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Abstract: 

We show through extensive Monte Carlo simulations that structural breaks in volatility 

(volatility shifts) across two independently generated return series cause spurious volatility 

transmission when estimated with popular bivariate GARCH models. This bias is exacerbated 

when the two series are correlated or when the sample size is small. However, using a dummy 

variable for the induced volatility shift virtually eliminates this bias. We also show that structural 

breaks in volatility have a substantial impact on the estimated hedge ratios. We confirm our 

simulation findings using the US stock market data.   
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1. Introduction 

 

Volatility transmission (i.e. volatility spillover) is the impact on the variance of a given 

asset (or market) from past variance or shocks of a different asset (or market). The presence of 

volatility transmission would imply that shocks (i.e. ‘news’) significantly impact the volatility 

not only in the asset or market from which the shock originated but in other related assets or 

markets as well. Ross (1989) showed that volatility in returns of an asset depends upon the rate 

of information flow, suggesting that information from one market will affect the volatility 

generating process of other related markets. Since the flow of information and the speed of 

processing that information varies across markets, one should expect different volatility 

dynamics across markets over time. Volatility spillovers are also attributed to changes in 

common information and cross-market hedging, which may simultaneously change expectations 

across markets. Fleming, Kirby, and Ostdiek (1998) show how cross-market hedging and sharing 

of common information creates volatility transmission across markets over time. Significant 

volatility transmission across assets or markets have important implications in decisions 

regarding optimal portfolio allocation (Kroner and Ng, 1998), risk management (Christoffersen, 

2009) and dynamic hedging (Haigh and Holt, 2002). Clearly, policy makers and financial 

markets participants are interested in knowing if and how shocks and volatility are transmitted 

across different assets or markets over time. Consequently, this line of research has seen an 

explosion in the literature over the last thirty years.
1
 

                                                           
1
 Earlier major papers include Baillie and Bollerslev (1990); Engle, Ito and Lin (1990); Hamao, Masulis and Ng 

(1990); King and Wadhwani (1990); Engle and Susmel (1993); King, Sentana and Wadhwani (1994); Lin, Engle 

and Ito (1994); and Karolyi (1995). 
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There are essentially two main methods used in the literature to examine if volatility is 

significantly transmitted across two series over time.
2
 One simple method is the two-step 

methodology introduced by Cheung and Ng (1996) that concentrates on the cross correlation 

function of squared univariate GARCH residual estimates. Hong (2001) extended this method by 

introducing flexible weighting scheme for the sample cross-correlation which provides non-

uniform weighting at each lag to improve power of the test based on the argument that economic 

agents normally discount past information. However, using Monte Carlo simulations, Van Dijk, 

Osborn and Sensier (2005) document severe size distortions in both of these tests in the presence 

of structural breaks in variance. They note that size problems are particularly large when both 

series exhibit volatility shifts in close temporal proximity, in which case both tests frequently and 

incorrectly attribute this occurrence to an underlying causality in variance. Rodrigues and Rubia 

(2007) give a theoretical justification for these findings as a particular case of a general class of 

non-stationary volatility processes. They show that the size departures are not only a small-

sample effect but persist asymptotically because of the failure to consistently estimate cross-

correlations.  

The alternative approach to see if significant volatility transmission exists across series is 

by estimating a parametric multivariate GARCH model. This approach is significantly more 

popular as it yields specific formulations for the volatility spillover effects. However, virtually 

all studies in the existing literature assume that the unconditional variance of the underlying 

series is constant implying that volatility is generated by a stable GARCH process. This is 

surprising as we know that markets often experience structural breaks in the unconditional 

variance due to political, social, or economic reasons, which causes breaks in the GARCH 

                                                           
2
 There is a related literature called financial contagion, often detected as changes in the correlations’ level during 

crisis periods (Forbes and Rigobon, 2002). But our focus is on the transmission of time-varying volatility not on 

time-varying correlations. 
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parameters. Lamoureux and Lastrapes (1990) show that volatility persistence is biased upward 

when univariate GARCH models are applied to a series with structural breaks in variance. 

Mikosch and Starica (2004) provide theoretical explanation with supporting evidence from 

simulations and US stock market data indicating that ignoring structural breaks in variance 

results in higher estimated volatility persistence within a univariate GARCH model. Starica and 

Granger (2005) document that daily US stock market returns are comprised of shifts in the 

unconditional variance and find that forecasts are improved if this non-stationary behavior of 

volatility is taken into account. Thus, there is robust evidence which suggests that a properly 

specified univariate GARCH model should account for structural breaks, if such breaks exist.
3
 

If volatility shifts can affect persistence in “own” volatility, then one can argue that 

allowing for volatility shifts in individual series can also affect the persistence of volatility across 

two series. Consequently, a finding of volatility spillover may be due to an inaccurate 

measurement in persistence. This finding of significant volatility transmission across series in the 

multivariate GARCH context could be triggered by a common volatility shift across the two 

series. Thus, ignoring structural breaks can result in overestimation of volatility spillover 

effects.
4
 

Ewing and Malik (2005) was the first paper to examine volatility transmission across series 

under structural breaks. They endogenously detected structural breaks in small cap and large cap 

US stock returns, and incorporated this information in a bivariate GARCH model. They report 

that accounting for volatility shifts considerably reduces the transmission in volatility and 

                                                           
3
 Structural breaks in variance are reported in international stock returns (Aggarwal, Inclan and Leal, 1999), 

exchange rates (Rapach and Strauss, 2008), oil prices (Ewing and Malik, 2010), among numerous other series. 
4
 In this paper, we focus on the effect on volatility transmission by ignoring the ‘shifts’ in unconditional variance. 

However, there is a related line of inquiry focusing on the simultaneous ‘jumps’ across series. Caporin, Kolokolov, 

and Reno (2017) argue that major financial news triggers a simultaneous occurrence of jumps in several stocks. 

They propose a novel test procedure to exploit this information which yields short-term predictability in stock 

returns and determines a persistent pattern of stock variances and correlations. 
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essentially removes the spillover effects. There are only a handful of studies which have 

followed Ewing and Malik (2005) to show that significance of volatility transmission is 

overestimated when breaks are ignored in the bivariate GARCH model using specific data sets.
5
 

However, none of these studies give conclusive insight on the impact of a structural break on 

volatility transmission across assets or markets under different scenarios. Given the explosion in 

literature on the studies documenting volatility transmission and the widely documented breaks 

in different markets, a key question is: what is the general impact of structural breaks (if any) on 

volatility transmission mechanism and what are the possible practical economic implications? 

This is the research question we attempt to answer in this paper. 

In this paper, we show through extensive Monte Carlo simulations that structural breaks in 

volatility (i.e. volatility shifts) cause spurious volatility spillover effects when estimated using 

popular bivariate GARCH models. For example, using a large sample of 8000 returns, we show 

that a common break in the unconditional variance of reasonable magnitude across two 

independently generated series results in average rejection rates (of the null hypothesis of no 

significant shock and volatility transmission across series at 1% significance level) of 45% using 

the BEKK model of Engle and Kroner (1995). However, accounting for this induced volatility 

shift with dummy variable reduces this average rejection rate to the expected value of 1%. Our 

results further show that this bias of overestimation in the statistical significance of the volatility 

transmission becomes larger when CCC model of Bollerslev (1990) is used for estimation, when 

variables are correlated or when small samples are used. Our overall conclusions are robust 

across a wide variety of specifications and scenarios. Since volatility shifts are widely 

                                                           
5
 For example, Marcelo, Quiros and Quiros (2008) document that volatility spillover effects are reduced when 

breaks are incorporated in the small and large cap portfolios of the Spanish stock market. Huang (2012) show that 

there is bidirectional cross market volatility transmission between the UK and the US but this relation does not hold 

after controlling for structural breaks in the bivariate GARCH model. 
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documented in different markets and virtually all previous studies have ignored these 

phenomena, our findings cast doubt on the vast empirical studies documenting significant shock 

and volatility transmission across markets.  

Our results have important practical implications for building accurate asset pricing 

models, forecasting volatility of market returns, devising optimal strategies for hedging and risk 

management. As an example, we show via simulations that structural breaks in volatility have a 

substantial impact on the estimated hedge ratios. We also confirm our major simulation findings 

by using publicly available daily data from small cap and large cap indices from the US stock 

market ranging from January 1995 to June 2018. We conclude that researchers should 

endogenously detect volatility breaks and incorporate these breaks in the estimation model to get 

an accurate estimate of the volatility transmission dynamics across series over time.  

The next section describes the simulation design and section 3 provides the corresponding 

simulation results. Section 4 shows a hedging application as an example of economic 

implications of our study. Section 5 shows empirical results using the US stock market data 

confirming our simulation findings and section 6 concludes.  

 

2. Simulation Design 

 

We simulate returns using the bivariate Gaussian CCC model of Bollerslev (1990), with 

zero mean, wherethe variances and the covariance are given as 

 

𝜎1,𝑡
2 = 𝜔1 + 𝑎1𝜀1,𝑡−1

2 + 𝑏1𝜎1,𝑡−1
2                     (1) 

𝜎2,𝑡
2 = 𝜔2 + 𝑎2𝜀2,𝑡−1

2 + 𝑏2𝜎2,𝑡−1
2                     (2) 

𝜎12,𝑡 = 𝜌𝜎1,𝑡𝜎2,𝑡    (3) 
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Note here that the conditional correlation (ρ) is constant, while the conditional covariance (𝜎12,𝑡) 

dynamics depends on the conditional variance𝑠 (𝜎1,𝑡
2 , 𝜎2,𝑡

2 ) in a non-linear fashion. We consider 

both the case of zero correlation and a correlation of 0.5. 

In this model, there is a complete absence of variance spillovers as shocks of the first asset 

impact only on the variance evolution of the first asset, and lagged variances of the first asset 

impact only on the variance evolution of the first asset. The same holds for the second asset. 

