
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

1-1-2020

Improving M-Learners' Performance through Deep Learning Improving M-Learners' Performance through Deep Learning

Techniques by Leveraging Features Weights Techniques by Leveraging Features Weights

Muhammad Adnan
Kohat University of Science and Technology (KUST)

Asad Habib
Kohat University of Science and Technology (KUST)

Jawad Ashraf
Kohat University of Science and Technology (KUST)

Babar Shah
Zayed University, babar.shah@zu.ac.ae

Gohar Ali
Sur University College

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Adnan, Muhammad; Habib, Asad; Ashraf, Jawad; Shah, Babar; and Ali, Gohar, "Improving M-Learners'
Performance through Deep Learning Techniques by Leveraging Features Weights" (2020). All Works.
1980.
https://zuscholars.zu.ac.ae/works/1980

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F1980&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F1980&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/1980?utm_source=zuscholars.zu.ac.ae%2Fworks%2F1980&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Improving M-learners’ Performance
Through Deep Learning Techniques by
Leveraging Features Weights
MUHAMMAD ADNAN1, ASAD HABIB1, JAWAD ASHRAF1, BABAR SHAH2, AND GOHAR ALI3
1Institute of Computing, Kohat University of Science and Technology, KUST, Kohat, Pakistan (e-mail: adnan@kust.edu.pk, asadhabib@kust.edu.pk,
jawadashraf@kust.edu.pk)
2College of Technological Innovation, Zayed University, Abu Dhabi, UAE (e-mail: babar.shah@zu.ac.ae)
3Department of Information Systems and Technology, Sur University College, Sur, Oman (e-mail: goharali@suc.edu.om)

Corresponding author: Muhammad Adnan (e-mail: adnan@kust.edu.pk).

ABSTRACT Mobile learning (M-learning) has gained tremendous attention in the educational environ-
ment in the past decade. For effective M-learning, it is important to create an efficient M-learning model
that can identify the exact requirements of mobile learners (M-learners). M-learning model is composed of
features that are generated during M-learners’ interaction with mobile devices. For an adaptive M-learning
model, not only learning features are required, but it is also important to determine how they differ for
various M-learners, their weights, and interrelationship. This study proposes a robust and adaptive M-
learning model that is based on machine learning and deep learning (ML/DL) techniques. The proposed
M-learning model dynamically explores learning features, their corresponding weights, and association
for M-learners. Based on learning features, the M-learning model categorizes M-learners into different
performance groups. The M-learning model then provides adaptive content, suggestions, and recommen-
dations to M-learners in order to make learning adaptive and stimulating. For comparative analysis, the
prediction accuracy of five baseline ML models was compared with the deep Artificial Neural Network
(deep ANN). The results demonstrated that deep ANN and Random Forest (RF) models exhibited better
prediction accuracy. Subsequently, both models were selected for developing the M-learning model which
included the performance categorization of M-learners under a five-level classification scheme and assigning
weights to various features for providing adaptive help and support to M-learners. Our explanatory analysis
has shown that behavioral features besides contextual features also influence the learning performance of
M-learners. As a direct outcome of this research, more efficient, interactive, and useful mobile learning
applications can be developed that accurately predict learning objectives and requirements of diverse M-
learners thus helping M-learners in enhancing their study behavior.

INDEX TERMS Deep neural networks, Deep learning, Machine learning, Learners’ classification, Early
engagement, Adaptive M-learning, Feature weights

I. INTRODUCTION

Mobile devices have become an integral part of life and
society. A current-day challenge is to make Mobile learning
(M-learning) adaptive for those who use mobile devices for
learning purposes. For making M-learning effective, contex-
tual and behavioral features of individual learners have to be
considered. Contextual features include learning time, back-
ground knowledge, and learners’ preferences, etc. whereas
behavior features include M-learners interaction behavior
with mobile devices e.g. discussion group participation, pre-
ferred learning content types, problems posted and learning

performance, etc. The M-learning features are important for
the input, processing, and output of the M-learning model.
For a comprehensive and operational M-learning model,
these features are essential and act as fuel. Therefore, de-
velopment of a M-learning model that intuitively and in-
telligently selects learning resources for various learners to
improve their study behavior is the prime need of the modern
M-learning environments.

In this research, we examine the application of M-learning
model in predicting the learning performance of M-learners.
The specific focus of our research includes M-learners’ per-

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Improving M-learners’ Performance Through Deep Learning Techniques by Leveraging Features Weights

formance prediction, learning features weight tuning, fea-
tures ranking and their interrelationship for diversified M-
learners. M-learning model uses machine learning and deep
learning (ML/DL) algorithms for features identification, pro-
cessing, and analysis. M-learning model based on DL algo-
rithms is capable of considering the most relevant feature by
themselves, requiring little intervention and guidance by pro-
grammers. DL algorithms can analyze M-learners’ features
and properly classify them into various groups based on their
learning performance.

The deep learning paradigm uses statistical and machine
learning techniques to find feature hierarchies, weights, the
hidden patterns and features relationships based on Deep
Neural Networks (DNN) [1], [2]. The DNN differs from
Neural Networks (NNs) in the way that they use hidden
layers to find hidden patterns, modeling laws, and features
ranks. The basic idea of DL allows computers to learn from
the experience and apply those heuristics on the new data.
The more the data and experience, the accurate the final pre-
diction would be. Features weights and hidden patterns are
mathematical which can be easily identified and analyzed by
the ML/DL algorithms. Established on old data, features, and
rules, the DL algorithms can implicitly predict the outcomes
of new data. The accuracy of prediction and creation of rules
from features is an automatic process and improves with
newly obtainable features data.

Business intelligence (BI) refers to the techniques, tools,
procedures, and applications responsible for data elicitation,
analysis, integration and presentation for business informa-
tion [3]. The interest in DL/ML techniques has increased due
to advancements in information technology (IT), computers,
and the Internet. These advancements have triggered the
exponential growth in business centralized and distributed
databases. These databases hold important information suit-
able for making the intelligent decisions for organization
success. It is very difficult for human experts to analyze the
huge amount of data continuously growing and they may
overlook important business intelligence details. Hence, an
alternative solution is to use ML/DL techniques to extract
meaningful high-level information from raw data for timely
and right decisions.

Mobile devices continuously consume and generate a huge
amount of data offering fertile ground for BI. In M-learning
settings, there are multiple sources of data e.g. learning
management systems (LMS), online study groups, online
web and database servers, etc. DL and BI techniques col-
lectively can be used to answer several interesting ques-
tions. For example, DL and BI can tell us: which users
are the M-learners? How mobile devices could be used for
learning purposes? What types of learning content are liked
by particular learners? Can M-learning assist the traditional
learning approach? How learning performance of learners
can be predicted? and how M-learning can improve learners’
study performance? The focus of this research article is to
provide suitable answers to these questions. Modeling the M-
learning behavior of learners is important for both learners

and developers since it can help in a better understanding of
the user experience and ultimately improve it.

The primary challenge in creating the M-learning model is
to decide which learning features best represent the learning
behavior of learners and how to store and use them for input
to ML/DL algorithms. Proper learning features are important
for efficiently modeling the learner’s understanding and for
providing discerning information to M-learning systems [4].
The performance of M-learning systems is directly affected
by the right learning features. The other important challenge
is to decide how to guide M-learners in their learning process
once their features are analyzed and weighted. Moreover,
providing tailored learning content to the learners based on
their learning preferences and inclinations is a significant
need for M-learning environments.

For the last two decades, different ML/DL algorithms have
been developed, evaluated and their performance explored
in online and M-learning settings [5], [6]. It is crucial to
decide which type of ML/DL algorithm to choose for model-
ing the learning behavior of M-learners as proper learning
algorithm increases/decreases the response time of the M-
learning system [7], [8]. The right algorithm also affects the
overall performance of the M-learning system. For instance,
Naïve Bayes and Expectation Maximization are probability
estimation algorithms. Their performance is excellent in pro-
ducing efficient and correct results on training and testing
datasets but they can be quite expensive to implement [9].
Computation of conditional probability on every hypothesis
can be quite costly in terms of time and software resources.
Therefore, other types of ML algorithms are needed to create
an M-learning model. ML algorithms like K-means, Decision
Trees (DT), K-Nearest Neighbors (KNNs), Support Vector
Machine (SVM) and Density-based Spatial Clustering of
Applications with Noise (DBSCAN), etc. use classification
and clustering techniques [10], [11]. These algorithms can
accurately classify and cluster a small amount of dataset.
They are computationally and financially easier to implement
and interpret but the drawback of these algorithms is that
they need complex features engineering processes. They do
not scale with an increase in data and do not report the best
results in terms of performance and accuracy. For example, in
mobile and online learning settings, data related to learning
features is huge and changes frequently while these algo-
rithms are best for static features and a small amount of data.
The other disadvantages of traditional ML algorithms are that
they are complex, need domain expertise and a lot of human
interventions.

In stark contrast to the ML algorithms, the DL algorithms
use layers to create an artificial neural network similar to the
human brain network. With neurons processing inside each
layer, DL algorithms can learn and make decisions on their
own without human intervention. They can represent data at
different levels of granularity thus they intrinsically have a
greater level of flexibility and robustness. DL algorithms

are also ahead of the classical ML algorithm due to their
performance and accuracy when trained and tested on a huge

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Deep neural network based M-learning model for predicting mobile learners’ performance

amount of data [12]. One of the prime advantages of DL
algorithms over traditional ML algorithms is their capability
to excerpt abstract features information from low-level data
in an incremental fashion [13]. This technique eliminates the
hardcore features engineering process, human intervention,
and domain expertise. For example, DL algorithms can auto-
matically discover new features to be used for classification
while for ML algorithms, new features have to be provided
manually.

In this research, we analyzed the features of M-learners
using the Deep Artificial Neural Network (Deep ANN).
The features of M-learners were identified during their in-
teraction with the M-learning system. M-learners feature
data contained information about M-learners participation
in an online discussion group, type of learning contents
accessed, average study time, online problems posted, online
problems solved, quiz attempts, repetition rate, and module
performance. The online M-learning course consisted of
three JAVA and three Python programming modules. The
aforementioned features are independent whereas the final
performance is a dependent feature that deep ANN would try
to predict. The aim was to predict M-learners’ attainments
and identifying important features that affect the learning
performance of M-learners. M-learners were modeled using
a five-level classification scheme ranging from A (excellent)
to F (insufficient).

The rest of this article is organized as follows. In Sec-
tion 2, we review the applications of ML/DL algorithms in
mobile and web learning environments. Section 3 discusses
the dataset, its features and how it was acquired from the
M-learners. Section 4 explains three basic elements of the
M-learning model: 1) the M-learner model, 2) the M-learner
domain model, and 3) the M-learner adaptation model. Un-
derstanding these elements is important in understanding
the working of the M-learning system. Section 5 presents
the proposed M-learning system architecture which consists
of gathering M-learning features, features pre-processing,
features weight-tuning process, M-learning model genera-
tion, and M-learning model deployment. Section 6 briefly
describes baseline multi-class classification models and their
prediction accuracy when compared to deep ANN. Section
7 presents deep ANN model evaluation using accuracy, pre-
cision, recall, and F1 metrics. Section 8 discusses the early
engagement experiment and M-learning model evaluation
using the End-User Computing Satisfaction (EUCS) instru-
ment. Section 9 summarizes this article and points to future
directions.

