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ABSTRACT This paper addresses traffic engineering (TE) issues in software-defined vehicular networking
(SDVN). A brief analysis of the features of SDVN, which improves the efficiency of TE in SDVN,
is presented. The feasibility of usingmulti-path routingwith TE is substantiated. A procedure and an example
of the formation of multiple routes based on a modified wave routing algorithm are given. Considering
the features of the SDVN technology, a modified TE method is proposed, which reduces both the time
complexity of forming multiple paths and the path reconfiguration time. The dynamic path reconfiguration
algorithm is presented.

INDEX TERMS Intelligent transportation system (ITS), multi-path routing, software-defined network,
traffic engineering (TE).

I. INTRODUCTION
The ever-growing number of vehicles on the roads makes the
vehicular ad-hoc network (VANET) an important research
topic in the field of automotive and wireless technologies.
VANETs are considered as a subclass of classic mobile ad
hoc networks (MANETs) [1]–[3]. Where vehicles play the
role of mobile nodes of the VANETs. That have embed-
ded advanced equipment on-board, traveling on restricted
routes (i.e., roads, streets and lanes), and communicating with
each other for information exchange using vehicle-to-vehicle
(V2V) communication protocols, and also between vehicles
and road-side units (RSU) installed on the side of the roads
(i.e., wireless and cellular network infrastructure), to form
a link between a Vehicle-to-Infrastructure (V2I). Compared
to static or low-speed moving nodes in a traditional wireless
network, vehicles move faster andmore unpredictably, result-
ing in frequent changes to VANET network settings [4]–[7].
This places higher demands on routing protocols in VANET
networks.Most well-known routingmethods are not effective
for VANET networks [8]–[11]. In this regard, the urgent

The associate editor coordinating the review of this manuscript and
approving it for publication was Chao Chen.

task is to develop routing and traffic design methods that
consider the features of VANET networks. One of the promis-
ing approaches to solving this problem is the integration of
VANET networks with software-defined networks (SDNs)
within the framework of software-defined vehicular network-
ing (SDVN) [12]–[15]. Fig. 1 shows the structure of SDN,
which consists of three levels architecture:
• Infrastructure level, providing a set of network devices
(switches and data transmission channels);

• A management level, that includes a network operating
system that provides applications with network services
and a software interface for managing network itself and
network devices;

• Network application layer for flexible and efficient net-
work management.

A distinctive feature of SDN is that the organization and
management of the network is carried out at the software level
using virtual switches and a central SDN controller. Fig. (1).

This allows the organization of both centralized and decen-
tralized control of network devices, expanding the function-
ality of traffic construction and load balancing in the network.
With the centralized paths formation, the SDN controller has
complete information about the structure of the network and
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FIGURE 1. SDN structure.

its components, which allows them to be optimized according
to specified metrics in the process of forming paths. The
SDN controller updates the routing information of the SDN
switches by updating their routing tables in order to select the
optimal route in terms of minimizing power consumption and
channel congestion [16]–[18].

The convergence of SDNs with VANET is seen as an
important area that can solve most current VANET problems,
such as dynamic path reconfiguration and traffic balanc-
ing [19]–[21].

Section 2 provides a brief overview of existing routing
methods in VANET. Their advantages and disadvantages are
determined. The feasibility of using multi-path routing meth-
ods in SDVN is substantiated.

Section 3 presents a modified method for constructing
traffic in SDVN networks. The methods and algorithms for
the formation and reconfiguration of routes are given.

In this work, we propose a method for constructing traffic,
which, due to the peculiarities of SDN organization, and
particularly, due to the presence of a central controller in the
network, reduces the time it takes to form multiple routes and
simplify the traffic construction procedure.

Moreover, we proposed a justified criterion for choosing a
path from the set of available paths, which allows more uni-
form load of information transmission channels for specific
parameters of quality service.

And also a modified algorithm for the formation of rout-
ing information is proposed, which allows simultaneous for-
mation of the set of shortest paths between the start and
end nodes, as well as between intermediate nodes of these
paths. This algorithm is based on a modified channel state
wave routing algorithm. The time complexity of this algo-
rithm is less than that of the well-known multi-path routing
algorithms. The presence of the shortest paths between the
intermediate and final nodes eliminates the procedure for
recalculating routes in the transmission process. This reduces
the likelihood of transmission delays and congestion on trans-
port paths.