Moreover, if the correlation is set to zero, the two assets are linearly independent. This also leads 

to a true hedge ratio of zero, irrespective of the presence of structural breaks in the volatility. In 

fact, under a CCC model, the hedge ratio (HR) between our two variables equals the ratio 

between the covariance and one of the variances (depending on which variable we want to 

hedge)   

 

𝐻𝑅𝑡 =
𝜎12,𝑡

𝜎1,𝑡
2 = 𝜌

𝜎2,𝑡

𝜎1,𝑡
                                      (4) 

 

We generate the two series from the model given in Equations 1-3 based on the different 

parametrizations reported in Table 1. The GARCH parameters and unconditional variance levels 

that we used are in line with empirical estimates commonly reported across a wide range of 

studies in different research fields (not only pure financial assets but also energy or commodity 

markets). Furthermore, we consider a wide variety of possible combinations of parameter values. 

We used different GARCH parameters and unconditional variance levels in the first five cases 

(P1 to P5) across the two series. This different levels of volatility persistence and different 

unconditional variance levels across the two series may cause different responses when structural 

breaks are induced. In turn, these elements might also impact on the dynamic evolution of the 

hedge ratios. To control for this possibility, we also report a sixth case (P6) and seventh case 
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(P7) where we keep the unconditional variances at the same level across the two series, and we 

set the model parameters very close to each other (P6) or identical (P7).  

We use four sample sizes (1000, 2000, 4000 and 8000) to closely analyze the role of the 

length of the time series in driving the results. Researchers in recent studies have used a sample 

size of about 2000 observations, which is equivalent to 8 years of daily data. Using a longer time 

sample increases the likelihood of a structural break and consequently you have to account for it, 

but shorter sample reduces the possibility of having a break. We run 1000 simulations in all of 

our cases. We repeated our major simulations with 5000 runs and found the results to be almost 

identical.
6
  

In our simulation setting of Table 1, the series do not include a break. We induce break in 

the middle of the sample by increasing the value of ω by 4, which leads to an increase in the 

unconditional variance by 4.
7
 We also considered different ways in which breaks are introduced. 

First, break is induced in the two variables but of the same magnitude. The unconditional hedge 

ratio is proportional to the ratio of unconditional volatilities. Therefore, if the structural break 

leads to an increase of the unconditional variances by a common scaling factor on both 

variances, the unconditional hedge ratio will be unaffected. However, if we scale up 

unconditional variances by different factors, the unconditional hedge ratio will change, 

depending on the ratio of the scaling factors. Consequently, in the second case, break is induced 

in the two variables but the break size is different. In this case, we scale up the variance intercept 

                                                           
6
 Table A1 in the Appendix shows one of these results highlighting the fact that using 1000 or 5000 number of 

simulations gives almost identical results. 
7
 We used the value 4 because the ratio between the 90% quantile and the 10% quantile of the unconditional 

variance of S&P 500 Index returns is 4. We also detected variance breaks in daily S&P 500 Index returns over the 

last twenty years using the method of Sanso, Arrago and Carrionet (2004) based on the original algorithm given by 

Inclan and Tiao (1994). We found the average upward shifts in variance to be of the magnitude of 4.5. Thus our 

magnitude of induced break is very sensible. Out of curiosity, we induced a small break of magnitude 2 and found 

that the size of break does have much effect on the reported spurious spillover and thus our overall conclusions 

reported in this paper remain unchanged (see Table A2 in Appendix). 
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by 4 in the first series and by 2 in the second series. In the third case, break is induced in only 

one of the two variables.
8
 

Our simulated series do not have volatility spillovers but we may have introduced 

structural breaks in the unconditional variance levels. Thus, we estimate using two specifications 

which allow for spillovers and their extended versions allow for the presence of a structural 

break in the model intercepts. In the latter case, we assume a perfect knowledge of the break 

date. The first specification we consider belongs to the VARMA-GARCH model class of Ling 

and McAleer (2003) which is given as 

𝜎1,𝑡
2 = 𝜔1 + 𝑎1𝜀1,𝑡−1

2 + 𝑏1𝜎1,𝑡−1
2 + 𝑐1𝜀2,𝑡−1

2 + 𝑑1𝜎2,𝑡−1
2                     (5) 

𝜎2,𝑡
2 = 𝜔2 + 𝑎2𝜀2,𝑡−1

2 + 𝑏2𝜎2,𝑡−1
2 + 𝑐2𝜀1,𝑡−1

2 + 𝑑2𝜎1,𝑡−1
2                     (6) 

𝜎12,𝑡 = 𝜌𝜎1,𝑡𝜎2,𝑡                                                                                 (7) 

This corresponds to a CCC model of Bollerslev (1990) augmented with the possible presence of 

variance spillovers. The occurrence of variance spillovers is associated with the presence of 

statistically significant coefficients in the set 𝜃 = {𝑐1, 𝑐2, 𝑑1, 𝑑2}. In this model, we test for the 

presence of variance spillover by verifying the null hypothesis that the parameter set 𝜃 has all 

elements equal to zero. The asymptotic distribution of the Wald test statistic follows from the 

results in Ling and McAleer (2013). We report tests at the 1% level of significance.
9
 

If we have a structural break, we estimate the augmented model as 

 

𝜎1,𝑡
2 = 𝜔1,𝐵𝐷𝑡 + 𝜔1,𝐴(1 − 𝐷𝑡) + 𝑎1𝜀1,𝑡−1

2 + 𝑏1𝜎1,𝑡−1
2 + 𝑐1𝜀2,𝑡−1

2 + 𝑑1𝜎2,𝑡−1
2      (8) 

𝜎2,𝑡
2 = 𝜔2,𝐵𝐷𝑡 + 𝜔2,𝐴(1 − 𝐷𝑡) + 𝑎2𝜀2,𝑡−1

2 + 𝑏2𝜎2,𝑡−1
2 + 𝑐2𝜀1,𝑡−1

2 + 𝑑2𝜎1,𝑡−1
2      (9) 

                                                           
8
 Note that we focus on cases where the structural break affects only the conditional variance intercepts and does not 

impact on the parameters governing the dynamic. We expect that a more diffused impact of structural breaks on 

models parameters will lead to even stronger results compared to those reported in this work. We leave this further 

generalization of our analysis to future work. 
9
 We also calculated all of our results at the 5% significance level, which showed the same overall results but those 

results are not reported to conserve space but are available on request.  



10 
 

𝜎12,𝑡 = 𝜌𝜎1,𝑡𝜎2,𝑡                                                                                                 (10) 

where we introduce a step dummy variable 𝐷𝑡 taking value 1 before the break date and 0 

afterwards. Thus we have two intercept values for each equation, one for the pre-break period 

(B=before) and one for the post-break period (A=after). 

The second specification we consider is the popular BEKK model of Engle and Kroner 

(1995) given as 

AABHBCCH tttt ''''1                                                                                          (11) 

where, in our bivariate case, C is a 22 lower triangular matrix with three parameters. B is a 22 

square matrix of parameters and shows how current levels of conditional variances are related to 

past conditional variances.  A is also a 22 square matrix of parameters and measures the effects 

of shocks on volatility (conditional variance). In the case of structural break, we augment the 

above model similarly to the CCC case, by introducing a step dummy in equation (11). Note that 

the step dummy induces a change in all the elements of the matrix C. 

The conditional variance and conditional covariance for each equation can be expanded, 

for the bivariate GARCH (1,1), as follows
 

tttttttt hbhbbhbaaaach ,22

2

21,121211,11

2

11

2

,2

2

21,2,11211

2

,1

2

11

2

111,11 22           (12) 

 

tttttttt hbhbbhbaaaacch ,22

2

22,122212,11

2

12

2

,2

2

22,2,12212

2

,1

2

12

2

22

2

121,22 22    (13) 

 

          ℎ12,𝑡+1 = 𝑐1𝑐12 + 𝑎11𝑎21𝜀1,𝑡
2 + (𝑎11𝑎22 + 𝑎12𝑎21)𝜀1,𝑡𝜀2,𝑡 + 𝑎12𝑎22𝜀2,𝑡

2  

                                   +𝑏11𝑏21ℎ1,𝑡
2 + (𝑏11𝑏22 + 𝑏12𝑏21)ℎ12,𝑡 + 𝑏12𝑏22ℎ2,𝑡

2                   (14)                                    

 

equations 12-14 show how shocks and volatility are transmitted across the two series over time. 

The absence of variance spillovers corresponds to a null hypothesis of having all parameters in 

the set 𝜃 = {𝑎12, 𝑎21, 𝑏12, 𝑏21} being all equal to zero. The distribution of Wald test statistic 

follows from the results in Comte and Lieberman (2003). 



11 
 

It should be noted that the BEKK model does not nest the CCC model. Therefore, the 

estimation of a BEKK model on data generated from a CCC model is exposed to model 

specification error. To control for this issue, we compare the estimation performances of the 

BEKK model (in terms of tests for absence of variance spillover) with those of the CCC model, 

when breaks are not present. This will allow us to verify the role of model misspecification in 

spurious variance spillover detection (i.e. to verify if a BEKK model estimated on data simulated 

from CCC data generating process show evidence of spurious spillovers). 

A further case covers the data generating processes where the correlation is equal to zero. 