II. RELATED WORK
M-learning systems emerged under the inspiration of stud-
ies in the area of Intelligent Tutoring System (ITS), E-
learning, adaptive learning and Computer-Aided Learning
(CAD) [14]–[16]. M-learning system architecture is con-
sidered as an extension of E-learning system architecture,
although both architectures have differences. Unlike in E-
learning systems, the learning in M-learning systems occurs

in different contexts. Context discovery, background knowl-
edge, learner profiling, learner tracking, learning preferences,
content discovery and management, and semantically in-
dexing important features are important steps during the
development of adaptive M-learning systems. In contrast to
E-learning systems, M-learning does not occur in predefined
space and time but befall whenever run time problem is
created and users need to get information about it [17]. M-
learning allows learners to address current problems, works
independently of social, temporal, spatial constraints and
keep them engaged in continuous professional development.

The generic ML/DL approaches used in educational set-
tings target prediction of learners’ dropouts [18], [19], per-
formance prediction [20]), predicting learners’ engagement
[21], [22], and failures prediction [23], [24], etc. Marbouti et
al., used linear regression (LR) to assess learners at-risk of
failure [11]. Using attendance, exams, assessment features,
the on-risk learners were predicted in different weeks of their
first year. Moreover, Marbouti and Diefes-Dux used different
ML algorithms including artificial neural networks, support
vector machine, decision tree, and naïve Bayes for predicting
risky learners and compared their results with LR as baseline
algorithm [25]. In educational settings, the use of DL models
is still in its infancy stage with a limited number of studies.
Fei and Yeung evaluated several DL models for prediction
of learners’ dropout [26]. They interpreted features gener-
ated from learners’ interaction with online learning systems
as time-series problems, processed learners’ features week-
wise, to analyze their study behavior and predict at-risk learn-
ers. Using LR and SVM as baseline models, they compared
the results of Recurrent Neural Network (RNN), Long Short-
Term Memory (LSTM), and hidden Markov model on the
feature set encompassing data about lectures viewed and
downloaded, assignment submitted, attempted quizzes, and
interaction on online forum platform.

In literature, there has been substantial debate on online
learning environments (M-learning, Virtual Learning Envi-
ronment (VLE)) features that impact the learning perfor-
mance of learners [27], [28]. Various studies in the past have
been carried out that identified the key reasons contributing
to the low performance of online learners [18], [29]. Jagger
and Xu in their research study revealed that student-instructor
communication is the key factor that strongly influences
the learning performance of online learners [30]. Similarly,
Shahiri and Husain conducted a comprehensive literature
review to determine the key features that contribute signifi-
cantly to classroom performance prediction [31]. J. Naren ar-
gued that assignments, quizzes, background knowledge prior
to final examination are the key features in predicting the final
performance of learners [32]. Another perception incorpo-
rates learners’ past performance in quizzes/assignments and
demographics as important contributors in assessing the final
performance. A study carried out by Daud et al., employed
family attributes such as family income, family expenditure,
learners’ characteristics, and learner’s study orientation to
assess their effect on learners’ performance [33]. They con-

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Improving M-learners’ Performance Through Deep Learning Techniques by Leveraging Features Weights

cluded that low income, extensive family expenditure, job
during study and health expenses are the key features impact-
ing the overall family environment and ultimately affecting
learning performance. Social influence, family education,
learner’s inherent features were also considered as significant
factors in the final performance prediction.

According to Kahraman et al., the design of adaptive
learning systems require three phases: 1) organizing learning
contents i.e. establishing a relationship between target learn-
ing content and prerequisite learning content, 2) identifying
learners needs, requirements, and features, 3) defining the
connection between learners needs and learning content [34].
The key to the successful adaptive system is to identify learn-
ers’ features, their weights and establishing weight difference
metrics amid learners’ features. In contemporary classroom
settings, there is a fixed and agreed curriculum with a single
instructor and organized learning content whereas, in M-
learning, the learning environment consists of temporary
learning contexts. The fundamental challenge in M-learning
is to identify the exact requirements of learners in temporary
contexts and assist them accordingly thus making learning
easy, adaptive, and meaningful. Nordin et al., presented a
theoretical mobile learning framework with the aim to assist
M-learners in lifelong learning [35]. Key design factors of
their mobile lifelong learning framework included mobile en-
vironment issues, learning theories, mobile learning context,
learning objectives and learning experience. According to V.
P. Dennen et al., both behaviorism and constructivism learn-
ing theories can be used in designing instructional materials
for M-learning [36]. They identified user mobile environment
issues which include collection of M-learners profile data,
inspecting learners’ mobility, considering mobile interface
design issues and learning context. In general, mobile de-
vices are considered as supporting tools when used in the
acquisition of knowledge in a different context. Because of
unrestricted time and space constraints, mobile devices can
also be used in different learning scenarios in pre/post activity
mode. The success of M-learning depends on better usability
offering professional Graphical User Interface (GUI) that
presents an appealing user experience, attractive interaction
along with clear goals and objectives.

Manwaring et al. used a cross-lagged modeling tech-
nique to understand learners’ engagement in higher educa-
tion blended classrooms [37]. The study found that learn-
ers’ course interest, orientation, course design, and learners’
perception features greatly influence learners’ performance
and engagement in the course. Mutahi et al. used ML and
statistical techniques to determine the relationship between
learners’ engagement and learners’ final performance score
[38]. They found that learners’ having high levels of en-
gagement in reading learning content, taking quizzes, sub-
mitting assignments earned higher grades in final examina-
tions. Aguiar et al. incorporated ML algorithms to investi-
gate the factors that greatly influence learners’ engagements
and performance in classroom settings [39]. Their results
showed that ML algorithms are very good in recognizing

learners’ facial expressions, eye gazes, gestures, and head
poses and subsequently categorizing learners’ into different
engagement categories. Atherton et al. found that learners
who accessed course content more often achieved better
scores than learners who accessed less course content [40].
Hamid et al. in their study employed Support Vector Machine
(SVM) and K-nearest Neighbor (KNN) algorithms to classify
learners into different performance/engagement categories
and the results concluded that SVM and K-NN are appropri-
ate ML algorithms for predicting learners performance and
engagement [6].

Baker presented a user model for the online adaption
process in which users’ preferences and background knowl-
edge were the key components [41]. Adaptive navigation
paths were established using user preferences and tailored
contents were delivered using background knowledge. With
an increase in a user performance, complex contents and
more challenging tasks were presented to the user so that
the user could control pace over the learning process. Bezold
developed a task model that considered users navigations
and interactions in online systems as a series of events
[42]. A ‘Probabilistic Deterministic Finite-State Automata
PDFA’ was used to label user behavior in online systems. For
predicting and estimating the user’s next activity ‘first-order
Markov chains’ were used. The first-order Markov chains
converted user interaction history into vector set and used
them as an input parameter for predicting user next activities.
The problem with task-based user modeling is that there is
no settled standard procedure for gauging the methods used
[43].

Guo et al. used an unsupervised sparse auto-encoder al-
gorithm to develop a classification model from learners’
unlabeled data [44]. The classification model was trained and
tested on a relatively large dataset aimed at pre-train hidden
layers. The classification was efficacious in an academic
setting for learners’ pre-warning mechanism. The main dis-
advantage of sparse auto-encoder is their failure to work
with time-series data and have a low network architecture
performance [45], [46].

Bouneffouf used a Markov decision process, a type of
reinforcement learning technique to create a ubiquitous rec-
ommender system established on the user’s changing context
[47]. The recommender system delivers appropriate sugges-
tions and recommendations to users based on their diverse
context. A new user is recognized by a recommendation
system based on his/her social group information and then
gradually recommends new suggestions and actions accord-
ing to the user’s interest. The recommendation system links
new actions according to the observed context of the user.
Associations depend on the user’s behavior and feedback to
the recommendation system. The researcher was successful
in solving users cold-start problem that commonly occurs
when new users have little experience with the existing
system and they hesitate to perform basic interactions.

Sun et al. in their pilot study designed a mobile service-
oriented system based on educational data mining (EDM)

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Deep neural network based M-learning model for predicting mobile learners’ performance

techniques, which targets organizing learning contents in the
virtual learning environment (VLE) to support collaborative
and microlearning in a massive open online course (MOOC)
[48]. To make learning easy and self-paced, learning content
was divided into small chunks that were supposed to be
learned by students in short time duration. Based on learners’
preferences, course chunks were sequenced into series of the
identified paths, therefore, to enable learners to make the best
use of fragmented pieces of time, to effectivity implicate
in MOOC learning. Without a doubt, mobile learning is
becoming more and more ubiquitous and a major means of
learning. As a result, MOOC providers frequently release and
update their mobile apps on major mobile operating systems
(i.e. Android, iOS, Windows phones, etc) to catch mobile
learning trends and to make learning easy and convenient for
M-learners.

Arguably, the popularity of M-learning is compelling
MOOC designers to allow M-learners to take MOOC courses
on mobile devices [49], [50]. Standard models of M-learning
look very much like traditional classroom learning where
learners are taken out from normal living environments to
spend five to six hours in learning stuff which they may or
may not encounter in their daily lives [51]. Recently, standard
M-learning models are swept out the door by new learning
methods where not only M-learning takes place inside a
normal work environment but smack right in the middle
of it. In a working environment where mobile devices are
considered an integral part of people, any type of learning
activity is carried out in very short bursts of the period.

In previous research studies, many techniques and method-
ologies have been established to model the behavior of online
learners, however, most of them had not been applied in real-
world situations [52], [53]. The main reason for this problem
turns out to be compelling learners to follow application
domain constraints and not considering their needs, learn-
ing features and preferences. Most of the time learners are
dependent on complex practices, theoretical models, system
complexity and low-level details. According to literature,
each learner’s feature is equally important in defining his/her
exact learning behavior [54], [55]. In other words, existing
learner modeling methods ascribe equal weights to each
feature in the learner modeling process. Not considering
features weights and their association is the main reason
for misclassification in the learner modeling process. The
modern DL algorithms have enabled the development of a
comprehensive learner model that can identify and represent
a broader range of learner features which were not possible
previously. DL algorithms such as deep Artificial Neural Net-
works (deep ANNs) with several hidden layers are capable
of determining significant features along with their weights
i.e. importance in classifying learners in different categories.
Assigning a weight to each feature is called the weight-
tuning process. The weight-tuning process improves learner
modeling prediction, classification, and estimation results.
M-learning system that can properly identify M-learners’
needs and features will enable them to easily customize

learning resources at a micro-level to meet their demands in
real-time.

