB(z,ψ);
3. �nd θ̂1 =

(
α̂1, λ̂1, ψ̂1

)
and θ̂0 =

(
α0, λ̂0

)
the parameter values thatmaximize, respectively, the observed

log-likelihood
n∑
i=1

log
{
cα1
(
GLB(Ui; λ1), FB(Zi;ψ1)

)
gLB(Ui; λ1)

}
,

and
n∑
i=1

log {gLB (Ui; λ0)}.

4. estimate the conditional information and conditional dependence measure using respectively equations
(23) and (24).

Note that, a similar algorithm can be developed for the joint dependence measure.

4.2 Simulation study results

Let U be a positive random variable which follows a generalized gamma distribution GG (r, p, k) de�ned by

f (u) = r
pΓ (k)

(
u
p

)rk−1
exp

{
−
(
u
p

)r}
, r, p and k > 0. (36)

The latter, includes Gamma (k, p) , Weibull (r, p) and Exp (p) by letting in (36), r = 1, k = 1, and r = k = 1,
respectively. As shown by [6], if GG (r, p, k) denotes the unbiased density then, its corresponding length-
biased density is GG

(
r, p, k + r−1

)
. Let GLB (u) denote the length-biased distribution function corresponding

to GG
(
r, p, k + r−1

)
. Using Algorithm 4.1, we can easily generate length-biased survival times directly from

GG
(
r, p, k + r−1

)
given that the corresponding unbiased density is GG (r, p, k) .

Figure 1 describes the histogram of the length-biased survival times, U1, . . . , Un , obtained from Algorithm
4.4, true length-biased density GG(r, p, 1+ r−1) and corresponding GG(r̂, p̂, k̂). Here, the unbiased density of
the covariate , fZ (z) , is U(0, 1) and the structure dependence of the joint unbiased CDF FU (u, z) is assumed
to be described by a Clayton copula.

In what follows, we examine the performance of the parametric copulamethodwhen the data come from
a length biased density. To do this, we suppose that
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Figure 1: Observed frequencies of the length-biased survival times, true length-biased density GG(r, p, 1 + r−1) and GG(r̂, p̂, k̂)
with N = 5000, n = 1000, r = 4, p = 2 and α = 8.

• the true unbiased density of the survival time isWeibull(r, p), where r = 4 and p = 2;
• the true unbiased density of the covariate is U(0, 1);

and consider
• Cα: Clayton copula associated with the joint unbiased CDF fU (u, z);
• θ = (α, r, p) : parameter of the model;
• N = 5000: number of the simulated observations;
• m = 1000: number of the simulated samples.

Given length-biased data (Ui , Zi) , i = 1 . . . , n generated from Algorithm 4.4, the question is which copula
family is associated with the joint CDF FLB (u, z)? A practical answer to this question is to use the goodness-
of-�t procedures for copula to �nd the parametric copula is associatedwith that length-biased data. In such a
case, we suggest to use the goodness-of-�t statistic computed from the empirical copula processes, S(E)n , given
in (14).

Table 1 leads to the conclusion that the test based on S(E)n con�rms that the Clayton family copula associated
with theunbiasedCDF FU(u, z) is the sameas for the length-biasedCDF FLB(u, z), butwithdi�erent estimated
values of dependence parameter, denoted by α̂LB, as shown by the Table 2.
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Table 1: Percentage of rejection at 5%, based on 1000 replicates, of the null hypothesis of belonging to a given family of copu-
las with N = 5000, n = m = 1000, r = 4 and p = 2.

True copula Families under H0
Clayton Frank Gumbel Gaussian Student

Clayton α S(E)n S(E)n S(E)n S(E)n S(E)n
0.005 4,3 4.4 - 5.4 49.7
0.5 4.7 99.5 100 88.6 97.5
2 4.2 100 100 100 100
10 3.8 100 100 100 100

Table 2: Av. estimated dependence parameters α̂ and α̂LB , based on 1000 replicates, for Clayton copula associated with the
CDF’s FU (u, z) and FLB(u, z), respectively, for N = 5000, n = m = 1000, r = 4 and p = 2.

True α Av. α̂ Av. α̂LB
0.005 0.0052 0.0048
0.5 0.4996 0.3853
2 1.9980 1.5219
10 10.021 7.5899

Now, based on the next Algorithm, our principal objective is to examine, for di�erent values of α given in
Table 2, the behavior of information gain and dependencemeasure estimators. Recall that, the copula family
under length-biased sampling is Clayton copula with dependence parameter, denoted by αLB, and the length-
biased density of the survival time gLB(u) is GG(r, p, k), where k = 1 + r−1. For simplicity, a simple choice
used to estimate the unbiased density fZ (z) and the biased density fB (z) is the kernel density estimator as
follows

f̂Z (z) =
1
N

N∑
i=1

Kh
(
z − Z*i

)
,

f̂B (z) =
1
n

n∑
i=1

Kh (z − Zi) .

Let θLB = (αLB , r, p, k) denote the parameter of the model under length-biased sampling.