In this case, the conditional covariances of the CCC model are (almost) zero by construction. In 

the BEKK case, testing for the absence of variance spillover might require a comparison of the 

cases where the set of tested parameters include the intercept 𝑐12. In fact, if we drop all variance 

spillover dynamic parameters, the conditional covariance dynamic becomes 

ℎ12,𝑡+1 = 𝑐1𝑐12 + 𝑎11𝑎22𝜀1,𝑡𝜀2,𝑡 + 𝑏11𝑏22ℎ12,𝑡                        (15) 

and if the true model has a null correlation, and therefore a null conditional covariance, the only 

possibility of having a null covariance in the BEKK case is to restrict the intercept to zero. We 

note that a non-null intercept will lead to non-null hedge ratios even when the two series are 

linearly independent. In the simulation analysis we report both cases, also assessing the role of 

the intercept when the data generating process includes a non-null correlation. Note that the need 

for testing including the intercept is indirectly related to the occurrence of variance spillovers. In 

fact, a distortion in the covariance intercept might lead to a spurious occurrence of statistically 

significant parameters in the off-diagonal elements of A and B. Furthermore, in the case of a data 

generating process with non-null correlation, the dynamics of the conditional covariance might 

be the source of spurious spillover effects.  
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3. Simulation Results 

 

Before we start to examine the impact of breaks on shock and volatility transmission, we 

run the benchmark case of no structural breaks to document any existing estimation bias 

associated with model misspecification. Panel A of Table 2 reports the rejection frequencies of 

the Wald test for verifying the null hypothesis of zero coefficients in the off-diagonal terms of 

the parameter matrices A, B and C (with and without intercept) of the BEKK model at the 1% 

significance level, when no breaks are induced. The average for all the cases for the sample size 

of 1000 is 0.397 (see last row), which is substantially greater than 0.01, indicating a substantial 

bias. However, this small sample bias is essentially eliminated as sample size becomes large, as 

the average of all cases for the sample size of 8000 is 0.023. Clearly a sample size of 8000 

observations, which is equivalent to 32 years of daily data, is the best choice among the four 

alternatives considered. It is interesting to note that most papers studying volatility transmission 

using daily data typically use a much smaller sample than 32 years.  

Next, we induce a common volatility break in both series and Panel B of Table 2 reports 

the rejection frequencies for the same Wald test. The results are quite strong. In all cases, the 

rejection rates go up substantially. For example, using 8000 observations which yield most 

accurate estimates, we find that inducing breaks results in rejection frequencies ranging from 

10.5% to 66.6 % across different cases (P1-P7). The average across different cases for the 

sample size of 8000 is 0.455, which is substantially greater than 0.01. This means on average, a 

researcher using 8000 (1000) observations will spuriously find significant volatility or shock 

transmission 45.5% (65%) of the time, when none is present as the two series are independently 

generated. Since common volatility breaks are a frequent occurrence in empirical data, this 
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finding casts doubt on numerous existing studies which ignore breaks and report significant 

shock and volatility transmission.
10

 

In order to solve this problem of spurious volatility transmission, we account for induced 

breaks via dummy variables and document the results in Panel C of Table 2. We see that in all 

cases, when breaks are accounted for, the rejection rates go back to the ‘no break’ level. For 

example, the average rejection rate across the different cases for the sample size of 8000 is 

0.012, which is almost identical to the expected value of 0.01. Thus a practical solution for 

researchers’ is to endogenously detect volatility breaks and then account them in the estimation 

process through dummy variables. We use this methodology in our empirical exercise in section 

5 as well.
11

 

In practice, we may observe two series that experience a simultaneous break but the size of 

the break is different across the series. In order to study that case, we scale up unconditional 

variance by 4 in the first series and scale up by 2 in the second series. The results are presented 

in Table 3. Our previous result of spurious volatility transmission is confirmed with this 

alternative volatility break dynamic (see Panel A, B and C). However, in real life most economic 

variables are correlated, so we introduce correlation of 0.5 between the two simulated series. 

Panel D of Table 3 shows that introducing correlation among the innovations in the data 

generating process lead to a clear worsening of the rejection frequencies. It is also interesting to 

note that these rejection frequencies increase with the sample size, thus longer sample period 

                                                           
10

 Recent studies have widely documented common structural breaks in variance among popular series. For 

example, breaks caused by the 2007-08 financial crisis are commonly reported across all major financial series (i.e. 

oil, gold, exchange rates, global stock market indices, etc.).  
11

 Also sometimes in real life, markets do not experience breaks simultaneously but experience with a time lag (may 

be due to different time zones or other reasons). In order to explore that possibility, we computed Wald test ratios 

when second series experience a break after time lag of 5 periods. The results are presented in Table A3 of 

Appendix and show almost identical results to the case when the two series experience synchronous break. 
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yields more frequent detection of spurious volatility spillover (even when we exclude the 

intercept from the analysis). 

In order to confirm that our results are not driven by the model choice, we re-estimated 

using the CCC model rather than BEKK model on the same simulated data. This is also 

important to evaluate since the estimation of a BEKK model on data generated from a CCC 

model is exposed to model specification error as the BEKK model is not nested in the CCC 

model. The results are even stronger than before and are presented in Table 4. Panel A reports 

the case of no break which shows no spurious spillover; as a matter of fact, the average rejection 

rate percentage for all cases is even smaller than the expected value of 0.01. Panel B shows that 

when a break of equal size is induced in both series, the average rejection rate percentage for all 

cases becomes very high (0.970 for a sample size of 8000). This shows that a researcher will find 

spurious volatility transmission 97% of the times using a sample of 8000, when this should be 

1%. Similar to the case of correlated variables documented earlier, we find that the spurious 

spillover rejection frequencies increase with the sample size. Panel C shows the problem of 

spurious volatility transmission persists even when you have a different size of break across the 

two series. However, Panel D reports that once breaks are accounted for with dummy variables 

then there is no detection of spurious spillover effect. Thus, our results show that the detection of 

spurious spillover is much larger when breaks are present, but also depend on model 

misspecification. How much is the contribution of each source can be evaluated by comparing 

Panel A of Table 4 (no break case estimated using CCC model) with Panel A of Table 2 (no 

break case estimated using BEKK model). This comparison allows us to verify the role of model 

misspecification in spurious variance spillover detection. This comparison shows that a 

substantial portion of the total bias is due to breaks while model misspecification bias is small. 
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More importantly, this model misspecification bias diminishes with increasing sample size and is 

almost zero in large samples (n=8000).   

We also consider a case where we induce an upward shift in unconditional variance in only 

one (the first) variable. Table 5 reports the rejection frequencies of the Wald test for the null 

hypothesis of zero coefficients in the off-diagonal terms of the parameter matrices A, B and C 

(with and without intercept) at the 1% significance level. We find that the spurious volatility 

spillover effect is substantially less than before and the rejection frequencies appear to be much 

closer to the expected values. This indicates that the spurious spillover detection depends also on 

the diffusion of the break among the considered series. 

Finally, we report the significance of the individual elements which comprise the ARCH 

and GARCH coefficients as shown in Equations 12-14 of the BEKK model, which dictate how 

shocks and volatility are transmitted across the two series over time. These estimates are 

documented in Tables A4-A6 given in the Appendix. Under the BEKK model the volatility 

transmission is associated with the coefficients c12, b12, b21, a12 and a21, which should all be equal 

to 1% if there is no volatility transmission. Not surprisingly, in Table A4, we see that in the case 

of no break, the frequencies converge to the expected values (1%). However, Table A5 shows 

clear evidence of spurious spillover as the elements (c12, b12, b21, a12 and a21) are substantially 

larger than 1%, when breaks are present. Table A6 shows that adding a dummy variable for the 

induced variance shift solves the problem as the rejection frequencies converge back to 1%.
12

  

 

 

                                                           
12

 Similar results (not reported) were obtained using the CCC model. Also, we have tables (not reported) showing 

that average estimated coefficients change when breaks are induced and then accounted for via dummies. Finally, 

throughout our simulation exercises, we have looked at the case of an increase in volatility. However, in real life, 

sometimes unconditional variance can suddenly decrease due to many reasons (for example, due to a stabilizing 

speech of a central bank governor). Out of curiosity, we also repeated some simulations where unconditional 

variance was decreased and we found similar results of spurious volatility transmission as documented earlier. 

Results are not reported but are available on request. 
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4. Economic Implications: A Hedging Application 

 

As mentioned earlier, correctly estimating volatility transmission mechanism across 

markets has serious economic consequences regarding optimal portfolio allocation (Kroner and 

Ng, 1998), risk management (Christoffersen, 2009) and dynamic hedging (Haigh and Holt, 

2002). Clearly financial markets participants are interested in knowing if shocks and volatility 

are significantly transmitted across different assets or markets. A complete analysis of all 

economic implications is beyond the scope of this paper, so here we document only the impact 

that breaks have on estimated optimal hedge ratios. Haigh and Holt (2002) demonstrate that a 

bivariate GARCH model that accounts for volatility spillover between spot and futures markets 

result in a better hedging strategy compared with a bivariate GARCH model which ignores 

spillover effects. Lien and Yang (2010) show that daily currency risk can be better hedged with 

currency futures when controlling for unconditional variance breaks using a bivariate GARCH 

model. Thus, correctly estimating volatility spillover is important in hedging decisions. 