III. DATASET
Unlike online web-based learning systems and static class-
room settings, the M-learning system faces more challenges
in collecting features dataset. There is a lot of distraction,
ambient noise, and instability for M-learners while they use
mobile devices. M-learning occurs without temporal and
spatial constraints. Therefore, it is important to know exactly
what features influence M-learners more and how these fea-
tures can be used for making the M-learning process easy
and adaptive. M-learning system shown in figure 1 collects
features data such as learning content accessed, learning
location, study time duration, navigation paths, and learn-
ers’ responses, etc. 374 M-learners participated in using our
proposed M-learning system to enhance their programming
skills. A programming course each for JAVA and Python
language was presented to M-learners on their Android-based
mobile devices which they had to complete in 2 months. Each
of these courses was further divided into three modules and
after completion of each module, a quiz was conducted. After
completion of each course, a final quiz was conducted to
determine the final grades of M-learners.

Table 1 contains the features of our dataset along with
their corresponding datatype domain values. The features are
divided into three categories namely ’behavioral features’,
’context features’ and ’final grade’. The behavioral features
are concerned with mobile learners’ interaction during a
study process such as participation in an online discussion
group, posting problems, solving problems posted, number
of times quiz was attempted, and topic repetition rate. The
context features contains the learning context information of
M-learners which includes features such as learning location,
types of learning content accessed, average study time in
daily routine, background knowledge, and modules perfor-
mance, etc. The final grade is derived feature acquired from
the final performance score. The final grade is a categorical
feature representing the grades (A, B, C, D, F) of M-learners.
The 13 behavioral and context features are independent fea-
tures that are given as input to the Deep ANN model to
predict the dependent final grades. The task of prediction
consists of obtaining an M-learning model that relates the
values of independent features with the values of dependent
feature i.e. final grade. The actual values of independent
features and their weights describe the mapping between
the independent predictor features and the dependent target
feature.

For the purpose of comparison, , classification and ef-
fectiveness of learning performance, five baseline multi-
class classification ML algorithms are used which include
Support Vector Machines (SVM), Random Forest (RF), K-
Nearest Neighbors (K-NN), Multi-class Logistic Regression
i.e. softmax regression, and Decision Trees (DT) along with
Deep Artificial Neural Network (DANN).

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Improving M-learners’ Performance Through Deep Learning Techniques by Leveraging Features Weights

TABLE 1: Dataset Features for M-learning Model

Features Description

AST

Average Study Time, (numeric: 1 =⇒ time between 1 and 10 mins, 2 =⇒
time between 11 and 20 mins, 3 =⇒ time between 21 to 30 mins, 4 =⇒
time between 31 to 40 mins, 5 =⇒ time between 41 to 50 mins and 6 =⇒
time > 50 mins)

NTRA
Number of times Text Resource Accessed, (numeric: 0 =⇒ text resource
accessed 0 times, 1 =⇒ text resource accessed 1 times, 2 =⇒ text resource
accessed 2 times, etc.)

NTVA
Number of times Video Resource Accessed, (numeric: 0 =⇒ video resource
accessed 0 times, 1 =⇒ video resource accessed 1 times, 2 =⇒ video
resource accessed 2 times, etc.)

MP1 Module 1 performance, numeric: (18 to 20 = very good), (15 to 18 = good),
(12 to 15 = average), (9 to 12 = satisfactory), (0 to 9 = fail)

MP2 Module 2 performance, numeric: (18 to 20 = very good), (15 to 18 = good),
(12 to 15 = average), (9 to 12 = satisfactory), (0 to 9 = fail)

MP3 Module 3 performance, numeric: (18 to 20 = very good), (15 to 18 = good),
(12 to 15 = average), (9 to 12 = satisfactory), (0 to 9 = fail)

APV
Number of times Academic Places Visited, (numeric: 0 =⇒ 0 times
academic places visited, 1 =⇒ 1 times academic places visited, 2 =⇒ 2
times academic places visited, etc.)

SPV
Number of times Social Places Visited, (numeric: 0 =⇒ 0 times social places
visited, 1 =⇒ 1 times social places visited, 2 =⇒ 2 times social places
visited, etc.)

ODGP Online Discussion Group Participation, (numeric: 0 =⇒ 0 times participated,
1 =⇒ 1 times participated, 2 =⇒ 2 times participated, etc.)

NPP No of times problem posted, (numeric: 0 =⇒ 0 times problem posted, 1
=⇒ 1 times problem posted, 2 =⇒ 2 times problem posted, etc.)

NPS No of times problem solved, (numeric: 0 =⇒ 0 times problem solved, 1
=⇒ 1 times problem solved, 2 =⇒ 2 times problem solved, etc.)

NTAQ No of times attempted quiz, (numeric: 0 =⇒ 0 times attempted quiz, 1 =⇒
1 times attempted quiz, 2 =⇒ 2 times attempted quiz, etc.)

TRR Topic Repetition Rate, (numeric: 0 =⇒ 0 times topic repeated, 1 =⇒ 1
times topic repeated, 2 =⇒ 2 times topic repeated, etc.)

FG Final Grades derived from the final performance score, dependent feature,
categorical: (A,B,C,D,F)

IV. ELEMENTS OF ADAPTIVE M-LEARNING MODEL
The three major elements of our proposed adaptive M-
learning model includes M-learner model, domain model,
and adaptation model. An understanding of these elements
is essential in knowing how the procedure of adaptiveness is
carried out in the M-learning process.

A. M-LEARNER MODEL

M-learner model is the main source of personalization and
adaptation in the M-learning process [56]. The features of
M-learner define her/his needs in the M-learning process.
The features of M-learners define a strong association be-
tween the M-learner model and the domain model in the M-
learning environment. M-learner model stores feature such
as background knowledge, performance states, and prefer-
ences, etc. that are used by the adaptation model to predict
M-learners’ knowledge about target learning object. The
domain-dependent features of learners corresponding to tar-
get learning objects in the M-learning environment are repre-
sented by the set such as <MLO1, MLO2, MLO3, MLOn>
where each element <MLOc> denotes M-learner context
features such as average study time, type of learning content

accessed, performance and places visited. The feature set also
encompasses behavioral features such as online discussion
group participation, posting problems, solving problems,
topic repetition rate, and several quiz attempts corresponding
to target learning object Oc.

It is obvious that each feature in the set <MLOc> will have
a different effect on the knowledge and performance level of
M-learner. Considering this fact, the current challenge is to
explore the weight/importance of each feature. The aim of
weight assignment is to find the real-values of each feature in
the set <MLOc> and model them on the learning behavior of
M-learners. The weighted feature set represents the weight of
each feature in the M-learner model composition.

B. M-LEARNER DOMAIN MODEL

The M-learner domain model comprises the learning objects
in the application domain. In adaptive learning settings, the
domain model represents learning objects that are in the
interest of M-learners [57]. The domain model is designed to
reflect the learner’s goals, topics, and objectives. At a generic
level, the goals and objectives of learning objects are defined
independently of any domain whereas, at a detailed level,

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Deep neural network based M-learning model for predicting mobile learners’ performance

the goals, topics, and objectives are defined at a granular
level. Because of the domain model, the ordered relationship
among different learning objects can easily be defined. The
instruction requirements for different learning objects in the
domain model are also defined and stored in the M-learning
system. The basic relationships in the domain model are the
prerequisite connections among different learning objects.
The prerequisite connections define the instruction require-
ments for different learning objects, which are to be fulfilled
by the M-learners.

According to the domain model, the set of learning objects
is represented by the set O, <O1, O2, O3. . . Om >. ‘m’
represents the total number of learning objects in the domain
model. The learning objects in the set O can be represented
in textual, video, audio, and animation form. The individual
features of a learning object Oc can be represented by the
set FOc <FOc1, FOc2, FOc3. . . FOcn>. ‘n’ denotes the total
number of features of learning object Oc. According to the
generic domain model, the features of learning objects should
be defined accurately to represent the environment where the
learning occurs.

Some of the features of learning object Oc are difficulty
level, learning duration, questions, and repetition number,
etc. The instructor can state the real-values of learning object
Oc features according to a measure of belief of the learner
understanding about the difficulty level of individual learning
objects.

C. M-LEARNER ADAPTATION MODEL
The purpose of the adaptation model is to deliver learn-
ing objects and activities to M-learners according to their
learning features defined in the M-learner model [58], [59].
In our proposed model, the adaptation model consists of a
Deep ANN algorithm that takes M-learner’s features as input,
processes them and based on their values, classify M-learners
into different performance categories. The adaptation model
generates adapted learning objects, objectives, and goals that
are according to the learning behavior of M-learner. The
customary e-learning and M-learning model uses a hired-
wired implementation which follows the one-size-fits-all ap-
proach. As a result, the hard-wired adaptation model cannot
differentiate among varying learners in providing them with
more accurate and appropriate educational content. Further-
more, hard-wired adaptation models limit their potential to
be scalable and applied to new types of learners. In stark
contrast, our proposed M-learner adaptation model, which is
based on the M-learning model, adapts to learning content in
real-time according to individual learner’s features and their
corresponding weights.

The goal of the adaptation model is to assist learners in
finding tailored learning objects from a large pool of learning
content (text, video, audio, etc.). For example, the adaptation
model can adaptatively select, sort, annotate, or partly hide
the target learning objects to make it easier for the learner
to choose where to go next. The adaptation model delivers
learning objects to the learner in such a way where a learner

can find an “optimal path” through the learning process. Fur-
thermore, the adaptation model tries to be more cooperative
and less directive as opposed to models used in the traditional
learning systems: It leaves learners in a state from where they
can choose which next knowledge item to learn or which
problem to solve. In an M-learning environment where there
is a lot of distraction, adaptive support becomes both natural
and efficient. In the M-learning context, where there is no
human teacher, tutor, or even peer nearby, the adaptation
model has to provide a one-stop solution for all the learner’s
needs. Together with adaptive learning objects and adaptive
information filtering processes, the adaptation model should
be more attractive than interactive due to its natural fit to
small screen size, low memory, and processing capabilities.

V. PROPOSED M-LEARNING SYSTEM ARCHITECTURE
Figure 1 shows the architecture of the proposed M-learning
system. It is based on the M-learning model. The modeling
process of M-learners is created and updated in five steps.
The first step collects and stores M-learners’ features data on
the online Google Firebase cloud. M-learning system tracks
and collects M-learners’ features such as learners’ participa-
tion in problem-solving, learning activities, navigation paths,
performance scores, study time duration, and topic repetition
rate about target learning objects, etc. Initially, the online
data represent a generic profile of the M-learners as they
are not processed, classified and weighted by the Deep ANN
model. In the second step, the stored data is preprocessed,
encoded, converted and normalized to useful data that be-
comes suitable to be further accepted and processed by the
Deep ANN model. In the third step of the proposed M-
learning system workflow, M-learners are classified by the
deep ANN model depending on real-values of features about
the target learning object. In the fourth step, the features
of M-learners are weighted by the weight-tuning process.
After that optimum weights are assigned to each feature, the
M-learners are further classified based on weighted values
of their features. In the fifth step, the M-learning model
developed for each M-learner is deployed on their mobile
devices for adaptive assistance and recommendations. Each
M-learner has a particular M-learning model that represents
his/her knowledge state, learning behavior and M-learning
interests.