II. AN OVERVIEW OF ROUTING METHODS IN
TRANSPORT NETWORKS
In connection with the rapid growth of automotive commu-
nications, there are many studies, mainly routing methods,

aimed at ensuring good performance and adaptability to
changes in VANET network parameters. The dynamic nature
of traffic necessitates the recalculation of metrics and rerout-
ing. The quality of service on a VANET network primarily
depends on routing protocols. A number of routing protocols
and algorithms have been proposed for VANET [22]. The
pros and cons of modern VANET routing protocols are dis-
cussed in [23]. There are different approaches for obtaining
the optimal protocol in accordancewith various parameters of
quality of service (QoS) [24], such as security, low collision,
and interference [25]. A review of routing protocols based on
several metrics is presented in [26].

Currently, VANET networks most often use the ad hoc
on-demand distance vector (AODV) [27]. Like all distance
vector routing protocols, the AODV protocol is characterized
by a relatively long rerouting time. This can lead to traffic
congestion.

The use of multi-path routing allows you to quickly re-
route [28] and increase network performance by 10 -15% by
reducing the volume of service packets [29]. The use of multi-
path routing in VANET networks minimizes delays in data
transmission due to channel failure, increases transmission
reliability, and helps to balance the load [30], [31]. The main
disadvantage of the well-known multi-path routing methods
is their relatively great time complexity. This is due to the fact
that the many paths are formed sequentially.

The wave routing algorithm proposed in [32] makes it pos-
sible to simultaneously form several paths from all intermedi-
ate nodes to the final node. This reduces the time complexity
of the formation of multiple paths in comparison with the
known methods of sequential formation of multiple paths.
The wave algorithm refers to the algorithms according to the
state of the channels and is most effective when there is a
central network control device. These technologies include
SDN technology [33]. Some research [34] presents studies
on the integration of SDN and VANET. The advantages of
SDVN networks are considered. The structure of the SDVN
network is shown in Fig. 2.

The controller is the most important and fundamental part
of the SDN architecture [36]–[38]. In SDN networks, control
is carried out centrally in the controller [39], [40]. Centralized
management using the SDN controller greatly simplifies net-
work management by making efficient use of resources using
global network information [33].

Compared to the traditional network, the main advan-
tage of SDN networks is that traffic construction is carried
out centrally in the SDN controller [41]. This allows for
a more efficient process of traffic rerouting. Compared to
the distributed methods of traffic construction and its bal-
ancing, the centralized method eliminates the need for the
exchange of service information between network switches.
This allows you to reduce the delay by about 5-10%, and
the number of control packets in the network is reduced
by 60-70% [42].

The centralized formation of routing information in the
SDN controller also allows you to optimize the routing
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FIGURE 2. SDVN network structure [35].

procedure by eliminating the reformation of routes between
intermediate sections of an already formed path [43].

III. DESIGNING TRAFFIC IN SOFTWARE-CONFIGURED
TRANSPORT NETWORKS
A. TRAFFIC BALANCING
The main disadvantage of the known traffic control methods
is that many large flows, called elephant flows, are redirected
to the same path, which leads to load imbalance and loss of
bandwidth [44]. In this regard, when designing traffic and
balancing it, it is necessary to take into account the size
and nature of a load of channels. This is especially true for
transport networks in which a large load of channels leads to
traffic jams.

At the same time, the speed of vehicles and, accordingly,
the travel time, depends on the density of vehicles. Different
densities along sections of the track also lead to a decrease in
the average speed and throughput of the transport network.
The safe distance between vehicles depends on the square
of their speed. Accordingly, with an increase in the density
of vehicles, the throughput of roads sharply decreases. With
this in mind, the shortest path can be chosen as optimal only
if it consists of sections of road with a density of vehicles
of 25-80% [45]. In this regard, it is necessary to choose tracks
with a minimum average load and a minimum mean square
deviation of the track load from the average value. For this
purpose, in this paper, it is proposed to use the criterion of

uniformity of loading of path channels:

Di = (d0i +
∑n

j=1

lj
(
dj − d0i

)2
Li

), (1)

where n is the number of plots (channels) for the way �i
between the starting point of the path (vertex vs) final des-
tination (vertex ve);

d0i – average path channel load Pi;
dj – channel loading pj ∈ Pi;
Li – path length Pi;
lj – channel length pj.

d0i =
1
n

∑n

j=1

lj × dj
L

. (2)

Value d0i defines a less loaded path.
The standard deviation of the load path channels

(
(
dj − d0i

)2
) characterizes the degree of uniformity of load

path channels.
The choice of the path, taking into account this criterion,

contributes to the uniform loading of the channels of the
transport network. Thus, the coefficient Di allows for the
optimization of vehicle traffic.