Consider an investor who is holding an underlying asset but wants to hedge the price risk 

of the underlying asset by using its corresponding futures contract. At time t, the investor has to 

decide an optimal position in futures to minimize the risk of the combined positions of the 

underlying asset and futures at time t+1. The returns of the spot (rs,t) and futures (rf,t) are given at 

time t. The hedge ratio at time t is defined as the number of futures positions taken for each unit 

of spot position held at time t. The optimal (minimum variance) hedge ratio is given as 

Covariance (rs, t+1, rf, t+1) / Variance (rf, t+1).
13

 

Bivariate GARCH models are popularly used to estimate the above time-varying 

covariance and variance terms. Clearly mis-predicting covariance term between the two series 

                                                           
13 See Kroner and Sultan (1993) for a detailed proof on the optimal hedge ratio. Wang, Wu, and Yang (2015) 

provide a recent literature review on this topic.  
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will directly impact the optimal hedge ratio. However, two independently generated series will 

have a hedge ratio almost equal to zero as the covariance (numerator in the optimal hedge ratio 

formula) term is almost equal to zero. Thus, in this section, we focus on the case when the 

correlation between the two series is non-zero (0.5). Interestingly those series that have non-zero 

correlation are more likely to experience a common break, thus our hedging results are very 

relevant for financial market participants.
14

 

Table 6 shows the median and two quantiles of the hedge ratios for three sample periods 

(full, before break and after break) computed from the BEKK model using two correlated 

variables experiencing breaks of different sizes. For the case of P7 using a sample size of 8000, 

we find that the full sample median hedge ratio is 0.558 but median hedge ratio before the break 

is 0.496 and the median hedge ratio after the break is 0.691. This change in estimated hedge ratio 

is quite substantial. As shown in the last row and last column the average increase of median 

hedge ratio for all cases, for the sample size of 8000, is 39.7%. This means, on average, breaks 

change hedge ratios by almost 40% for the sample size of 8000. This substantial over-estimation 

of hedge ratio is pretty consistent across different sample sizes.
15

 

The two quantiles of estimated hedge ratios in Table 6 shows that there is a considerable 

increase in the variability of the hedge ratios across the simulations when we have a break. This 

is an interesting finding which implies that more variance in hedge ratios will result in 

substantial increase in portfolio rebalancing costs since traders will have to make more portfolio 

adjustments. It has been argued that when the variability of the estimated time‐varying hedge 

                                                           
14

 We also computed hedge ratios where correlation between the two series is zero. As expected, we found the 

median hedge ratios to be very close to zero, both before and after the break. However, the hedge ratios had more 

variability in the post-break case. Results are available on request.  
15

 We also generated the similar table (not reported) using the CCC model which shows similar results. It should be 

noted that these results are based on in-sample forecasts, which has limited use in real life situations. A pure out-of-

sample forecast would require estimating the model in-sample and projecting the variances one-step-ahead, with 

say, hundreds of estimations for each simulation, which is computationally prohibitively expensive and beyond the 

scope of the current paper. 
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ratios is large, the hedging performance from using that estimated hedge ratio is not as good 

relative to an unconditional (constant) hedge ratio (see Fan, Li and Park, 2016; Lien, 2010).  

 

5. Empirical Results 

In this section, we use empirical data in order to confirm our findings from simulations. 

Previous researchers have used weekly returns based on the CRSP index (top and bottom 

deciles) to highlight the estimation differences between different bivariate GARCH models (see 

Kroner and Ng, 1998; Ewing and Malik, 2005; among others). Following these studies, we use 

the S&P 500 Index to measure the performance of large ($6.1 billion worth or more) 

capitalization (cap) US stocks. S&P 600 Index is used to measure the performance of small cap 

stocks, as this index is designed to measure the performance of 600 small size ($1.8 billion worth 

or less) companies in the US. Our data set is better as it has daily frequency which gives more 

degrees of freedom and the data itself is publicly available. Also, a significant amount of assets 

are traded on these indices (exchange traded funds), which gives them market visibility. 

Specifically, we use daily returns from January 2, 1995 (S&P 600 index starts from this date) to 

June 15, 2018. This gives us 5905 observations. Descriptive statistics are provided in Table 7. It 

is important to note that the correlation between the two return series is 0.873. This high value of 

positive correlation is relevant for hedging decisions as we compute hedge ratios later in this 

section and the results are then compared with the simulation findings from the last section. 

In order to detect breaks in the unconditional variance, we use the methodology of Sanso, 

Arrago and Carrionet (2004) which is based on the iterative algorithm given by Inclan and Tiao 

(1994).
16

 We find 8 volatility breaks in each of the return series using this methodology and the 

                                                           
16 Interested readers are referred to Rapach and Strauss (2008) as they provide details of the methodology that we 

use. 
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break dates are shown in Table 8. Some breaks are very close to each other across series, while 

others are far apart. Even if the breaks are triggered by a common event across markets, we do 

expect different impact on volatility across markets as the rate of information flows are different 

across markets as suggested by Ross (1989).  

Next, we estimate the BEKK model as given in Equation 11 and report the results in Table 

9 (Panel A). We find that all four coefficient terms of the news and volatility spillover (for 

example, how h22 affects h11) are significant at 1%. Overall, the results show very significant 

shock and volatility transmission across the two series. The average estimated hedge ratio is 0.48 

over the whole sample period.  

Finally, we estimate the same BEKK model from above but account the breaks with 

dummy variables. Following Ewing and Malik (2005), the BEKK model with structural breaks is 

estimated as 

iiii

n

i

tttt DXXDAABHBCCH ''''''
1

1 


                      (16) 

This equation differs from the previous equation as it includes the last term.  Di is a 22 square diagonal 

matrix of parameters and Xi is a 12 row vector of break control variables, and n is the number of break 

points found in variance.  Since we find 8 break points in each series, so n is equal to 8.  First (second) 

element in Xi row vector represents the dummy for first (second) series. If the first series undergoes a 

volatility break at time t, then the first element will take a value of zero before time t and a value of one 

from time t onwards. The estimation results from the model which incorporates breaks are reported 

in Table 9 (Panel B).
17

 We find that all four coefficient terms which govern if news and volatility 

                                                           
17

 As Table 9 shows that the log likelihood increased after accounting for structural breaks indicating that the model 

with structural breaks give a better fit. The importance of structural breaks is further supported by the likelihood 

ratio statistic. The likelihood ratio statistic is calculated as 2[L(Θ1)-L(Θ0)] where L(Θ1) and L(Θ0) are the 

maximum log likelihood values obtained from the GARCH models with and without structural breaks, respectively. 

This statistic is asymptotically distributed as χ2 with degrees of freedom equal to the number of restrictions from the 

more general model (with breaks) to the more parsimonious model (without breaks). In our case, the likelihood ratio 
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transmits across markets are not significant at 5% level. Essentially the results show that there is 

no significant shock and volatility transmission between the two series once we account for 

breaks. The average estimated hedge ratio is 0.70 over the whole sample period, which has 

considerably changed from the previous value of 0.48. Thus empirical evidence reported here is 

in line with our overall conclusion drawn from our simulations that structural breaks cause 

spurious volatility transmission and estimated hedge ratios are substantially affected by these 

structural breaks. 

 

6. Conclusion 

There has been a proliferation in the literature documenting a significant transmission of 

shocks and volatility across assets or markets using bivariate GARCH models. Related literature 

has provided robust evidence to show that shifts in unconditional variance result in biased 

estimated volatility persistence within a univariate GARCH framework. In this paper, we 

combine the above two strands of literature by undertaking extensive Monte Carlo simulations 

showing that structural breaks in volatility cause spurious volatility spillover effects using 

popular bivariate GARCH models. Our overall conclusions are robust across a wide variety of 

specifications and scenarios. Moreover, this spurious volatility transmission effect is exacerbated 

when the variables are correlated or when the sample size is small. However, an important 

contribution from a practical standpoint, and one that is fairly simple to implement, is that using 

a dummy variable for the induced volatility shift virtually eliminates this bias. 

Since volatility shifts are a frequent occurrence in all assets or markets and virtually all 

previous studies have ignored them, our findings cast doubt on the vast empirical studies 

                                                                                                                                                                                           
statistic is equal to 2 (41529.92 - 41202.50) = 654.84. Thus we reject the null hypothesis of no change even at the 

1% significance level. 
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documenting significant shock and volatility transmission across assets or markets. We further 

show through simulations that this spurious volatility spillover effect is not only statistically 

significant but has substantial economic implications in terms of hedging implications. We show 

that induced breaks in volatility substantially change the average estimated hedge ratios.  

Finally, we confirm our major simulation findings by using publicly available daily data 

from small cap and large cap indices from the US stock market ranging from January 1995 to 

June 2018. We suggest that researchers endogenously detect volatility breaks and incorporate 

these breaks in the estimation model to get an accurate estimate of the volatility transmission 

dynamics across series over time. Failure to account for breaks will result in mis-predicting the 

degree of volatility transmission that actually exists between two assets or markets. Thus our 

finding has important implications for building accurate asset pricing models, forecasting 

volatility of market returns, dynamic hedging, and risk management. 
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Table 1: Simulation Design 

 

 

 First series Second series 

 

ω a b 
Unconditional 

Variance 
ω a b 

Unconditional 

Variance 

P1 0.08 0.10 0.80 0.80 0.08 0.10 0.65 0.32 

P2 0.08 0.05 0.90 1.60 0.08 0.10 0.80 0.80 

P3 0.08 0.02 0.97 8.00 0.08 0.10 0.80 0.80 

P4 0.08 0.05 0.90 1.60 0.08 0.10 0.65 0.32 

P5 0.08 0.02 0.97 8.00 0.08 0.05 0.90 1.60 

P6 0.08 0.06 0.92 4.00 0.08 0.03 0.95 4.00 

P7 0.08 0.05 0.90 1.60 0.08 0.05 0.90 1.60 

 
Notes:  We simulate returns using the bivariate Gaussian CCC model of Bollerslev (1990) which is given 

as 𝜎1,𝑡
2 = 𝜔1 + 𝑎1𝜀1,𝑡−1

2 + 𝑏1𝜎1,𝑡−1
2 ,  𝜎2,𝑡

2 = 𝜔2 + 𝑎2𝜀2,𝑡−1
2 + 𝑏2𝜎2,𝑡−1

2   and 𝜎12,𝑡 = 𝜌𝜎1,𝑡𝜎2,𝑡. P1-P7 refers 

to different cases of parametrization. The conditional correlation (ρ) is constant, while the conditional 

covariance (𝜎12,𝑡) dynamics depends on the conditional variance (𝜎2) in a non-linear fashion. We 

consider both the case of zero correlation and a correlation of 0.5. The break corresponds to a change in 

ω, which is multiplied by 4. 
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Table 2: Effect of a simultaneous same size break in both series on estimated volatility transmission using a BEKK model 

 

Notes: This table reports the rejection frequencies of the Wald test for verifying the null hypothesis of zero coefficients in the off-diagonal terms 

of the parameter matrices A, B and C (with and without intercept) of the BEKK model AABHBCCH tttt ''''1    at the 1% significance 

level. P1-P7 refers to different cases of parametrization as given in Table 1.  