A. EXPERIMENT RESULTS OF DEEP ARTIFICIAL
NEURAL NETWORK (DEEP ANN)
Deep Artificial Neural Network (Deep ANN) is a form of
DL/deep neural network (DNN) algorithm that we have se-
lected for M-learners’ classification and performance predic-
tion tasks [60]. Deep ANN relays on proper learners’ datasets
for its processing and prediction result generation. In our
study, the dataset includes the features records of learners’
study behavior stored on the online Google Firebase cloud.

Figure 2 shows deep ANN pictorially along with its input
layer, hidden layers, and an output layer. The deep ANN has
13 input neurons (for 13 input features instances), 2 hidden

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Improving M-learners’ Performance Through Deep Learning Techniques by Leveraging Features Weights

FIGURE 1: Proposed M-learning System Architecture

layers having 6 neurons each and an output layer having
5 neurons. The 5 output neurons in output layers contain
learner’s performance grades i.e. A, B, C, D, F. During deep
ANN implementation process we used Python Sequential
class to map the 13 input features to input layer neurons
and Python Dense class was used for randomly initializing
weights to deep ANN synapses (edges). The output layer
neurons yield learners’ performance represented by five-level
grades.

1) Deep ANN Learning Process
The deep ANN learning process i.e. M-learning model devel-
opment process comprises the following steps.

• Forward Propagation: for passing features instance
through deep ANN.

• ReLU: using rectifier activation function for neuron
activation in deep ANN hidden layers.

• Softmax function: to apportion learners’ performance
into final grades at the output layer.

• Back-propagation: feeding output error back to the
ANN to mitigate the output-generated error.

2) Forward Propagation
In the forward propagation technique, the M-learners’ data
flows from input through hidden layers towards the output
layer. For four-layered deep ANN (1 input layer, 2 hidden
layers, and 1 output layer) the learned function would be:

f(x) = f1(f2(f3(x))) (1)

Where:
f1(x) = learning process occurred at hidden layer 1
f2(x) = learning process occurred at hidden layer 2
f3(x) = learning process occurred at output layer

At each layer, the deep ANN learns different representa-
tion and weights of input features that gets more complex
with later hidden layers. Initially, the features instances are
of the form n * 13, where n is the total number of feature

instances and 13 are M-learners’ features. To speed up the
input process and to feed multiple inputs features records
at one time to the deep ANN input layer we used matrix
multiplication techniques. For performing matrix multiplica-
tion, first, we defined two matrices namely X and W1. The
input features are represented by matrix X having an N*M
dimension. N is the number of records in features dataset
whereas M represents a total number of M-learners’ features,
which in our case are 13. At the input layer, the weights of
synapses are represented by the matrix W1 matrix having 13
* 6 dimensions. 13 denote the input neurons whereas 6 are
the values of synapses weights attached to each neuron (6
synapses per neuron) at hidden layer 1. At the start of deep
ANN operation, the Python Dense class randomly initialized
the values of the weights on synapses. Initially, the values of
the weights chosen by Python Dense class are close to zero.
Mathematically, the matrix X and W1 are represented as:

X =

X11, X21, X31, X41, ... X131
X12, X22, X32, X42, ... X132
X13, X23, X33, X43, ... X133

.......
X1n, X2n, X3n, X4n, ... X13n

W 1 =

W11, W12, W13, W14, ...W16
W21, W22, W23, W24, ...W26
W31, W32, W33, W34, ...W36

........
W131, W132, W133, W134, ...W136

Multiplication of matrix X with W1 produces matrix c2

having dimension n * 6 as shown in equation 2. This ma-
trix multiplication technique would enable multiple features
instances to pass through deep ANN at the same time.

c2 = XW 1 (2)

During the deep ANN forward propagation process, the
neurons at hidden layer 1 perform two operations. First,

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Deep neural network based M-learning model for predicting mobile learners’ performance

FIGURE 2: Deep ANN Processing M-learners’ Features

the input matrix X representing the features instances is
multiplied by the weights of the corresponding synapses and
then multiplication result is added with other multiplication
results at a neuron where the synapses are connected to it.
Secondly, neurons at hidden layer one perform activation
function. We used Rectifier activation Function (ReLU) to
perform activation function on each entry in matrix c2.
Applying the ReLU activation function on c2 deduce new
equation as shown below.

e2 = f(c2) (3)

The result of the ReLU activation function is stored in
a new matrix e2. The ReLU activation function is applied
at each neuron in deep ANN hidden layer 1. To complete
the forward propagation process, deep ANN propagates the
values of e2 all the way to the output layer. The result at the
output layer is represented by ŷ which is deep ANN predicted
grades values for M-learners’ performance. The operation at
hidden layer 2 is the same as that of hidden layer 1. First,
the result generated from hidden layer 1 neurons i.e. e2 is
multiplied by hidden layer 1 synapse weights using matrix
multiplication technique. The dimension of matrix e2 is n *
6 whereas the dimension of the W2 matrix is 6 * 6. 6 * 6
represents synapses weights and neurons at hidden layer 2.
The matrix e2, when multiplied by matrix W2, yields matrix
c3 having size n * 6 and can be denoted by the subsequent
equation 4

c3 = e2 ∗W2 (4)

At the hidden layer 2, the ReLU activation function is
applied on each entry of the c3 matrix resulting in new matrix

e3. The dimension of e3 is same as c3 and can be written as:

e3 = f(c3) (5)

The resultant matrix e3 is further multiplied by layer 2
weights and the multiplication results are further added up
at the output layer. The multiplication and addition process
at the output layer produces matrix c4. At the output layer,
the Softmax function is applied to the entries of the c4 matrix
that generates the e4 matrix which represented by equation 6.

e4 = f(c4) (6)

Here e4 is the predicted final grades representing learners’
performance. The predicted final grades can also be repre-
sented ŷ. For improving the accuracy of the deep ANN, we
must minimize the difference between predicted final grades
ŷ and actual final grades y. The difference between ŷ and y
can also be measured by cost function C.

3) Training Deep ANN-based M-learning Model:
Back-propagation
The goal of the back-propagation technique is to optimize
synapses weights so as to minimize the difference between
predicted result ŷ and actual result y. Cost function C tells
us how wrong the predicted result was when compared to
the actual result. The cost function can be expressed by the
following equation 7.

C = Σ 1/2(y − ŷ)2 (7)

In the back-propagation technique, the weights on the deep
ANN synapses get updated causing the predicted result to

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Improving M-learners’ Performance Through Deep Learning Techniques by Leveraging Features Weights

come closer to the actual result. There are only two possibili-
ties for minimizing the value of cost function; 1) changing the
values of input features, 2) changing weights of deep ANN
synapses. We do not have control over changing the values of
input features, therefore, the only choice left for us is to adjust
synapses weights values. To lessen time and computation
resources, we used a technique called Stochastic Gradient
Descent (SGD) to find optimal values for synapses weights.
Assigning optimal values for synapses weights ensures min-
imum error in the predicted results. SGD updates synapses
weights after every single record propagation through deep
ANN, therefore, they have much higher fluctuation and abil-
ity to find global minimum values for synapses weights. SGD
works well on higher dimension data and training models
where the weights of the synapses have to be updated after
each training sample. The following steps were carried out in
back-propagation technique:

• Initialized synapses weights with random values and
calculated the error in the predicted result.

• Compared to the predicted result with an actual result
and measured the generated error.

• Generated error back-propagated from the output layer
to the input layer through hidden layers.

• Updated synapses weights according to how much they
are responsible for the generated error.

• Repeated the steps from 1 to 4 and updated synapses
weights after each observation.

• The whole training dataset is passed through deep ANN
which is an epoch.

• Redo more epochs until deep ANN gets suitable
synapses weights values that generate a minimum error
in the predicted result.

During the initial phases of the deep ANN learning pro-
cess, it may not find the proper association between indepen-
dent features and dependent feature. Therefore, deep ANN
has to be train with a back-propagation technique where if
the predicted result is not closer to the actual result, the error
is back-propagated into the entire deep ANN. The lower the
value of cost function C is, the lower will be the difference
between y and ŷ.

VI. EXPERIMENTAL RESULTS OF BASELINE
MULTI-CLASS CLASSIFICATION ALGORITHMS
In this section, we will discuss and apply baseline multi-class
classification algorithms to our problem dataset and later will
compare their prediction accuracy results with the deep ANN
results.

A. SUPPORT VECTOR MACHINES (SVM)
SVM can produce significant classification accuracy with
less computation power [61]. In practice, the SVM multi-
class classification tasks (k > 2) are disintegrated into a
series of binary tasks where the normal SVM technique is
directly applied. Two popular SVM ensemble schemes are
one-versus-all and one-versus-one [62].

1) One-versus-all strategy
In the SVM one-versus-all (OVA) strategy, a single model
is trained for one class. The samples of the class selected
are labeled as positive samples whereas other class sam-
ples are labeled as negatives. The following pseudo-code
demonstrates how we used SVM OVA in learners’ grades
classification.

1) Inputs: M, a model (SVM OVA algorithm for binary
classifiers)

2) Samples: (N: M-learner grades)
3) Labels y where yi belong to 1, . . . K is the label for Ni

learner grade

Although SVM OVA is a popular strategy, its implemen-
tation suffers from several problems. Firstly, the accuracy
of predicted value may differ between different binary clas-
sifiers. Secondly, if equal numbers of the class exist in a
problem set, the OVA see unbalanced distributions because
typically the negative classes it observes are much larger than
the positive classes.

2) One-versus-one strategy
In our dataset, the M-learners’ performance is categorized
into five classes (A, B, C, D, F), and thus OVO will create
n(n-1)/2 = 10 binary classifiers i.e. (A, B), (A, C), (A, D), (A,
F), (B, C), (B, D), (B, F), (C, D), (C, F), (D, F). If a learner’s
performance is to be classified, the obtained performance
grade is presented to each binary classifier of the ensemble
to create an array of individual classification, e.g. (A, A, A,
A, B, B, B, C, C, D). Finally, a win for one class is the number
of votes for that class. The class that has most votes wins. In
our scenario, A class has most votes, therefore, the learner
performance is classified into A class.

B. DECISION TREES (DT)
DT is a very common, simple and powerful technique for
multi-class classification [63]. The working of decision trees
is based on IF/ELSE conditional statements where if the
condition is true, a direction in tree construction is followed
else if the condition is false, an opposite direction is followed.