IV. THE METHOD OF FORMING MULTI- PATHS
Routing information is generated in SDVN in a cen-
tralized way in the SDN controller. The transport net-
work is represented as a loaded graph G(V,E,W), where
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V = {vi | i = 1, 2, .., n}—many vertices of the graph;
E = {ei, j | j = 1, 2, .., k—set of edges of the graph;
W = {wj | j = 1, 2, ..,m}—the set of weights of the edges
of the graph. The vertices of the graph correspond to the
intersections of roads. The edges of the graph correspond to
sections of the path between adjacent intersections. The edge
weight of the graph characterizes the metric of this section
of the path. In this case, the weight wi,j ribs ei,j—this is
the vehicle’s transit time Li,j for the way Pz. Accordingly,
the metric of the entire path is equal to the sum of the weights
of all sections of this path.

For each road junction, a virtual switch is created in the
SDN controller (Si). A virtual route table specifies destination
(vd), adjacent vertex vj in direction to destination, metric
(Mi), and loading path (Di). Knots vd and vi determine the
path vector Rj (vd, vi) of vj à vd, in the direction vi.

If there are several disjoint paths in the routing table,
the corresponding number of lines is formed. For example,
if there are two shortest paths between the switches Sj and
Sd, the routing table will be as follows:

TABLE 1. Switch route table Si.

With a modified wave routing algorithm, the formation of
routing information is carried out in the opposite direction
from the destination (vertex vd) to the beginning of the
path (vertex vs). The formation of routing information in the
reverse order allows the simultaneous generation of many
disjoint paths. At the same time, paths are formed between the
final and all intermediate switches, which eliminates, if nec-
essary, the re-formation of paths from intermediate switches
to the final node.

Paths are formed sequentially between adjacent sets of
vertices Vi+ 1 Ë Vi. By an adjacent set of vertices, we mean
sets of vertices Vi = {vi | i = 1, 2, .., n} Ë Vi+ 1 = {vj | j =
1, 2, .., n}with a common set of edges Ec = {e, Where: v j ∈
Vi + 1 and v k ∈ Vi}. Path formation begins at the vertex of
the graph. vd, appropriate destination Sd at i = 1. In this
case, many V1 = {vd}, and many V2 = {vj} represent many
vertices adjacent to a vertex vd. Then, for each switch Sj,
corresponding vertex v j ∈ V2, adjacent to the vertex vd,
is entered in this route table. On the second wave of routing,
the formation of routes from the peaks continues v j ∈ Vi+1
to the heights v k ∈ Vi. As a result, route tables of switches
Sj for vertices are formed v j ∈ Vi+1. The process continues
until all paths between the peaks are formed vs and vd.

As an example, consider the formation of routing infor-
mation when transmitting information from the switch S1
(vertex v1) to the switch S16 (vertex v16) transport network,

Algorithm 1 Generation of Routing Information in Network
Switches
Notations:
vd : destination vertex
vs : vertex of the road
Vi+ 1 = {vj}: multiple vertices adjacent to multiple vertices
Vi = {vj}
Rj (vd, vi): vector path from the vertex vj to the vertex vd
towards the vertex vi
Pj (vd, vi): the way from the vertex vj to the vertex vd
li,j : the link between the peaks vi and vj
Mi : path metric Pj
mi,j : path link metric
Di : uniform load criterion Pi.
TSj : switch routing table Sj
————————————————————–
begin
i = 1;
Vi = {vd};
form Vi+ 1 = {vj | i = 1, .., k};
For everyone vj ∈ Vi+ 1 identify Rj (vd, vi);
Rj(vd, vi)→ TSj /∗ bring in Rj (vd, vi) in TSj ∗/;
Pj (vd, vi) = Pi (vd, vm+ li, j;
Calculate Mi;
Mi→ TSj /∗ bring in Mi à TSj ∗/;;
Calculate Di;
Di→ TSj /∗ bring in Di à TSj ∗/;
if vs ∈ Vi+ 1 then go to 15;
Vi := Vi+ 1;
go to 4
End

TABLE 2. Switch route table S13.

TABLE 3. Switch route table S14.

the graph of which is presented in Fig. 2. As a metric, we will
consider travel time.

At the initial stage of creating switch routing tables
i = 1. Lots of V1 = {v16} and many adjacent peaks V2 =
{v13, v14, v15}. The formation of the routing tables of the
switches of the set V2.

Then, routing information is exchanged between switches
at the same level. As a result, additional paths are added to
the route tables.

Then, in a similar way, the formation of the route tables of
the switches of the set V3 = {v9, v10, v11, v12}.
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FIGURE 3. Transport network graph.

TABLE 4. Route table switch S15.

TABLE 5. Switch route table S13.

TABLE 6. Switch route table S14.

TABLE 7. Switch route table S15.

Then, in a similar way, the formation of the route tables of
the switches of the set V4 = {v5, v6, v7, v8}.
Then, in a similar way, the formation of the route tables of

the switches of the set V4 = {v2, v3, v4, v8}.