 

 

  

  

Panel A 

 

Panel B 

 

Panel C 

    No break   Both series with break (intercept x 4) Both series with break (x4) + Dummy 

T Test 1000 2000 4000 8000   1000 2000 4000 8000   1000 2000 4000 8000 

P1 With Intercept 0.371 0.163 0.056 0.010 

 

0.739 0.672 0.604 0.651 

 

0.333 0.165 0.047 0.015 

 

No Intercept 0.321 0.147 0.050 0.013 

 

0.748 0.680 0.632 0.666 

 

0.296 0.131 0.045 0.013 

P2 With Intercept 0.384 0.181 0.041 0.009 

 

0.633 0.503 0.459 0.390 

 

0.268 0.105 0.025 0.004 

 

No Intercept 0.274 0.138 0.036 0.018 

 

0.601 0.474 0.472 0.428 

 

0.221 0.095 0.025 0.010 

P3 With Intercept 0.598 0.396 0.183 0.075 

 

0.739 0.672 0.588 0.618 

 

0.353 0.167 0.060 0.021 

 

No Intercept 0.274 0.244 0.133 0.049 

 

0.615 0.589 0.561 0.645 

 

0.235 0.147 0.045 0.023 

P4 With Intercept 0.537 0.319 0.088 0.024 

 

0.758 0.616 0.560 0.503 

 

0.430 0.215 0.071 0.025 

 

No Intercept 0.361 0.243 0.067 0.015 

 

0.732 0.621 0.578 0.537 

 

0.327 0.177 0.052 0.015 

P5 With Intercept 0.573 0.337 0.148 0.044 

 

0.710 0.559 0.456 0.378 

 

0.406 0.172 0.052 0.008 

 

No Intercept 0.372 0.220 0.132 0.027 

 

0.643 0.494 0.438 0.429 

 

0.327 0.146 0.050 0.014 

P6 With Intercept 0.347 0.161 0.050 0.010 

 

0.437 0.263 0.128 0.105 

 

0.282 0.083 0.018 0.001 

 

No Intercept 0.324 0.172 0.063 0.014 

 

0.452 0.292 0.177 0.157 

 

0.245 0.092 0.022 0.004 

P7 With Intercept 0.440 0.202 0.036 0.006 

 

0.651 0.570 0.491 0.400 

 

0.335 0.128 0.028 0.002 

 

No Intercept 0.375 0.170 0.037 0.009 

 

0.644 0.582 0.515 0.466 

 

0.303 0.115 0.040 0.006 

Average 0.397 0.221 0.080 0.023   0.650 0.542 0.476 0.455   0.312 0.138 0.041 0.012 
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Table 3: Effect of a simultaneous different size break in both series on estimated volatility transmission using a BEKK model 

 

  

Panel A 

 

Panel B 

 

Panel C 

 

Panel D 

  

No break 

 

Both series with break (1x4 1x2) 
Both series with break (1x4 1x2) + 

dummy 

Both series with break (1x4 1x2) + 

correlation 

T Test 1000 2000 4000 8000   1000 2000 4000 8000   1000 2000 4000 8000 

 

1000 2000 4000 8000 

P1 With Intercept 0.371 0.163 0.056 0.010 

 

0.602 0.591 0.565 0.699 

 

0.424 0.204 0.097 0.014 

 

0.821 0.898 0.963 0.990 

 

No Intercept 0.321 0.147 0.050 0.013 

 

0.499 0.523 0.565 0.690 

 

0.348 0.158 0.059 0.010 

 

0.542 0.662 0.879 0.969 

P2 With Intercept 0.384 0.181 0.041 0.009 

 

0.587 0.514 0.361 0.286 

 

0.320 0.129 0.022 0.008 

 

0.740 0.841 0.941 0.995 

 

No Intercept 0.274 0.138 0.036 0.018 

 

0.409 0.291 0.250 0.246 

 

0.240 0.108 0.026 0.012 

 

0.345 0.424 0.683 0.979 

P3 With Intercept 0.598 0.396 0.183 0.075 

 

0.737 0.716 0.642 0.548 

 

0.358 0.198 0.089 0.039 

 

0.866 0.967 0.997 1.000 

 

No Intercept 0.274 0.244 0.133 0.049 

 

0.379 0.332 0.368 0.396 

 

0.219 0.137 0.057 0.027 

 

0.346 0.569 0.921 1.000 

P4 With Intercept 0.537 0.319 0.088 0.024 

 

0.683 0.550 0.499 0.511 

 

0.488 0.264 0.088 0.034 

 

0.848 0.878 0.950 0.991 

 

No Intercept 0.361 0.243 0.067 0.015 

 

0.479 0.405 0.423 0.500 

 

0.357 0.204 0.055 0.013 

 

0.531 0.542 0.747 0.944 

P5 With Intercept 0.573 0.337 0.148 0.044 

 

0.680 0.609 0.576 0.502 

 

0.436 0.207 0.065 0.022 

 

0.699 0.749 0.834 0.950 

 

No Intercept 0.372 0.220 0.132 0.027 

 

0.491 0.401 0.414 0.432 

 

0.325 0.163 0.049 0.015 

 

0.391 0.388 0.569 0.874 

P6 With Intercept 0.347 0.161 0.050 0.010 

 

0.542 0.411 0.347 0.403 

 

0.367 0.174 0.054 0.006 

 

0.721 0.763 0.898 0.996 

 

No Intercept 0.324 0.172 0.063 0.014 

 

0.503 0.391 0.399 0.483 

 

0.296 0.156 0.052 0.010 

 

0.450 0.432 0.483 0.782 

P7 With Intercept 0.440 0.202 0.036 0.006 

 

0.613 0.550 0.498 0.536 

 

0.377 0.183 0.030 0.009 

 

0.721 0.762 0.909 0.982 

 
No Intercept 0.375 0.170 0.037 0.009 

 

0.549 0.475 0.466 0.551 

 

0.319 0.165 0.032 0.013 

 

0.496 0.466 0.603 0.782 

Average 0.397 0.221 0.080 0.023   0.554 0.483 0.455 0.485   0.348 0.175 0.055 0.017   0.608 0.667 0.813 0.945 
 

Notes: This table reports the rejection frequencies of the Wald test for verifying the null hypothesis of zero coefficients in the off-diagonal terms 

of the parameter matrices A, B and C (with and without intercept) of the BEKK model AABHBCCH tttt ''''1    at the 1% significance 

level. P1-P7 refers to different cases of parametrization as given in Table 1.  
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Table 4: Effect of a simultaneous same and different size break in both series on estimated volatility transmission using a CCC 

model  
 

 

 
Panel A 

 

Panel B 

 

Panel C 

 

Panel D 

    
No break 

  

Both series with  

break (intercept x 4)   

Both series with  

break (1x4 1x2)   

Both series with  

break (1x4 1x2) + dummy 

T Test 1000 2000 4000 8000   1000 2000 4000 8000   1000 2000 4000 8000   1000 2000 4000 8000 

P1 With Correlation 0.000 0.000 0.000 0.000 

 

0.064 0.269 0.803 0.999 

 

0.025 0.126 0.528 0.978 

 

0.001 0.001 0.000 0.000 

 

No Correlation 0.001 0.000 0.000 0.000 

 

0.133 0.445 0.911 0.999 

 

0.048 0.221 0.719 0.992 

 

0.002 0.000 0.000 0.000 

P2 With Correlation 0.005 0.001 0.000 0.000 

 

0.038 0.183 0.670 0.996 

 

0.008 0.031 0.483 0.991 

 

0.000 0.000 0.000 0.000 

 

No Correlation 0.005 0.001 0.000 0.000 

 

0.068 0.330 0.858 1.000 

 

0.012 0.085 0.725 0.998 

 

0.000 0.000 0.000 0.000 

P3 With Correlation 0.006 0.001 0.000 0.000 

 

0.080 0.200 0.650 0.988 

 

0.004 0.032 0.402 0.988 

 

0.001 0.000 0.000 0.001 

 

No Correlation 0.004 0.002 0.000 0.000 

 

0.132 0.336 0.823 0.997 

 

0.013 0.078 0.648 0.997 

 

0.001 0.001 0.001 0.001 

P4 With Correlation 0.002 0.000 0.001 0.001 

 

0.111 0.235 0.559 0.944 

 

0.021 0.085 0.387 0.938 

 

0.000 0.000 0.001 0.000 

 

No Correlation 0.003 0.000 0.000 0.000 

 

0.168 0.357 0.712 0.974 

 

0.046 0.173 0.562 0.981 

 

0.001 0.001 0.000 0.000 

P5 With Correlation 0.004 0.000 0.001 0.000 

 

0.053 0.065 0.251 0.809 

 

0.010 0.009 0.058 0.613 

 

0.002 0.001 0.000 0.000 

 

No Correlation 0.010 0.001 0.000 0.000 

 

0.078 0.129 0.480 0.943 

 

0.020 0.013 0.142 0.820 

 

0.003 0.001 0.000 0.000 

P6 With Correlation 0.006 0.001 0.000 0.000 

 

0.015 0.020 0.206 0.964 

 

0.020 0.003 0.032 0.401 

 

0.002 0.000 0.001 0.001 

 

No Correlation 0.006 0.001 0.001 0.000 

 

0.023 0.035 0.463 0.997 

 

0.026 0.005 0.069 0.653 

 

0.002 0.000 0.000 0.000 

P7 With Correlation 0.018 0.007 0.000 0.000 

 

0.037 0.058 0.419 0.979 

 

0.012 0.012 0.120 0.858 

 

0.000 0.001 0.000 0.000 

 

No Correlation 0.020 0.007 0.000 0.000 

 

0.059 0.147 0.674 0.995 

 

0.014 0.020 0.313 0.958 

 

0.001 0.001 0.000 0.000 

Average 0.006 0.002 0.000 0.000   0.076 0.201 0.606 0.970   0.020 0.064 0.371 0.869   0.001 0.001 0.000 0.000 
 