C. RANDOM FOREST (RF) ENSEMBLE METHOD
RF is considered as the most popular, simple, and flexible
multi-class classification algorithm [64]. RF develop a forest
consisting of several decision trees. The robustness and accu-
racy of RF increase with increasing the number of decision
trees. The RF creates an ensemble of decision trees learning
models which increases the overall accuracy result. As the
number of trees increases, randomness is increased in the
model which enables RF to select the most important feature
while deciding at the node.

We have used RF in the M-learning model to measure
the weights or the relative importance of each feature on
M-learners’ performance grades prediction. By looking at

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Deep neural network based M-learning model for predicting mobile learners’ performance

features’ weights and importance, the M-learning model
decides which learning path to recommend to M-learners
thus making their learning interesting and adaptive. The M-
learning model may also drop those features that do not
contribute enough to the prediction process.

D. K-NEAREST NEIGHBORS (KNN)
KNN is a supervised ML algorithm used commonly both
for classification and regression problems prediction [65].
When used for classification problems, KNN learning is
based on “how similar” is object features to neighbor objects
features. Initially, KNN chooses the number K of neighbors.
Upon receiving the unclassified data, the KNN algorithm
measures the distance (Manhattan, Euclidean, Minkowski,
or Weighted) from the new data point to all the other data
that has already been classified. Because KNN is based
on features similarity, the KNN model classifies a new M-
learner’s performance grade based on how much her/his
learning features are like already classified M-learners.

E. MULTI-CLASS LOGISTIC REGRESSION I.E.
SOFTMAX REGRESSION
Like SVM, multi-class logistic regression can also be used
for multi-class classification using two approaches: one-vs-
rest also known as one-vs-all and one-vs-one [66]. In this
study, we have 5 output classes (A, B, C, D, and F) therefore,
multi-class logistic regression will train 5 classifiers. For the
classification task, the probability of each class is predicted
and the class with maximum probability is selected. For
example, we have five model classifiers namely classifier_A,
classifier_B, classifier_C, classifier_D, classifier_F and the
probability we get during prediction/training phase is classi-
fier_A = 40%, classifier_B = 45%, classifier_C = 50%, clas-
sifier_D = 35% and classifier_F = 37%. As the probability of
class C in classifier_C is the highest therefore we predicted
class C and class C generated in the output result.

In one-vs-one approach, a total of n*(n-1)/2 classes are
trained, so if we have 5 classes, we train 5*(5-1)/2 = 10
classifiers. During the training process, binary pairs of classes
are considered, and the model classifier is trained on a
subset of data containing those pairs of classes. As a contrast
to the one-vs-rest approach, where each classifier predicts
probability, in a one-vs-one approach, each classifier predicts
one class during the classification phase. The class has been
predicted the most in the output class. 10 classifiers trained
for 5 grades could be classifier_AB, classifier_AC, classi-
fier_AD, classifier_AF, classifier_BC, classifier_BD, clas-
sifier_BF, classifier_CD, classifier_CF, and classifier_DF.
During classification, let’s say the output of each classifier
is: classifier_AB assign A, classifier_AC assign A, clas-
sifier_AD assign D, classifier_AF assign A, classifier_BC
assign C, classifier_BD assign B, classifier_BF assign B,
classifier_CD assign C, classifier_CF assign F, and classi-
fier_DF assign F. As class A is predicted the most, therefore
class A is predicted.

TABLE 2: Multi-class Classification Models Prediction Ac-
curacy Results of Final Grades in JAVA course

Models JAVA
SVM DT RF KNN MCLR Deep ANN

Model 1 81.89 83.44 84.65 80.56 80.25 85.96
Model 2 80.45 82.11 82.76 78.34 76.17 83.54
Model 3 76.61 77.48 78.34 75.45 72.82 80.23
Model 4 68.93 73.65 75.76 70.61 69.41 77.65

F. BASELINE MULTI-CLASS CLASSIFICATION
ALGORITHMS PREDICTIVE ACCURACY RESULTS
The parameters adjusted for the six ML models were RF
(e.g. T = 500), deep ANN (E = 150 epochs using forward-
propagation and back-propagation algorithm), KNN (man-
hattan_distance (l1), K = 3), SVM (kernel = RBF, C = 1.0,
degree = 3, gamma = 0.0, random_state = none), MCLR
(One-vs-all, Softmax, Optimizer = stochastic gradient de-
scent (SGD)). All DM models were evaluated using the
following four configurations:

Model 1: This model accepts all features as input except
the final grades (the output to be predicted);

Model 2: This model is similar to Model 1 except module
3 performance;

Model 3: This model is similar to Model 2 except module
2 performance; and

Model 4: This model is similar to Model 3 except module
1 performance.

To produce optimal predictive models, 10 runs of 10-
cross validation (a total of 100 simulations) were applied to
each configuration. Under the 10-cross validation scheme, a
dataset is shuffled randomly and is split into 10 equal groups.
At a time, each group is taken as a test group whereas the rest
of the nine groups are fitted into the model (acts as training
data). This way each group is assigned to testing set once
whereas it is assigned to training set 9 times. In the end, the
results of 10 rounds were averaged to estimate the predictive
accuracy of each model. The prediction accuracy results are
shown for each DM algorithm with four configurations in the
JAVA and Python courses in table 2 and table 3. Looking
at the results, we observed that the accuracy of ANN and
RF models was the highest in both the courses whereas
the MCLR model showed inferior accuracy. As expected,
the Model 1 in both courses achieved the highest accuracy.
The predictive accuracy of all the model decreases as we
remove the module 3 performance score (Model 2) module
2 performance score (Model 3), and module 1 performance
score (Model 4). These results revealed that the intermediate
performance score plays an important role in increasing the
final grades and are directly correlated to it.

Besides module scores, it is important to know how much
other learning features affect the final grades i.e. what is the
weight/importance of other features in increasing the final
grades of m-learners. We used Random Forest (RF) ensemble
model to determine the weight of each feature in predict-
ing the final grades of M-learners. As compared to other
ML/DM models, RF gives better accuracy, robustness, and

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Improving M-learners’ Performance Through Deep Learning Techniques by Leveraging Features Weights

TABLE 3: Multi-class Classification Models Prediction Ac-
curacy Results of Final Grades in Python course

Models PYTHON
SVM DT RF KNN MCLR Deep ANN

Model 1 85.55 87.54 88.45 83.64 81.65 89.47
Model 2 82.29 84.78 86.87 81.46 78.54 87.87
Model 3 72.76 80.56 83.67 74.12 75.65 85.45
Model 4 64.61 73.92 76.49 67.34 71.68 80.34

control over under-fitting and over-fitting problems. Looking
at feature weights and importance helps in understanding the
strength/weaknesses of M-learners during their interaction
with the M-learning system. Table 4 presents the relative im-
portance of independent features in percentage in increasing
the final grades of M-learners in the JAVA and Python course.
The result analysis revealed that modules performance scores
i.e. MP1, MP2, and MP3 overall have 38% (in JAVA course)
and 43.4% (in Python course) impact on learning outcomes
of M-learners which indicates that individually these fea-
tures are the most important and relevant ones in increasing
the final grades. Moreover, behavioral and context features
overall contribute 62.01% (in JAVA course) and 56.53% (in
Python course) in increasing the learning behavior of M-
learners. For instance, NTAQ (Number of times attempted
quiz) feature has 7.35% and 7.16% impact on final grades in
JAVA and Python course. Similarly, NTRA (Number of times
text resource accessed) feature has 7.25% and 6.41% impact
on final grades in JAVA and Python course. We also noticed
that TRR (Topic repetition rate) feature has the lowest impact
with 4.80% for the JAVA course and 4.08% for the Python
course which indicates that M-learners give less importance
to revising topic while they are using mobile devices.

Figure 3 and 4 plot the best decision trees for the RF
algorithm. Again, the modules’ performance MP1, MP2, and
MP3 are the most important features appearing at the root of
the trees whereas less important features such as TRR, SPV,
NPP, ODGP, and NTAQ appears at the bottom of the trees.
ML models that identify the most important features has three
benefits. First, the ML model is easy to understand. Second,
the overfitting of the model is reduced with the reduction of
the variance of the model. Finally, the computational cost and
time are reduced when we are training the model.

VII. DEEP ANN MODEL EVALUATION
As the deep ANN model was deployed on mobile devices, the
next task that we performed was evaluating the performance
of the deep ANN model via accuracy, precision, recall, and
F1 score metrics [67]. Model evaluation delineates how well
is the model doing? Is it a useful model? How the model
performs on new data? How good the model predictions are?
Moreover, these measures help models in providing help and
adaptive content to the right person. For example, if the deep
ANN model is helping a low average M-learner, the model
must be sure that the M-learners it is helping has a low
average performance. Further, the model also wants assist to
all low average M-learners. The model is making sure that no

low average M-learner is ignored/missed while guiding low
average M-learners.

Figure 5a and 5b presents the confusion matrices gener-
ated for the JAVA and Python course datasets using numpy,
sklearn, and seaborn ML libraries. The confusion matrices
were generated after the deep ANN model training process.
The deep ANN model was fitted on 85% training set in both
cases whereas 15% data was allotted for the test set. The FG
(final grades) predictions were compared to test data and each
prediction was identified as one of the 25 possible outcomes
of the confusion matrix.

The three main metrics selected for deep ANN model
evaluation are accuracy, precision, and recall. Accuracy is the
percentage of correct grade predictions made by the model on
the test data. Accuracy is calculated by dividing the number
of correct grades predictions by the total number of grades
predictions.

Accuracy =
Correct Grades Predictions

Total number of Grades predictions
Calculating the accuracy of the deep ANN model for

the JAVA and Python course confusion matrices gives the
following results.

Accuracy (matrix A) =
True Positives + True Negatives

TruePositives + FalsePositives + FalseNegatives + TrueNegatives

Accuracy(matrix A) =
TP + TN

TP + FP + FN + TN
Putting values from confusion matrix A into the above

equation yields

Accuracy(matrix A) =
2 + 9 + 10 + 5 + 23

57
Accuracy (matrix A) = 85.96
Now calculating accuracy for matrix B

Accuracy(matrix B) =
(3 + 7 + 9 + 7 + 25)

57
Accuracy (matrix B)= 89.47
For the JAVA and Python course datasets, we cannot solely

rely on accuracy metrics as the data is not balanced which
means that final grades (FG) are not distributed equally.
Increasing only the model accuracy is not enough, it should
also be useful, reliable, and valuable. If a small percentage
of M-learners (let’s say 1%) are getting F grade, we could
build a model that almost always accurately predicts whether
M-learners are getting passing grades or not, we would have
designed a model that is 99% accurate but 0% reliable and
useful. Therefore, we increase the performance of a model by
introducing other metrics such as precision and recall which
are discussed in the following section.

Precision is obtained by dividing true positive predicted
upon true positive predicted and false-positive predicted.