Algorithm 4.6.
For k = 1, . . . ,m and for i = 1, . . . , n
1. For the conditionalmodel, �nd θ̂LB,1 =

(
α̂LB , r̂1, p̂1, k̂1

)
and θ̂LB,0 =

(
r̂0, p̂0, k̂0

)
thatmaximize, respec-

tively, the observed log likelihood
n∑
i=1

log
{
cα̂LB

(
GLB(Ui; r̂1, p̂1, k̂1), FB(Zi)

)
gLB(Ui; r̂1, p̂1, k̂1)

}
,

and
n∑
i=1

log
{
gLB

(
Ui; r̂0, p̂0, k̂0

)}
·

2. For the conditional model, calculate Γ̂C,k and ρ̂2C,k (U|Z) , respectively, by (23) and (24).

To estimate the joint dependence measure, Algorithm 4.6 can be used provided Γ̂B =
(2/n)

{∑n
i=1 log

{
f̂B (Zi)

}
−∑n

i=1 log
{
f̂Z (Zi)

}}
, Γ̂ = Γ̂C + Γ̂B and ρ̂2J (U, Z) = 1 − e−Γ̂ .

Table 3 indicates the average maximum likelihood estimators of θLB under hypotheses H1 and H0, using
parametric copula method.
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Table 3: A.v MLE’s for θLB, using parametric copula method, under hypotheses H1 and H0 for N = 5000, n = m = 1000, r = 4
and p = 2.

Av. θ̂LB,1 Av. θ̂LB,0
α̂LB,1 r̂1 p̂1 k̂1 r̂0 p̂0 k̂0

0.0021 3.9751 1.9749 1.2788 3.9766 1.9755 1.2776
0.3553 3.9396 1.9597 1.3266 3.9932 1.9799 1.2692
1.4696 3.9430 1.9628 1.3235 3.9811 1.9753 1.2783
7.4200 3.8997 1.931 1.3600 3.9770 1.9742 1.2802

Table 4 exhibits, for di�erent estimated values of dependence parameter α̂LB the average of information gain
and dependence measure estimators under length-biased sampling.

Table 4: Av. estimated information gain and dependence measure given simulated length-biased data, using parametric copula
method, for N = 5000, n = m = 1000, r = 4 and p = 2.

Av. α̂LB Av. Γ̂C Av. Γ̂B Av. Γ̂ Av. ρ̂2C (U|Z) Av. ρ̂2J (U, Z)
0.0048 0.0010 0.0028 0.0299 0.0010 0.0295
0.3853 0.0951 0.0145 0.1097 0.0905 0.1036
1.5219 0.6472 0.0215 0.6688 0.4758 0.4871
7.5899 2.5431 0.0426 2.5858 0.9211 0.9245

Themost important remark fromTable 4 is that the estimated conditional and joint dependencemeasures are
slightly di�erent due to the small values of Γ̂B for all estimated values of α̂LB . This can be explained, simply,
by the initial choice of the model parameters. In particular, if the shape parameter r = 0.6, the parametric
copula associated with the CDF FLB(u, z) is always Clayton copula.

Table 5: Percentage of rejection at 5%, based on 1000 replicates, of the null hypothesis of belonging to a given family of copu-
las for N = 5000, n = m = 1000, r = 0.6 and p = 2.

True copula Families under H0
Clayton Frank Gumbel Gaussian Student

Clayton α S(E)n S(E)n S(E)n S(E)n S(E)n
0.005 5 5 - 5.2 49.6
0.5 5.4 22.7 48.3 17.6 62.5
2 6.9 99.4 100 97.7 99.7
10 4 100 100 100 100

Table 6: Av. estimated information gain and dependence measure given simulated length-biased data, using parametric copula
method, for N = 5000, n = m = 1000, r = 0.6 and p = 2.

Av. α̂LB Av. Γ̂C Av. Γ̂B Av. Γ̂ Av. ρ̂2C (U|Z) Av. ρ̂2J (U, Z)
0.0009 0.0009 0.0288 0.0298 0.0009 0.0293
0.1300 0.0145 0.0664 0.0809 0.0143 0.0776
0.5017 0.1410 0.4576 0.5987 0.1312 0.4501
2.5136 1.1282 1.0504 2.1786 0.6757 0.8866
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Table 5 indicates that, the new value of the shape r = 0.6 in�uences considerably Γ̂B and Γ̂C. Consequently,
from Table 6, the di�erence between estimated conditional and joint dependence measure is very signi�cant
andhencewe can conclude that given length-biaseddatawe cannot ignore thepotential e�ect of the covariate
on the survival time.

5 Discussion
This paper provides a measure of dependence for length-biased survival data, by extending the dependence
measure of [18], under length-biased sampling. More speci�cally, we looked at a measure of dependence
between survival time (without censoring) and one continuous covariate. In this direction, we developed
parametric copulas method based on information gain. It would be interesting to adapt this approach for
several continuous covariates especially under censoring and consider other types of covariates in themodel.
This can be done using the concept of copulas which takes into account censored data.
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