Notes: This table reports the rejection frequencies of the Wald test for verifying the null hypothesis of zero coefficients in the off-diagonal terms 

of the parameter matrices A, B and C of the BEKK model AABHBCCH tttt ''''1    at the 1% significance level. P1-P7 refers to 

different cases of parametrization as given in Table 1.  
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Table 5: Effect of a break in only one series on estimated volatility transmission using a 

BEKK model 

 

  

Second series with break (x4) 

 T Test 1000 2000 4000 8000 

 P1 With Intercept 0.062 0.026 0.024 0.019 

 

 

No Intercept 0.053 0.041 0.040 0.054 

 P2 With Intercept 0.274 0.279 0.221 0.104 

 

 

No Intercept 0.144 0.116 0.125 0.086 

 P3 With Intercept 0.387 0.401 0.241 0.085 

 

 

No Intercept 0.180 0.177 0.126 0.066 

 P4 With Intercept 0.153 0.091 0.058 0.022 

 

 

No Intercept 0.101 0.050 0.044 0.054 

 P5 With Intercept 0.222 0.220 0.151 0.089 

 

 

No Intercept 0.197 0.152 0.088 0.062 

 P6 With Intercept 0.067 0.046 0.033 0.021 

 

 

No Intercept 0.080 0.062 0.043 0.030 

 P7 With Intercept 0.107 0.093 0.102 0.063 

 

 

No Intercept 0.100 0.065 0.088 0.068 

 

 

 Average 0.152 0.130 0.099 0.059 

  

Notes: This table reports the rejection frequencies of the Wald test for verifying the null hypothesis of 

zero coefficients in the off-diagonal terms of the parameter matrices A, B and C (with and without 

intercept) of the BEKK model AABHBCCH tttt ''''1    at the 1% significance level. P1-P7 

refers to different cases of parametrization as given in Table 1.  
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Table 6: Impact of break on estimated hedge ratios using a BEKK model 

 

Notes: The hedge ratio at time t is defined as the number of futures positions taken for each unit of spot position held at time t. The optimal 

(minimum variance) hedge ratio is given as Covariance (rs, t+1, rf, t+1) / Variance (rf, t+1). BEKK model is given as AABHBCCH tttt ''''1   

. P1-P7 refers to different cases of parametrization as given in Table 1. Ratio = After / Before.  

  

1000 

 

2000 4000 8000 

Model Quantile Full Before After Ratio Full Before After Ratio Full Before After Ratio Full Before After Ratio 

P1 0.025 0.479 0.464 0.504 1.088 0.519 0.500 0.562 1.124 0.567 0.536 0.616 1.150 0.598 0.565 0.655 1.160 

 

0.500 0.866 0.770 1.077 1.398 0.866 0.767 1.065 1.389 0.878 0.775 1.053 1.358 0.866 0.779 1.041 1.337 

 

0.975 1.309 1.222 1.903 1.558 1.299 1.205 1.869 1.551 1.307 1.204 1.825 1.516 1.297 1.200 1.789 1.491 

P2 0.025 0.404 0.383 0.452 1.179 0.439 0.416 0.498 1.198 0.464 0.438 0.550 1.258 0.492 0.458 0.593 1.295 

 

0.500 0.785 0.713 1.006 1.412 0.786 0.705 1.015 1.439 0.784 0.702 1.018 1.450 0.793 0.698 1.024 1.466 

 

0.975 1.150 1.110 1.690 1.522 1.130 1.064 1.647 1.548 1.094 1.027 1.616 1.573 1.084 0.996 1.579 1.586 

P3 0.025 0.960 0.926 1.167 1.260 1.026 0.987 1.280 1.296 1.073 1.026 1.358 1.324 1.117 1.061 1.406 1.324 

 

0.500 1.641 1.588 2.231 1.405 1.652 1.580 2.293 1.452 1.665 1.574 2.311 1.468 1.678 1.573 2.306 1.467 

 

0.975 2.480 2.373 3.575 1.506 2.393 2.288 3.522 1.539 2.329 2.229 3.511 1.575 2.320 2.180 3.451 1.583 

P4 0.025 0.694 0.671 0.763 1.138 0.748 0.716 0.866 1.210 0.792 0.753 0.934 1.241 0.829 0.788 0.985 1.249 

 

0.500 1.211 1.106 1.567 1.417 1.209 1.095 1.582 1.445 1.218 1.093 1.574 1.440 1.206 1.096 1.557 1.421 

 

0.975 1.748 1.666 2.580 1.548 1.679 1.600 2.529 1.581 1.650 1.570 2.453 1.563 1.632 1.552 2.375 1.531 

P5 0.025 0.690 0.674 0.817 1.213 0.721 0.695 0.890 1.282 0.754 0.725 0.947 1.306 0.785 0.753 0.985 1.307 

 

0.500 1.150 1.124 1.517 1.350 1.146 1.116 1.557 1.396 1.147 1.112 1.579 1.420 1.154 1.110 1.579 1.423 

 

0.975 1.741 1.670 2.370 1.419 1.684 1.624 2.354 1.450 1.642 1.583 2.347 1.482 1.623 1.552 2.317 1.492 

P6 0.025 0.312 0.277 0.349 1.261 0.317 0.282 0.357 1.267 0.329 0.288 0.364 1.263 0.331 0.291 0.369 1.267 

 

0.500 0.531 0.482 0.663 1.377 0.525 0.475 0.666 1.403 0.526 0.477 0.661 1.386 0.521 0.476 0.662 1.390 

 

0.975 0.857 0.805 1.194 1.482 0.845 0.799 1.191 1.490 0.860 0.808 1.185 1.467 0.864 0.806 1.176 1.458 

P7 0.025 0.311 0.295 0.346 1.173 0.320 0.303 0.367 1.212 0.329 0.307 0.376 1.222 0.346 0.315 0.390 1.236 

 

0.500 0.564 0.504 0.688 1.366 0.557 0.500 0.686 1.372 0.559 0.496 0.689 1.391 0.558 0.496 0.691 1.395 

 

0.975 0.808 0.775 1.124 1.450 0.791 0.755 1.095 1.451 0.780 0.742 1.086 1.463 0.773 0.731 1.073 1.467 

Average       1.358       1.385       1.396       1.397 
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Table 7: Descriptive statistics  

 
 S&P 500 (large cap) S&P 600 (small cap) 

 Mean  0.0003  0.0004 

 Median  0.0006  0.0010 

 Maximum  0.1095  0.0811 

 Minimum -0.0947 -0.1163 

 Std. Dev.  0.0116  0.0133 

 Skewness -0.2706 -0.3163 

 Kurtosis  11.445  8.328 

 Jarque-Bera  17620.20 (0.00)  7083.207 (0.00) 

 Q(16) 98.95 (0.00) 54.43 (0.00) 

 
Notes: The sample is comprised of daily index returns from January 2, 1995 to June 15, 2018. The 

number of observations is 5905. Q(16) is the Ljung-Box statistic for serial correlation. Jarque-Bera 

statistic is used to test whether or not the series resembles normal distribution. Actual probability values 

in parentheses. The correlation between the returns of two series is 0.873. 
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Table 8: Structural breaks in volatility  

 

 

Notes: Time periods detected by modified ICSS algorithm. Sample period is from January 2, 1995 to June 15, 2018.  

  

Series 
Break 

Points 
         Time Period Standard Deviation 

S&P 500  

(large cap) 
8 

Jan 2, 1995- Dec 14, 1995 0.0048 

Dec 15, 1995- July 28, 1998 0.0094 

July 29, 1998-June 13, 2002 0.0133 

June 14, 2002-Oct 16, 2002 0.0224 

Oct 17, 2002-April 1, 2003 0.0143 

April 2, 2003-Sept 30, 2003 0.0097 

Oct 1, 2003-July 27, 2006 0.0069 

July 28, 2006- Dec 19, 2011 0.0162 

Dec 20, 2011-June 15, 2018 0.0079 

S&P 600 

(small cap) 
8 

Jan 2, 1995-Oct 14, 1997 0.0065 

Oct 15, 1997-July 29, 1998 0.0105 

July 30, 1998-Dec 17, 2002 0.0145 

Dec 18, 2002-July 18, 2007 0.0101 

July 19, 2007-June 6, 2010 0.0225 

June 7, 2010-Sept 23, 2010 0.0178 

Sept 24, 2010-July 31, 2011 0.0112 

Aug 1, 2011-Nov 29, 2011 0.0292 

Nov 30, 2011-June 15, 2018 0.0100 
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Table 9: Empirical estimates using BEKK model with and without structural breaks 

 

Panel A: Model ignoring Structural Breaks  

(Log likelihood: 41202.50) 

 
 

S&P 500 (large cap) conditional variance equation: 

2

,2,2,1

2

,1,22,12,11

-7

1,11 0.127 0.2360.1092.3964.9082.513  101.71 tttttttt hhhh                                                                                

               (2256.32)       (73.38)      (-59.31)          (46.65)          (16.61)       (-18.47)        (13.72)   

S&P 600 (small cap) conditional variance equation: 

2

,2,2,1

2

,1,22,12,11

-6

1,22 0.149 0.1510.0382.4473.139 -1.006  101.98 tttttttt hhhh                                                                                 

             (8015.35)         (35.06)        (-45.21)        (60.77)        (676.60)        (-20.70)          (10.41)   

 

 

 

Panel B: Model incorporating Structural Breaks  

(Log likelihood: 41529.92) 

 
 

S&P 500 (large cap) conditional variance equation: 

2

,2,2,1

2

,1,22

-4

,12,11

-7

1,11 0.002 0.025 0.067106.9570.0510.940  106.98 tttttttt hhhh                     

                  (2.90)        (52.95)         (-2.93)            (1.50)                 (4.32)           (2.38)             (0.97)   

S&P 600 (small cap) conditional variance equation: 

2

,2,2,1

2

,1

-4

,22,12,11

-5-6

1,22 0.088 0.008 102.130.8690.013 105.30  101.560 tttttttt hhhh     

                  (5.39)            (0.37)                (0.75)         (41.00)            (0.23)            (0.48)            (4.90)   