Precision =
True Positives

True Positives + False Positives

While calculating precision, first individual grade preci-
sion is obtained and then we calculate the average precision
of a model.
Precision (matrix A) =

TP

TP + FP
P (A) = .66 P (B) = 1 P (C) = .71 P (D) = .62 P (F) = 1

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Deep neural network based M-learning model for predicting mobile learners’ performance

TABLE 4: Features Relative Importance in the JAVA and Python Course in Percentage

Courses Features Relative Importance in Percentage
MP1 MP2 MP3 NTAQ NTRA AST NPP APV NVRA NPS ODGP NPS TRR

JAVA 12.50 14.02 11.45 7.35 7.25 6.99 6.58 6.28 6.03 5.97 5.60 5.12 4.80
Python 14.31 15.47 13.66 7.16 6.41 6.41 5.85 5.80 5.59 5.25 5.05 4.89 4.08

FIGURE 3: Short RF Tree for JAVA Course Important Features

FIGURE 4: Short RF Tree for Python Course Important Features

(a) M-learning Model Confusion matrix Generated for JAVA
Course

(b) M-learning Model Confusion matrix Generated for Python
Course

FIGURE 5: M-learning Model Confusion Matrices

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Improving M-learners’ Performance Through Deep Learning Techniques by Leveraging Features Weights

Average Precision (matrix A) = P (A) + P (B) + P (C) + P (D) + P (F)

5

Average Precision (matrix A) =
.66 + 1 + .71 + .62 + 1

5
Average Precision (matrix A) = .80

Similarly, we calculate the precision of matrix B.

Precision (matrix B) =
TP

TP + FP
Average Precision (matrix B) =
P (A) + P (B) + P (C) + P (D) + P (F)

5
P (A) = 1 P (B) = .77 P (C) = 1 P (D) = .87 P (F) = .89

Average Precision (matrix B) =
1 + .77 + 1 + .87 + .89

5
Average Precision (matrix B) = .90
and in percentage it is = 90%
Calculating the recall of matrix A and matrix B yields the

following results.
Recall (matrix A) =

True Positives

True Positives + False Negatives
First, individual grade recall is determined for matrix A

and then the average recall value is calculated for the model.

Recall (matrix A) =
TP

TP + FN
R(A) = 1, R(B) = .64, R(C) = .83, R(D) = .83, R(F) = 1

AverageRecall (matrix A) =
R(A) + R(B) + R(C) + R(D) + R(F)

5

Average Recall (matrix A) =
1 + .64 + .83 + .83 + 1

5
Average Recall (matrix A) = .86
In percentage the average recall = 86%
Next, the recall value for matrix B is calculated.

Recall (matrix B) =
TP

TP + FN
First, individual grade recall for matrix B is determined

and then the average recall value is calculated for the model.
R(A) = .6, R(B) = 1, R(C) = .9, R(D) = .7, R(F) = 1

AverageRecall (matrix B) =
R(A) + R(B) + R(C) + R(D) + R(F)

5

Average Recall (matrix B) =
.6 + 1 + .9 + .7 + 1

5
Average Recall (matrix B) = .84
In percentage the average recall = 84%
Recall metric ensures that we are not overlooking few M-

learners who are getting low or high-performance grades.
Suppose if only 1% of M-learners are getting F grade and
99% are getting A, B, C, D grades then the model would
predict the grades of M-learners having A, B, C, and D with
99% accuracy. This means that the accuracy of the model is
99% and it is very likely that M-learners having F grades may
be categorized in higher grades. Recall metric ensures that we
are not overlooking those 1% M-learners having F grades. On
the other hand, the precision metric ensures that we are not
misclassifying too many M-learners as having F grade when
in fact they don’t. Thus it is very important to evaluate the ML
model in terms of both precision and recall metrics. The last
metric which we used to evaluate our ANN model was the
F1 score. F1 score maintains a balance between precision and
recall for the M-learning model. The equation for calculating
the F1 score is:

F1 score = 2 ∗ Precision ∗Recall

Precision + Recall

Calculating F1 score for matrix A and matrix B yields:

F1 Score (matrix A) = 2 ∗ .80 ∗ .86

.80 + .86
F1 Score (matrix A) = .82

In percentage, the F1 score for matrix A = 82%.
Similarly, we calculate the F1 score for matrix B

F1 Score (matrix B) = 2 ∗ .90 ∗ .84

.90 + .84
F1 Score (matrix B) = .86

In percentage the F1 score for matrix B = 86%
As the F1 score for matrix B is greater than the F1 score

of matrix A, this means that the model built on the Python
course dataset will give better results and will work well on
unbalanced datasets.

VIII. EARLY ENGAGEMENT EXPERIMENT
After training and testing the deep ANN-based M-learning
model, an early engagement experiment was performed on
those M-learners who achieved grade D and F in the JAVA
and Python course. The purpose of the early engagement
experiment was to determine whether early engagement in
the learning process improves learning performance or not.
The total number of M-learners who obtained grades D and
F in the JAVA course were D = 52 and F = 146 whereas
the total number of M-learners who obtained grades D and
F in Python course was D = 46 and F = 168. M-learners
obtaining D and F grades in the JAVA course were divided
equally into control (the control group for JAVA course M-
learners, CJ = 99) and experimental (the experimental group
for JAVA course M-learners, EJ = 99) groups. Similarly, M-
learners obtaining D and F grades in Python course were
divided equally into control (the control group for Python
M-learners, CP = 107) and experimental (the experimental
group for Python course M-learners, EP = 107) groups. The
early engagement experiment lasted for one month where CJ
and CP M-learners were independent of early engagement
and received normal programming exercises and learning
material. On the other hand, the EJ and EP M-learners
were intervened during their learning process by providing
them adaptive programming content, motivational/adaptive
messages, and adaptive navigational paths. The M-learning
model can help both new and old M-learners in providing
them adaptive help and making their learning self-paced. The
M-learning model does not have information about new M-
learners but it has learned from its experience/training about
the features of different M-learners. Based on its experience,
the M-learning model can guide new M-learners proactively
and adaptively before they give their final examination thus
motivating and guiding M-learners to increase their study
performance. The EJ and EP group M-learners were engaged
in their learning process through the following measures:

• Sending adaptive messages to EJ and EP M-learners
according to their M-learning preferences. The purpose
of sending adaptive messages to M-learners was to pro-
vide them adaptive learning material and support during
their M-learning process. Some examples of adaptive

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Deep neural network based M-learning model for predicting mobile learners’ performance

messages are 1. “Please revise the earlier topics if you
want to study the new topic”. This adaptive message is
provided to those M-learners who do not revise their
study. 2. “Please see chapter 5, 6 of Deital & Deital book
to know more about classes and objects in JAVA”. This
message is sent to those M-learners who like reading
textbooks as oppose to watching educational videos
during their study.

• Sending motivational messages to EJ and EP M-learners
according to their M-learning performance. The aim
of sending motivational messages was to increase M-
learners’ motivation towards learning. Some examples
of motivational messages are 1. “Continues poor per-
formance will put you in a ceased/relegation state”. 2.
“Programming is learned by doing it. Try to practice
programming exercise daily for at least 2 hours”. 3.
“Congratulations! You have improved your program-
ming skills and now you are in the top 10 in your
class”. 4. “Please see the newly uploaded video by your
instructor on the Google Groups regarding exception
handling”.

In motivational messages, the factors of fear, hope, and
suggestions were included in order to increase the M-learners
inspiration towards learning [68].

A. EARLY ENGAGEMENT EXPERIMENT RESULTS
After one month, the performance results of the 4 groups
were compared in pairs. The performance results of the CJ
group was compared to the performance results of the EJ
group. Similarly, the performance results of the CP group
was compared to the performance result of the EP group.
The results in figure 6 and 7 concluded that engaged M-
learners (EJ, EP groups) overall showed a better performance
than unengaged M-learners. These results revealed that early
engagement of M-learners through motivational and adaptive
messages do motivate them in improving their learning per-
formance. Overall it was noticed that EJ group performance
was 7.78% higher than the CJ group in the JAVA course
whereas in Python course the EP group outperformed the CP
group by 8.64%.

B. ANALYZING M-LEARNERS CONTENTMENT
THROUGH EUCS INSTRUMENT
End-User Computing Satisfaction (EUCS) is a well-known
and frequently used instrument to measure the end-user
contentment and experience of using a software system
[69]. End-user contentment/experience specifically includes
software application usefulness, user-engaging experience,
software ease of use, timeliness, software adaptively, and user
attitude towards using a software system. Several research
studies have introduced modified and customized versions
of the EUCS instrument but all versions focus on deter-
mining end-users satisfaction about software systems after
they have used it [70], [71]. We used a modified version of
the EUCS instrument to elicit M-learners’ contentment after
using the M-learning system supported by the M-learning

model. Using the Google Form survey administration app,
the EUCS survey was conducted with 206 EJ and EP group
M-learners. Total 12 questions covering 6 dimensions of
EUCS instrument namely usefulness, engaging, ease of use,
timeliness, adaptiveness, and attitude towards using the M-
learning system were administered on EJ and EP group M-
learners. Five-point Likert-scale was used to measure M-
learners’ satisfaction toward using the M-learning system
where 5 means “strongly agree” and 1 means “strongly
disagree”. Considering the assigned five-points on Likert-
scale, the mean M-learners contentment was set to 4 (agree)
or greater, which implies that overall the M-learners were
satisfied with the M-learning system and M-learning system
did increase their job performance. Table 5 presents 6 eval-
uation dimensions of the M-learning system, corresponding
questions and mean score.

The response to questions 1 and 2 indicated that the
M-learning system along with early engagement measures
was successful in increasing the programming skills of M-
learners (m = 4.65, m = 4.54). The response to questions 3
and 4 presented that during the early engagement experiment
the M-learners were persuaded to take time to learn computer
programming (m = 4.23, m = 4.11). The answer to questions
5 and 6 revealed that the M-learning system was user-friendly
and easy to use during its interaction with M-learners (m
= 4.51, m = 4.45). Similarly, the response to questions 7
and 8 indicated that the M-learning system considered M-
learners preferred learning time and delivered help and study
material accordingly (m = 4.43, m = 4.55). Likewise, the
riposte to questions 9 and 10 showed that the M-learning
system was successful in delivering adaptive and tailored
learning content/guidance to M-learners according to their
learning behavior and performance (m = 4.34, m = 4.56).
Lastly, the response to questions 11 and 12 specified that the
M-learners agreed to use the M-learning system or similar
type of systems in the future to increase their programming
skills (m = 4.14, m = 4.23).

IX. CONCLUSION AND FUTURE WORK
In this research study, we developed and proposed the M-
learning model which when integrated with the M-learning
system provides an adaptive learning experience to the M-
learners. For developing the M-learning model, we first
trained it on 85% M-learners features data, generated while
M-learners were taking the JAVA and Python course. When
tested on 15% test-size data, the M-learning model classified
M-learners into A, B, C, D, and F grades with 85.96%
accuracy for the JAVA course and 89.47% for Python course.
Moreover, the M-learning model achieved 80% precision,
86% recall, and 82% F1 score for the JAVA course whereas
it achieved 90% precision, 84% recall and 86% F1 score for
the Python course.