TABLE 8. Switch route table S9.

TABLE 9. Switch route table S10.

TABLE 10. Switch route table S11.

TABLE 11. Switch route table S12.

Then, in the same way, the switch routing table is
formed S1.

A. TRAFFIC CONSTRUCTION
Based on the switch routing table S1, the path is formed in
the forward direction from the vertex V1 to the vertex V16.
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TABLE 12. Switch route table S5.

TABLE 13. Switch route table S6.

TABLE 14. Switch route table S7.

TABLE 15. Switch route table S8.

TABLE 16. Switch route table S2.

TABLE 17. Switch route table S3.

TABLE 18. Switch route table S4.

In each intermediate node, an available transmission direction
with a minimum metric is selected.

In this case, in the first step, based on the route table of the
switch S1, the direction of transmission is selected towards

TABLE 19. Switch route table S1.

Algorithm 2 Shortest Path Formation
begin ;
i = 1;
if {Pj (vd, vi)} 6= ∅ go to 5;
Formed {Rj (vd, vi)}q;
Select Rj (vd, vi) /∗ vector path direction with minimal
metric ∗/;
Pj (vd, vi) = ls, j;
if MPj (vd, vi) constant go to 9;
for j := 1 step 1 to k do
begin
switch table update Sj

end;
Choose Rj (vd, vk) /∗ track direction with minimal metrics
∗/;
Pj (vd, vk) = Pj (vd, vi) + li, k; /∗ extension of the path
towards the vertex vd ∗/;
if i = n go to 12 else

begin
i = i+ 1;
go to 7;
end;

end.

the node V3. As a result, a path is formed: P1 (V1, V16)
with minimum metric M1 = 1. This path goes through the
following peaks: {V1, V3, V6, V10, V13, V16}.

The presence of alternative transmission directions in all
intermediate nodes allows the creation of many disjoint paths
between the starting and ending nodes of the network with
relatively minimal metrics. The maximum number of disjoint
paths is equal to the minimum degree of the start or end
vertex of the path graph. For transport networks, this value
is usually equal to three. In this case, in addition to the path
P1 (V1, V16) there are no intersecting paths P2 (V1, V16) and
P3 (V1, V16).

Way P2 (V1, V16) runs through the peaks: {V1, V2, V5,
V9, V14, V16}. Themetric of a given pathM2 = 2.2.Way P3
(V1, V16) runs through the peaks: {V1, V4, V8, V12, V15,
V16}. The metric of a given path M2 = 2.2.

B. DYNAMIC PATH RECONFIGURATION
The centralized method of generating routing information
allows us to exclude the procedure for creating new paths
when changing the network topology or overloading its
channels.
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TABLE 20. Switch route table S13.

TABLE 21. Switch route table S10.

TABLE 22. Switch route table S6.

TABLE 23. Switch route table S3.

In this case, only the metrics of the paths through which
the path with the changed metric passes are recalculated. This
procedure is performed centrally in the SDN controller. This
allows one to quickly and dynamically update the routing
tables of switches and, without additional delays, to reconfig-
ure the paths in the process of transmitting the information.

Changing the metrics of individual channels can lead to
an increase in the overall path metric. Moreover, the farther
the vehicle is from the critical section of the track, the more
options are available to bypass the congested section of
the network. In this case, the metric may increase slightly.
For example, when increasing the metric of a path section
l13,15 to 0.7, the corresponding correction of the switching
tables of many vertices will be made {V1, V3, V6, V10,
V13,} the way P1 (V1, V16).

In this case, the shortest path from the vertex V13 to the
vertex V16 will go through the vertex V15. When the vehicle
is at the vertex V13 peak transmission delay, V15 will be
on 0.4 more than before increasing the metric of the track
l13,16. The path metric for vertices will increase accordingly:
V6 and V10.

Switch Routing Tables S3 and S1 will also be adjusted.

Resulting from the vertex V3, a path through the peaks will
be formed {V7, V11, V15, V16}. Compared with the initial
metric it will be only 0.1 more.

V. CONCLUSION
This article proposes a combined method of traffic construc-
tion in a transport network based on SDN. Routing informa-
tion is generated centrally in the SDN controller based on
a modified channel state wave routing algorithm. Central-
ized updating of routing information in the SDN controller,
in comparison with distributed routing algorithms, can signif-
icantly reduce the time needed to update routing information
and simplify the process of traffic construction. Despite the
fact that VANET routing pays more attention to the wireless
community, there are still many problems that have not yet
been thoroughly investigated. As a further direction in the
development of VANET routing protocols, it is necessary to
predict the loading of a transport network channel based on
artificial intelligence systems [46].
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