 

Notes: h11 is the conditional variance for the S&P 500 (large cap) return series and h22 is the conditional 

variance for the S&P 600 (small cap) return series. Conditional covariance series (h12) in each case is not 

reported since it does not capture the direct volatility transmission across the two series. Directly below 

the estimated coefficients (in parentheses) are the corresponding t-values. The mean equations included a 

constant term and a lagged return term (not reported for the sake of brevity). The coefficients for dummy 

variables for the BEKK model with breaks are not reported to conserve space as well. The estimated 

models satisfy the covariance stationarity condition put forward in Engle and Kroner (1995). Robust 

standard errors were calculated.  
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Appendix 

Table A1: Effect of the number of simulations (1000 or 5000) on our results 

   

     (replica of Panel B of Table 3) 

    

   

Both series with break (1x4 1x2) 

1000 simulations 

Both series with break (1x4 1x2) 

5000 simulations 

T Test   1000 2000 4000 8000   1000 2000 4000 8000 

P1 With Intercept 

 

0.602 0.591 0.565 0.699 

 

0.619 0.538 0.561 0.659 

 

No Intercept 

 

0.499 0.523 0.565 0.690 

 

0.506 0.476 0.544 0.668 

P2 With Intercept 

 

0.587 0.514 0.361 0.286 

 

0.575 0.472 0.376 0.289 

 

No Intercept 

 

0.409 0.291 0.250 0.246 

 

0.368 0.280 0.262 0.247 

P3 With Intercept 

 

0.737 0.716 0.642 0.548 

 

0.711 0.700 0.650 0.524 

 

No Intercept 

 

0.379 0.332 0.368 0.396 

 

0.371 0.343 0.362 0.383 

P4 With Intercept 

 

0.683 0.550 0.499 0.511 

 

0.657 0.553 0.491 0.515 

 

No Intercept 

 

0.479 0.405 0.423 0.500 

 

0.477 0.434 0.424 0.512 

P5 With Intercept 

 

0.680 0.609 0.576 0.502 

 

0.670 0.622 0.570 0.508 

 

No Intercept 

 

0.491 0.401 0.414 0.432 

 

0.482 0.397 0.409 0.465 

P6 With Intercept 

 

0.542 0.411 0.347 0.403 

 

0.512 0.392 0.360 0.403 

 

No Intercept 

 

0.503 0.391 0.399 0.483 

 

0.490 0.396 0.404 0.489 

P7 With Intercept 

 

0.613 0.550 0.498 0.536 

 

0.612 0.524 0.506 0.532 

 

No Intercept 

 

0.549 0.475 0.466 0.551 

 

0.521 0.456 0.484 0.555 

 

 Average   0.554 0.483 0.455 0.485   0.541 0.470 0.457 0.482 

            Notes: This table shows that number of simulations (1000 or 5000) does not influence our 

overall results. This table reports the rejection frequencies of the Wald test for verifying the 

null hypothesis of zero coefficients in the off-diagonal terms of the parameter matrices A, B 

and C (with and without intercept) of the BEKK model AABHBCCH tttt ''''1    at 

the 1% significance level. P1-P7 refers to different cases of parametrization as given in Table 1.  
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Appendix 

Table A2: Effect of the size of the break (4 or 2) on our results 

  

(replica of Panel B of Table 2) 

     

  

Both series with break (intercept x 4) Both series with break (intercept x 2) 

T Test 1000 2000 4000 8000   1000 2000 4000 8000 

 P1 With Intercept 0.739 0.672 0.604 0.651 

 

0.641 0.543 0.436 0.407 

 

 

No Intercept 0.748 0.680 0.632 0.666 

 

0.607 0.520 0.464 0.455 

 P2 With Intercept 0.633 0.503 0.459 0.390 

 

0.638 0.545 0.397 0.386 

 

 

No Intercept 0.601 0.474 0.472 0.428 

 

0.516 0.430 0.327 0.364 

 P3 With Intercept 0.739 0.672 0.588 0.618 

 

0.736 0.661 0.569 0.528 

 

 

No Intercept 0.615 0.589 0.561 0.645 

 

0.509 0.451 0.468 0.507 

 P4 With Intercept 0.758 0.616 0.560 0.503 

 

0.732 0.644 0.547 0.485 

 

 

No Intercept 0.732 0.621 0.578 0.537 

 

0.621 0.566 0.511 0.480 

 P5 With Intercept 0.710 0.559 0.456 0.378 

 

0.750 0.594 0.428 0.376 

 

 

No Intercept 0.643 0.494 0.438 0.429 

 

0.635 0.510 0.419 0.392 

 P6 With Intercept 0.437 0.263 0.128 0.105 

 

0.419 0.256 0.147 0.108 

 

 

No Intercept 0.452 0.292 0.177 0.157 

 

0.421 0.280 0.193 0.154 

 P7 With Intercept 0.651 0.570 0.491 0.400 

 

0.675 0.562 0.455 0.424 

   No Intercept 0.644 0.582 0.515 0.466   0.644 0.550 0.478 0.455 

 Average 0.650 0.542 0.476 0.455   0.610 0.508 0.417 0.394 

 

            Notes: This table shows that size of the break does not much influence our overall results. Specifically, 

This table reports the rejection frequencies of the Wald test for verifying the null hypothesis of zero 

coefficients in the off-diagonal terms of the parameter matrices A, B and C (with and without intercept) of 

the BEKK model AABHBCCH tttt ''''1    at the 1% significance level. P1-P7 refers to 

different cases of parametrization as given in Table 1.  
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Appendix 

Table A3: Effect of different timing of the break across series on our results 

       

   

          (replica of Panel B of Table 2) 

Both series with break (intercept x 4) 

Both series with break (intercept x 4) 

Break after a 5 period time lag 

T Test   1000 2000 4000 8000   1000 2000 4000 8000 

P1 With Intercept 

 

0.739 0.672 0.604 0.651 

 

0.726 0.694 0.623 0.626 

 

No Intercept 

 

0.748 0.680 0.632 0.666 

 

0.734 0.711 0.659 0.667 

P2 With Intercept 

 

0.633 0.503 0.459 0.390 

 

0.638 0.521 0.429 0.379 

 

No Intercept 

 

0.601 0.474 0.472 0.428 

 

0.603 0.500 0.429 0.424 

P3 With Intercept 

 

0.739 0.672 0.588 0.618 

 

0.736 0.649 0.592 0.584 

 

No Intercept 

 

0.615 0.589 0.561 0.645 

 

0.628 0.557 0.565 0.618 

P4 With Intercept 

 

0.758 0.616 0.560 0.503 

 

0.768 0.654 0.517 0.475 

 

No Intercept 

 

0.732 0.621 0.578 0.537 

 

0.754 0.653 0.538 0.501 

P5 With Intercept 

 

0.710 0.559 0.456 0.378 

 

0.703 0.581 0.433 0.336 

 

No Intercept 

 

0.643 0.494 0.438 0.429 

 

0.644 0.524 0.417 0.379 

P6 With Intercept 

 

0.437 0.263 0.128 0.105 

 

0.414 0.249 0.119 0.084 

 

No Intercept 

 

0.452 0.292 0.177 0.157 

 

0.430 0.275 0.170 0.131 

P7 With Intercept 

 

0.651 0.570 0.491 0.400 

 

0.621 0.569 0.454 0.422 

 

No Intercept 

 

0.644 0.582 0.515 0.466 

 

0.634 0.574 0.493 0.479 

Average   0.650 0.542 0.476 0.455   0.645 0.551 0.460 0.436 
 

Notes: This table shows our results are not affected by the fact that the changes in the unconditional 

variance (intercept) are asynchronous across series. Specifically, this  table reports the rejection 

frequencies of the Wald test for verifying the null hypothesis of zero coefficients in the off-diagonal terms 

of the parameter matrices A, B and C (with and without intercept) of the BEKK model 

AABHBCCH tttt ''''1    at the 1% significance level. P1-P7 refers to different cases of 

parametrization as given in Table 1. 
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Appendix 

Table A4: Estimated parameter estimates of volatility transmission using a BEKK model in case of no break 

 

Notes: This table reports the frequency of the 1% statistically significant individual parameters of the BEKK model given as

tttttttt hbhbbhbaaaach ,22

2

21,121211,11

2

11

2

,2

2

21,2,11211

2

,1

2

11

2

111,11 22   and 
tttttttt hbhbbhbaaaacch ,22

2

22,122212,11

2

12

2

,2

2

22,2,12212

2

,1

2

12

2

22

2

121,22 22     

P1-P7 refers to different cases of parametrization as given in Table 1. We see that frequency of 1% statistically significant coefficient go to 0.01 

for increasing size of the sample in the case of off-diagonal coefficients (12 and 21).  