For determining the weights of M-learners’ features, we
used the Random Forest (RF) ensemble method. Results
revealed that modules performance score i.e. MP1, MP2,
and MP3 contributes significantly in predicting the final per-

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Improving M-learners’ Performance Through Deep Learning Techniques by Leveraging Features Weights

FIGURE 6: Performance Comparison of EJ and CJ Groups

FIGURE 7: Perfomance Comparison of EP and CP Groups

TABLE 5: End-User Computing Satisfaction (EUCS) Survey Result

S.No Dimension Questions Mean Value

1 Usefulness The M-learning
system motivated me to improve my programming skills. 4.65

2 Usefulness
After
using the M-learning system, I can write computer programs with more
confidence.

4.54

3 Engaging While using the M-learning system, I was curious about learning more and
new things. 4.23

4 Engaging The M-learning
system presented programming tasks in an engaging and interesting manner. 4.11

5 Ease
of use The use of M-learning system was very simple and easy 4.51

6 Ease
of use I can use the M-learning system without any expert help. 4.45

7 Timeliness M-learning
system provided learning material and help on time. 4.43

8 Timeliness The
programming exercises and quizzes were conducted on time. 4.55

9 Adaptiveness M-learning
system did not overwhelm me with unnecessary learning material. 4.34

10 Adaptiveness The programming content provided was tailored and according to my
performance state. 4.56

11 Attitude towards
M-learning system

I will
recommend others to use M-learning system for increasing their programming
abilities.

4.14

12 Attitude towards
M-learning system

I will
use the M-learning system or similar type of systems in the future. 4.23

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Deep neural network based M-learning model for predicting mobile learners’ performance

formance of M-learners. Moreover, behavioral and context
features such as NTAQ, NTRA, AST, and NPP also plays a
significant role in performance prediction.

When compared with 5 baseline multi-class classification
models, we noticed that the deep ANN-based model outper-
formed others by predicting M-learners’ grades with more
accuracy. We noticed that the closest multi-class classifica-
tion model with the deep ANN model in terms of prediction
accuracy was RF.

This study also determines the effectiveness of the M-
learning model in early engagement/intervention of M-
learners. The early engagement process can help university
administration and instructors in providing timely guidance,
support, and counseling to the learners. Generally, traditional
classroom settings and virtual learning environment (VLE)
follows a one-size-fits-all approach where it is very difficult
for the institute and instructors to know the exact needs
and problems of the individual learners. On the other hand,
mobile devices and M-learning features can help institute and
instructors in knowing learners’ performance state, prefer-
ences, needs, and problems. Moreover, M-learning features
can help the institute in formulating helping committees for
learners’ timely support and provision thus increasing their
overall productivity and maintaining their decorum.

These results demonstrate the effectiveness of our pro-
posed M-learning system in predicting M-learners’ perfor-
mance and determining significant features with high impact
on learning outcomes. Our predictive models are useful for
institutions in formulation of a proactive analytics model,
that supports their decision-making process. In future, we
intend to incorporate additional deep learning algorithms
such as Long Short-Term Memory (LSTM), Recurrent Neu-
ral Network (RNN), Self-Organizing Maps (SOMs), etc. in
training and testing our M-learning model with the aim to
increase the accuracy and bring more improvement in the
effectiveness of M-learning model. In this research study,
374 M-learners participated in using the M-learning system
and took the JAVA and Python course. The number of M-
learners was kept low as the programming courses were
delivered on their mobile devices. We intend to increase the
number of M-learners by integrating the M-learning model
with Learning Management System (LMS) in the future.
We hope that increasing the number of M-learners and their
corresponding features will help in improvement of accuracy
and effectiveness of our M-learning model because the deep
learning algorithms produce better results on larger dataset
containing hundreds of features and dimensions.

X. ACKNOWLEDGMENT
This research is funded RIF grant activity code R19045 of
Zayed University, Abu Dhabi, UAE.

REFERENCES
[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.

7553, p. 436, 2015.
[2] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural

networks, vol. 61, pp. 85–117, 2015.

[3] V.-H. Trieu, “Getting value from business intelligence systems: A review
and research agenda,” Decision Support Systems, vol. 93, pp. 111–124,
2017.

[4] P. V. Balachandran, D. Xue, J. Theiler, J. Hogden, J. E. Gubernatis,
and T. Lookman, “Importance of feature selection in machine learning
and adaptive design for materials,” in Materials Discovery and Design.
Springer, 2018, pp. 59–79.

[5] H. M. Truong, “Integrating learning styles and adaptive e-learning system:
Current developments, problems and opportunities,” Computers in human
behavior, vol. 55, pp. 1185–1193, 2016.

[6] S. S. A. Hamid, N. Admodisastro, N. Manshor, A. Kamaruddin, and
A. A. A. Ghani, “Dyslexia adaptive learning model: student engagement
prediction using machine learning approach,” in International Conference
on Soft Computing and Data Mining. Springer, 2018, pp. 372–384.

[7] T. Vafeiadis, K. I. Diamantaras, G. Sarigiannidis, and K. C. Chatzisavvas,
“A comparison of machine learning techniques for customer churn predic-
tion,” Simulation Modelling Practice and Theory, vol. 55, pp. 1–9, 2015.

[8] S.-U. Hassan, H. Waheed, N. R. Aljohani, M. Ali, S. Ventura, and F. Her-
rera, “Virtual learning environment to predict withdrawal by leveraging
deep learning,” International Journal of Intelligent Systems, vol. 34, no. 8,
pp. 1935–1952, 2019.

[9] T. R. Patil, S. Sherekar et al., “Performance analysis of naive bayes and
j48 classification algorithm for data classification,” International journal
of computer science and applications, vol. 6, no. 2, pp. 256–261, 2013.

[10] P. Kaur, M. Singh, and G. S. Josan, “Classification and prediction based
data mining algorithms to predict slow learners in education sector,”
Procedia Computer Science, vol. 57, pp. 500–508, 2015.

[11] F. Marbouti, H. A. Diefes-Dux, and K. Madhavan, “Models for early
prediction of at-risk students in a course using standards-based grading,”
Computers & Education, vol. 103, pp. 1–15, 2016.

[12] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on big
data: Opportunities and challenges,” Neurocomputing, vol. 237, pp. 350–
361, 2017.

[13] C. Fan, F. Xiao, and Y. Zhao, “A short-term building cooling load predic-
tion method using deep learning algorithms,” Applied energy, vol. 195, pp.
222–233, 2017.

[14] I. Jugo, B. Kovacic, and V. Slavuj, “Increasing the adaptivity of an intel-
ligent tutoring system with educational data mining: A system overview.”
iJET, vol. 11, no. 3, pp. 67–70, 2016.

[15] G. Riahi, “E-learning systems based on cloud computing: A review,”
Procedia Computer Science, vol. 62, pp. 352–359, 2015.

[16] D. Chao, H. T. Chang, and P. P. Tong, “Computer-aided learning method
and systems matching students with instructors,” Dec. 4 2001, uS Patent
6,325,632.

[17] Y.-M. Cheng, “Towards an understanding of the factors affecting m-
learning acceptance: Roles of technological characteristics and compat-
ibility,” Asia Pacific Management Review, vol. 20, no. 3, pp. 109–119,
2015.

[18] K. S. Hone and G. R. El Said, “Exploring the factors affecting mooc
retention: A survey study,” Computers & Education, vol. 98, pp. 157–168,
2016.

[19] G. R. El Said, “Understanding how learners use massive open online
courses and why they drop out: Thematic analysis of an interview study
in a developing country,” Journal of Educational Computing Research,
vol. 55, no. 5, pp. 724–752, 2017.

[20] A. Hernández-Blanco, B. Herrera-Flores, D. Tomás, and B. Navarro-
Colorado, “A systematic review of deep learning approaches to educational
data mining,” Complexity, vol. 2019, 2019.

[21] M. Wells, A. Wollenschlaeger, D. Lefevre, G. D. Magoulas, and A. Poulo-
vassilis, “Analysing engagement in an online management programme and
implications for course design,” 2016.

[22] M. Hussain, W. Zhu, W. Zhang, and S. M. R. Abidi, “Student engagement
predictions in an e-learning system and their impact on student course
assessment scores,” Computational intelligence and neuroscience, vol.
2018, 2018.

[23] E. B. Costa, B. Fonseca, M. A. Santana, F. F. de Araújo, and J. Rego,
“Evaluating the effectiveness of educational data mining techniques for
early prediction of students’ academic failure in introductory programming
courses,” Computers in Human Behavior, vol. 73, pp. 247–256, 2017.

[24] S. N. Liao, D. Zingaro, K. Thai, C. Alvarado, W. G. Griswold, and
L. Porter, “A robust machine learning technique to predict low-performing
students,” ACM Transactions on Computing Education (TOCE), vol. 19,
no. 3, p. 18, 2019.

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Improving M-learners’ Performance Through Deep Learning Techniques by Leveraging Features Weights

[25] M. F. Marbouti and H. A. Diefes-Dux, “Building course-specific
regression-based models to identify at-risk students,” age, vol. 26, p. 1,
2015.

[26] M. Fei and D.-Y. Yeung, “Temporal models for predicting student dropout
in massive open online courses,” in 2015 IEEE International Conference
on Data Mining Workshop (ICDMW). IEEE, 2015, pp. 256–263.

[27] M. Tan and P. Shao, “Prediction of student dropout in e-learning program
through the use of machine learning method,” International Journal of
Emerging Technologies in Learning (iJET), vol. 10, no. 1, pp. 11–17, 2015.

[28] W. Xing, X. Chen, J. Stein, and M. Marcinkowski, “Temporal predication
of dropouts in moocs: Reaching the low hanging fruit through stacking
generalization,” Computers in human behavior, vol. 58, pp. 119–129,
2016.

[29] H. Khalil and M. Ebner, “Moocs completion rates and possible methods
to improve retention-a literature review,” in EdMedia+ Innovate Learning.
Association for the Advancement of Computing in Education (AACE),
2014, pp. 1305–1313.

[30] S. S. Jaggars and D. Xu, “How do online course design features influence
student performance?” Computers & Education, vol. 95, pp. 270–284,
2016.

[31] A. M. Shahiri, W. Husain et al., “A review on predicting student’s perfor-
mance using data mining techniques,” Procedia Computer Science, vol. 72,
pp. 414–422, 2015.

[32] J. Naren, “Application of data mining in educational database for predict-
ing behavioural patterns of the students,” 2014.

[33] A. Daud, N. R. Aljohani, R. A. Abbasi, M. D. Lytras, F. Abbas, and
J. S. Alowibdi, “Predicting student performance using advanced learning
analytics,” in Proceedings of the 26th international conference on world
wide web companion. International World Wide Web Conferences
Steering Committee, 2017, pp. 415–421.

[34] H. T. Kahraman, S. Sagiroglu, and I. Colak, “The development of intu-
itive knowledge classifier and the modeling of domain dependent data,”
Knowledge-Based Systems, vol. 37, pp. 283–295, 2013.

[35] N. Nordin, M. A. Embi, and M. M. Yunus, “Mobile learning framework
for lifelong learning,” Procedia-Social and Behavioral Sciences, vol. 7, pp.
130–138, 2010.

[36] V. P. Dennen, K. J. Burner, and M. L. Cates, “Information and communica-
tion technologies, and learning theories: Putting pedagogy into practice,”
Second Handbook of Information Technology in Primary and Secondary
Education, pp. 143–160, 2018.

[37] K. C. Manwaring, R. Larsen, C. R. Graham, C. R. Henrie, and L. R.
Halverson, “Investigating student engagement in blended learning settings
using experience sampling and structural equation modeling,” The Internet
and Higher Education, vol. 35, pp. 21–33, 2017.

[38] J. Mutahi, A. Kinai, N. Bore, A. Diriye, and K. Weldemariam, “Studying
engagement and performance with learning technology in an african class-
room,” in Proceedings of the Seventh International Learning Analytics &
Knowledge Conference. ACM, 2017, pp. 148–152.

[39] E. Aguiar, G. A. A. Ambrose, N. V. Chawla, V. Goodrich, and J. Brock-
man, “Engagement vs performance: Using electronic portfolios to predict
first semester engineering student persistence,” Journal of Learning Ana-
lytics, vol. 1, no. 3, pp. 7–33, 2014.

[40] M. Atherton, M. Shah, J. Vazquez, Z. Griffiths, B. Jackson, and C. Burgess,
“Using learning analytics to assess student engagement and academic
outcomes in open access enabling programmes,” Open Learning: The
Journal of Open, Distance and e-Learning, vol. 32, no. 2, pp. 119–136,
2017.

[41] R. S. Baker, “Stupid tutoring systems, intelligent humans,” International
Journal of Artificial Intelligence in Education, vol. 26, no. 2, pp. 600–614,
2016.

[42] M. Bezold, “Describing user interactions in adaptive interactive systems,”
in International Conference on User Modeling, Adaptation, and Personal-
ization. Springer, 2009, pp. 150–161.

[43] C. Abela, C. Staff, and S. Handschuh, “Task-based user modelling for
knowledge work support,” in International Conference on User Modeling,
Adaptation, and Personalization. Springer, 2010, pp. 419–422.

[44] B. Guo, R. Zhang, G. Xu, C. Shi, and L. Yang, “Predicting students per-
formance in educational data mining,” in 2015 International Symposium
on Educational Technology (ISET). IEEE, 2015, pp. 125–128.

[45] Q. Meng, D. Catchpoole, D. Skillicom, and P. J. Kennedy, “Relational
autoencoder for feature extraction,” in 2017 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2017, pp. 364–371.

[46] D. Charte, F. Charte, S. García, M. J. del Jesus, and F. Herrera, “A practical
tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models,
software and guidelines,” Information Fusion, vol. 44, pp. 78–96, 2018.

[47] D. Bouneffouf, “Applying machine learning techniques to improve user
acceptance on ubiquitous environement,” arXiv preprint arXiv:1301.4351,
2013.

[48] G. Sun, T. Cui, J. Yong, J. Shen, and S. Chen, “Mlaas: a cloud-based
system for delivering adaptive micro learning in mobile mooc learning,”
IEEE Transactions on Services Computing, vol. 11, no. 2, pp. 292–305,
2015.

[49] P. Pham and J. Wang, “Attentivelearner 2: a multimodal approach for
improving mooc learning on mobile devices,” in International Conference
on Artificial Intelligence in Education. Springer, 2017, pp. 561–564.

[50] B. Tabuenca, M. Kalz, and A. Löhr, “Mooccast: evaluating mobile-
screencast for online courses,” Universal Access in the Information So-
ciety, vol. 17, no. 4, pp. 745–753, 2018.

[51] L. Ramírez-Donoso, J. S. Rojas-Riethmuller, M. Pérez-Sanagustín,
A. Neyem, and C. Alario-Hoyos, “Mymoocspace: A cloud-based mo-
bile system to support effective collaboration in higher education online
courses,” Computer Applications in Engineering Education, vol. 25, no. 6,
pp. 910–926, 2017.

[52] M. Aparicio, F. Bacao, and T. Oliveira, “An e-learning theoretical frame-
work,” An e-learning theoretical framework, no. 1, pp. 292–307, 2016.

[53] P. Beach, “Self-directed online learning: A theoretical model for under-
standing elementary teachers’ online learning experiences,” Teaching and
Teacher Education, vol. 61, pp. 60–72, 2017.

[54] A. Razmjoo, P. Xanthopoulos, and Q. P. Zheng, “Online feature im-
portance ranking based on sensitivity analysis,” Expert Systems with
Applications, vol. 85, pp. 397–406, 2017.

[55] K. Konyushkova, R. Sznitman, and P. Fua, “Learning active learning from
data,” in Advances in Neural Information Processing Systems, 2017, pp.
4225–4235.

[56] Y. Long and V. Aleven, “Enhancing learning outcomes through self-
regulated learning support with an open learner model,” User Modeling
and User-Adapted Interaction, vol. 27, no. 1, pp. 55–88, 2017.

[57] R. A. Sottilare, A. C. Graesser, X. Hu, A. Olney, B. Nye, and A. M. Sinatra,
Design Recommendations for Intelligent Tutoring Systems: Volume 4-
Domain Modeling. US Army Research Laboratory, 2016, vol. 4.

[58] A. Battou, “Designing an adaptive learning system based on a balanced
combination of agile learner design and learner centered approach,”
American Scientific Research Journal for Engineering, Technology, and
Sciences (ASRJETS), vol. 37, no. 1, pp. 178–186, 2017.

[59] M. Tmimi, M. Benslimane, M. Berrada, and K. Ouzzani, “Implemented
and tested conception proposal of adaptation model for adaptive hyperme-
dia.” International Journal of Emerging Technologies in Learning, vol. 14,
no. 2, 2019.

[60] I. N. Da Silva, D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and S. F.
dos Reis Alves, “Artificial neural networks,” Cham: Springer International
Publishing, 2017.

[61] N. Guenther and M. Schonlau, “Support vector machines,” The Stata
Journal, vol. 16, no. 4, pp. 917–937, 2016.

[62] Y. Liu, J.-W. Bi, and Z.-P. Fan, “A method for multi-class sentiment
classification based on an improved one-vs-one (ovo) strategy and the
support vector machine (svm) algorithm,” Information Sciences, vol. 394,
pp. 38–52, 2017.

[63] M. Gates, “Machine learning: For beginners-definitive guide for neural
networks, algorithms, random forests and decision trees made simple,”
2017.

[64] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25, no. 2,
pp. 197–227, 2016.

[65] J. Maillo, S. Ramírez, I. Triguero, and F. Herrera, “knn-is: An iterative
spark-based design of the k-nearest neighbors classifier for big data,”
Knowledge-Based Systems, vol. 117, pp. 3–15, 2017.

[66] Y. Ren, P. Zhao, Y. Sheng, D. Yao, and Z. Xu, “Robust softmax regression
for multi-class classification with self-paced learning,” in Proceedings of
the 26th International Joint Conference on Artificial Intelligence. AAAI
Press, 2017, pp. 2641–2647.

[67] S. A. Alvarez, “An exact analytical relation among recall, precision, and
classification accuracy in information retrieval,” Boston College, Boston,
Technical Report BCCS-02-01, pp. 1–22, 2002.

[68] B. J. Fogg, “A behavior model for persuasive design,” in Proceedings of
the 4th international Conference on Persuasive Technology. ACM, 2009,
p. 40.

18 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3007727, IEEE Access

Adnan et al.: Deep neural network based M-learning model for predicting mobile learners’ performance

[69] M. Dastgir and A. S. Mortezaie, “Factors affecting the end-user computing
satisfaction,” Business Intelligence Journal, vol. 5, no. 2, pp. 292–298,
2012.

[70] S. B. MacKenzie, P. M. Podsakoff, and N. P. Podsakoff, “Construct
measurement and validation procedures in mis and behavioral research:
Integrating new and existing techniques,” MIS quarterly, vol. 35, no. 2, pp.
293–334, 2011.

[71] R. Scheepers, H. Scheepers, and O. K. Ngwenyama, “Contextual influ-
ences on user satisfaction with mobile computing: findings from two
healthcare organizations,” European Journal of Information Systems,
vol. 15, no. 3, pp. 261–268, 2006.

MUHAMMAD ADNAN has submitted his Ph.D.
dissertation. He received his Master’s degree in In-
formation Technology from the prestigious School
of Electrical Engineering and Computer Science
(SEECS), National University of Science and
Technology, (NUST), Pakistan. He is a Lecturer
at the Institute of Computing (IoC), KUST, Pak-
istan. His research includes mobile learning, adap-
tive learning, machine learning, deep learning and
ubiquitous systems.

DR. ASAD HABIB earned his Doctor of En-
gineering degree from the globally renowned
NAIST (Nara Institute of Science and Technol-
ogy) Japan. He served as the Director, Institute of
Computing (IoC), Kohat University of Science and
Technology (KUST), Pakistan. His research inter-
ests include data science, natural language pro-
cessing, computational modeling, mobile learning,
software engineering and adaptive interface de-
signs.

DR. JAWAD ASHRAF received his Ph.D. degree
from Department of Computer Science, University
of Leicester, UK. He is serving as Assistant Pro-
fessor at the Institute of Computing, KUST. He
is active in research on partner based scheduling
algorithms for advanced reservation environment,
K-shortest path variant for routing in reservation
environment, mobile learning, trajectory optimiza-
tion and novel workflow job selection techniques.

DR. BABAR SHAH is an Associate Professor at
the College of Technological Innovation at Zayed
University Abu Dhabi Campus, UAE. His profes-
sional services include – but are not limited to
- Guest Editorships, University Services, Work-
shops Chair, Technical Program Committee Mem-
ber and reviewer for several reputed international
journals and conferences. Dr. Babar’s research in-
terests include WSN, WBAN, IoT, Churn Predic-
tion, Security, Real-time communication Mobile

P2P networks and M-Learning.

DR. GOHAR ALI is an Assistant Professor in the
Information Systems and Technology Department,
Sur University College, Sur, Oman. He received
his Ph.D. in real-time communication in wireless
sensor networks and mobile communication from
the distinguished Gyeongsang National University
South Korea. He is supervising students in the
fields of Real-Time Big Data analytics, power-
aware mix-criticality system, routing in the mobile
ad-hoc network and delay-tolerant network, load

balancing scheduling algorithm for grid workflow and mobile learning. He
has vast experience both in academia and industry in South Korea, United
Kingdom, Pakistan and Oman.

VOLUME 4, 2016 19

	Improving M-Learners' Performance through Deep Learning Techniques by Leveraging Features Weights
	Recommended Citation

	Improving M-learners’ Performance Through Deep Learning Techniques by Leveraging Features Weights