  

 
P1 

   
P2 

   
P3 

   
P4 

   
P5 

   
P6 

   
P7 

   
T 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 

C11 0.36 0.61 0.87 0.98 0.30 0.54 0.86 0.99 0.11 0.23 0.49 0.82 0.19 0.33 0.71 0.94 0.12 0.24 0.50 0.86 0.52 0.88 0.99 1.00 0.36 0.60 0.86 0.98 

C12 0.25 0.10 0.03 0.01 0.24 0.13 0.02 0.01 0.46 0.33 0.13 0.03 0.37 0.24 0.06 0.01 0.33 0.25 0.11 0.02 0.15 0.10 0.03 0.00 0.17 0.10 0.02 0.01 

C22 0.31 0.59 0.82 0.96 0.29 0.65 0.93 1.00 0.11 0.35 0.66 0.92 0.20 0.47 0.85 0.99 0.08 0.33 0.70 0.96 0.10 0.33 0.71 0.96 0.14 0.41 0.81 0.98 

A11 0.86 0.97 1.00 1.00 0.58 0.81 0.96 1.00 0.44 0.78 0.96 1.00 0.66 0.88 0.98 1.00 0.39 0.74 0.95 1.00 0.89 0.98 1.00 1.00 0.63 0.85 0.96 0.99 

A12 0.04 0.03 0.01 0.01 0.05 0.03 0.01 0.02 0.02 0.03 0.02 0.02 0.05 0.04 0.01 0.01 0.06 0.05 0.03 0.02 0.06 0.03 0.01 0.01 0.07 0.04 0.02 0.01 

A21 0.05 0.03 0.01 0.01 0.05 0.02 0.01 0.01 0.04 0.03 0.01 0.01 0.06 0.04 0.02 0.01 0.07 0.04 0.02 0.01 0.06 0.04 0.03 0.02 0.07 0.03 0.03 0.01 

A22 0.61 0.78 0.90 0.99 0.89 0.98 1.00 1.00 0.93 0.99 1.00 1.00 0.77 0.92 0.99 1.00 0.77 0.94 0.99 1.00 0.46 0.70 0.92 0.99 0.64 0.83 0.97 1.00 

B11 0.97 1.00 1.00 1.00 0.96 0.98 1.00 1.00 0.96 0.99 1.00 1.00 0.97 0.99 1.00 1.00 0.97 0.99 1.00 1.00 0.99 1.00 1.00 1.00 0.95 0.99 1.00 1.00 

B12 0.17 0.10 0.04 0.02 0.11 0.06 0.04 0.03 0.08 0.09 0.07 0.04 0.12 0.11 0.04 0.02 0.14 0.12 0.09 0.04 0.17 0.11 0.03 0.00 0.18 0.09 0.03 0.01 

B21 0.08 0.04 0.01 0.01 0.12 0.07 0.02 0.01 0.09 0.08 0.04 0.02 0.10 0.06 0.02 0.01 0.13 0.07 0.03 0.01 0.16 0.10 0.06 0.03 0.15 0.09 0.03 0.01 

B22 0.69 0.75 0.80 0.90 0.95 0.99 1.00 1.00 0.98 1.00 1.00 1.00 0.77 0.85 0.93 0.99 0.97 0.99 1.00 1.00 0.96 0.98 1.00 1.00 0.96 0.99 1.00 1.00 
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Appendix  

Table A5: Estimated parameter estimates of volatility transmission using a BEKK model in break in both series 

 

Notes: This table reports the frequency of the 1% statistically significant individual parameters of the BEKK model given as

tttttttt hbhbbhbaaaach ,22

2

21,121211,11

2
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2
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2
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2
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2

12

2

22

2

121,22 22    

P1-P7 refers to different cases of parametrization as given in Table 1. Break size was shift in unconditional variance of 4. We see clear evidence of 

spurious spillover in intercept, ARCH and GARCH coefficients (stronger effect on GARCH coefficients in all cases). 

  

 

P1 

   

P2 

   

P3 

   

P4 

   

P5 

   

P6 

   

P7 

   
T 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 

C11 0.28 0.42 0.62 0.69 0.18 0.20 0.21 0.25 0.09 0.07 0.07 0.07 0.15 0.26 0.41 0.56 0.10 0.11 0.11 0.18 0.34 0.68 0.94 1.00 0.21 0.30 0.43 0.53 

C12 0.15 0.17 0.19 0.24 0.24 0.20 0.17 0.12 0.36 0.38 0.32 0.26 0.18 0.17 0.18 0.17 0.20 0.22 0.23 0.13 0.10 0.06 0.01 0.00 0.14 0.17 0.13 0.09 

C22 0.02 0.01 0.04 0.05 0.05 0.14 0.27 0.46 0.03 0.10 0.23 0.39 0.01 0.01 0.03 0.04 0.01 0.07 0.18 0.41 0.02 0.09 0.25 0.57 0.02 0.07 0.15 0.26 

A11 0.77 0.91 0.98 0.99 0.75 0.93 0.97 0.99 0.50 0.81 0.97 1.00 0.62 0.84 0.93 0.96 0.48 0.80 0.96 0.99 0.91 0.98 0.99 1.00 0.76 0.94 0.98 0.96 

A12 0.20 0.22 0.22 0.32 0.13 0.14 0.14 0.10 0.10 0.10 0.11 0.13 0.16 0.14 0.13 0.19 0.21 0.22 0.19 0.22 0.24 0.21 0.11 0.04 0.24 0.31 0.32 0.30 

A21 0.28 0.28 0.30 0.40 0.24 0.22 0.21 0.12 0.20 0.19 0.14 0.13 0.26 0.24 0.27 0.27 0.26 0.24 0.21 0.18 0.20 0.16 0.14 0.16 0.26 0.29 0.32 0.29 

A22 0.78 0.92 0.98 0.99 0.87 0.93 0.96 0.98 0.92 0.96 0.99 1.00 0.75 0.85 0.93 0.96 0.85 0.95 0.97 0.99 0.79 0.98 1.00 1.00 0.79 0.93 0.97 0.95 

B11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

B12 0.58 0.55 0.49 0.50 0.44 0.40 0.45 0.47 0.45 0.50 0.57 0.69 0.51 0.49 0.49 0.43 0.47 0.45 0.42 0.44 0.29 0.20 0.07 0.01 0.49 0.49 0.44 0.38 

B21 0.58 0.58 0.59 0.64 0.40 0.30 0.22 0.11 0.22 0.17 0.16 0.17 0.51 0.47 0.46 0.46 0.31 0.28 0.22 0.16 0.35 0.26 0.22 0.24 0.48 0.49 0.44 0.38 

B22 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table A6: Estimated parameter estimates of volatility transmission using a BEKK model in break in both series with dummy  

 
P1 

   
P2 

   
P3 

   
P4 

   
P5 

   
P6 

   
P7 

   
T 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000 

C11 0.49 0.70 0.91 0.98 0.51 0.76 0.95 1.00 0.29 0.55 0.83 0.98 0.32 0.53 0.80 0.96 0.30 0.57 0.87 0.99 0.64 0.91 0.99 1.00 0.54 0.74 0.94 0.99 

C12 0.13 0.07 0.03 0.01 0.09 0.04 0.01 0.00 0.22 0.10 0.03 0.02 0.18 0.09 0.02 0.01 0.17 0.06 0.02 0.01 0.07 0.04 0.01 0.00 0.07 0.03 0.01 0.01 

C22 0.46 0.66 0.85 0.97 0.49 0.79 0.96 1.00 0.40 0.70 0.93 1.00 0.39 0.70 0.92 0.99 0.34 0.66 0.93 1.00 0.34 0.68 0.91 0.99 0.34 0.65 0.92 1.00 

C11 0.51 0.72 0.91 0.98 0.55 0.78 0.96 1.00 0.42 0.63 0.85 0.98 0.35 0.56 0.80 0.97 0.43 0.66 0.89 0.99 0.72 0.93 0.99 1.00 0.57 0.76 0.95 0.99 

C12 0.13 0.06 0.03 0.01 0.07 0.04 0.01 0.00 0.14 0.07 0.02 0.02 0.16 0.09 0.02 0.01 0.10 0.06 0.02 0.01 0.05 0.04 0.01 0.00 0.06 0.03 0.01 0.01 

C22 0.48 0.68 0.86 0.97 0.55 0.81 0.97 1.00 0.55 0.80 0.95 1.00 0.44 0.72 0.92 0.99 0.49 0.70 0.94 1.00 0.49 0.74 0.92 0.99 0.43 0.69 0.92 1.00 

A11 0.85 0.97 1.00 1.00 0.51 0.77 0.96 1.00 0.31 0.64 0.94 1.00 0.61 0.89 0.99 1.00 0.34 0.66 0.96 1.00 0.87 0.99 1.00 1.00 0.59 0.83 0.98 1.00 

A12 0.03 0.03 0.02 0.01 0.04 0.03 0.01 0.01 0.04 0.03 0.02 0.01 0.05 0.03 0.02 0.02 0.07 0.05 0.02 0.01 0.05 0.03 0.01 0.01 0.06 0.03 0.02 0.02 

A21 0.05 0.02 0.02 0.01 0.04 0.03 0.01 0.01 0.03 0.02 0.02 0.01 0.07 0.03 0.02 0.01 0.07 0.05 0.02 0.01 0.06 0.03 0.02 0.01 0.08 0.03 0.02 0.01 

A22 0.56 0.74 0.91 0.99 0.86 0.98 1.00 1.00 0.93 0.99 1.00 1.00 0.74 0.92 1.00 1.00 0.70 0.92 1.00 1.00 0.34 0.67 0.92 1.00 0.59 0.85 0.97 1.00 

B11 0.97 0.99 1.00 1.00 0.93 0.97 1.00 1.00 0.99 1.00 1.00 1.00 0.97 0.99 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.98 1.00 1.00 

B12 0.17 0.10 0.03 0.02 0.09 0.07 0.04 0.02 0.10 0.09 0.05 0.03 0.13 0.07 0.03 0.02 0.15 0.10 0.05 0.03 0.14 0.07 0.02 0.00 0.14 0.07 0.03 0.01 

B21 0.08 0.03 0.02 0.00 0.11 0.06 0.01 0.00 0.07 0.05 0.02 0.00 0.10 0.05 0.01 0.01 0.12 0.05 0.02 0.00 0.13 0.07 0.04 0.02 0.14 0.08 0.03 0.01 

B22 0.67 0.71 0.81 0.92 0.94 0.99 1.00 1.00 0.97 0.99 1.00 1.00 0.75 0.82 0.93 0.99 0.95 0.99 1.00 1.00 0.97 0.98 1.00 1.00 0.95 0.98 1.00 1.00 
 

Notes: This table reports the frequency of the 1% statistically significant individual parameters of the BEKK model given as
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P1-P7 refers to different cases of parametrization as given in Table 1. Break size was shift in unconditional variance of 4. We see including a 

dummy variable takes care of the spurious volatility transmission as the frequency of 1% statistically significant coefficient go to 0.01 for 

increasing size of the sample in the case of off-diagonal coefficients (12 and 21).  
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