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IoV-based Deployment and Scheduling of Charging
Infrastructure in Intelligent Transportation Systems

W. Ejaz, M. Naeem, S. K. Sharma, A. M. Khattak, M. R. Ramzan, A. Ali, and A. Anpalagan

Abstract—Internet of vehicles (IoV) is an emerging paradigm
to exchange and analyze information collected from sensors
using wireless technologies between vehicles and people, vehicles
and infrastructure, and vehicles-to-vehicles. With the recent
increase in the number of electric vehicles (EVs), the seamless
integration of IoV in EVs and charging infrastructure can offer
environmentally sustainable and budget-friendly transportation.
In this paper, we propose an IoV-based framework that consists of
deployment and scheduling of a mobile charging infrastructure.
For the deployment, we formulate an optimization problem to
minimize the total cost of mobile charging infrastructure place-
ment while considering constraints on the number of EVs that
can be charged simultaneously. The formulated problem is mixed-
integer programming and solved by using the branch and bound
algorithm. We then propose an IoV-based scheduling scheme for
EVs charging to minimize travel distance and charging costs
while satisfying the constraints of charging time requirement of
EVs and resources of a charging station. We consider passive road
sensors and traffic sensors in the proposed IoV-based scheduling
scheme to enable EV users for finding a charging station that can
fulfill their requirements, as well as to enable service providers to
know about the demand in the area. Simulation results illustrate
the significant impact of the optimal deployment of charging
infrastructure and scheduling optimization on the efficiency of
EVs charging.

Index Terms—Charging infrastructure, electric vehicles, Inter-
net of vehicles, scheduling optimization.

I. INTRODUCTION

Recently, there is a significant increase in the number of
electric vehicles (EVs) to make cities greener with energy-
efficient and low/zero-carbon transportation system [1]. The
charging demand is growing with the increase in the number
of EVs, which needs efficient deployment and scheduling of a
mobile charging infrastructure. To enable the faster adoption
of EV technology, it is very crucial to deploy efficient public
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charging infrastructure by considering various aspects such
as charging time and travel time for the EVs. However,
higher capital costs of deploying charging stations and uneven
power demands could be problematic, leading to the need
for understanding the relationship among customer service
quality, peak demand power, and port utilization. Moreover,
one crucial issue for the EV charging stations, which usually
have different charging modes to meet several requirements of
the EVs, is to utilize the charging capacity effectively to lower
the service dropping rate. Therefore, it is crucial to efficiently
manage the charging demands of EVs and infrastructure
while considering the heterogeneous charging requirements
of EVs. In this context, Internet of vehicles (IoV) is an
emerging paradigm that can enable EVs and mobile charging
infrastructure to use sensing and communication technologies
for sustainable and budget-friendly intelligent transportation
system as well as effectively manage consumer resources and
reduce operating cost [2]–[4]. The main components of an IoV-
based charging management system include sensing devices,
actuators, communications technologies, and servers for data
processing. The IoV-based charging management framework
can handle various functions, including the deployment of
mobile charging infrastructure, scheduling, and enabling a
smart and automated billing system. Furthermore, automatic
charging request generation from the sensors in the EVs, and
the subsequent broadcasting of information from a grid server
to the EVs can significantly help energy providers to acquire
energy demand information in advance and to maximize the
revenue [5]. Moreover, EVs can be effectively charged via
mobile charging stations while considering their dynamicity of
energy demand [6]. Also, it is essential to provide an optimal
charging solution to the EV users to fulfill their charging
demand with the given budget constraint. Therefore, IoV-based
mobile charging infrastructure deployment and scheduling is
essential for the success of future intelligent transportation
systems.

In this direction, a comprehensive survey of the existing
international standards and charging modes for EVs is pro-
vided in [7]. The latest developments and challenges in the
realization of EVs charging systems are also highlighted.
EVs can then locally or local servers can get the following
information by using sensing and communication technologies
from the mobile charging infrastructure: the charging station
location, the available number of plugs, the average wait
time to get a plug, the average time for charging, and the
cost to be paid for charging. Also, EVs or local servers
can get information about traffic congestion on the roads by
using global positioning system. Using this information, EVs
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locally or local servers can find optimal charging stations
based on user requirements in terms of charging, time, budget,
etc. Thus, we need updated information from the EVs and
charging stations to optimize the selection of a charging station
according to user requirements. On the other hand, the EVs
fleet operator or aggregators need real-time parameters from
the EVs for vehicle-to-grid support. These parameters include
the remaining EVs charge, capacity of charging, as well as
driving patterns. This information can significantly enhance
the demand side management and other ancillary services.

IoV-based framework for charging management can be cat-
egorized into the deployment of mobile charging infrastructure
and scheduling optimization of EVs charging:
• Deployment of mobile charging infrastructure: Lack of

sufficient charging stations to support the increasing num-
ber of EVs is one of the crucial issues to be addressed.
Also, due to the relatively long charging process for the
EVs, introducing charging stations in the limited space
of the existing gas stations is not a viable solution. In
addition, selecting appropriate location for mobile charg-
ing station deployment is a challenging issue because of
its expensive deployment process [8]. Another issue in
EV charging is the unbalanced supply and demand since
there might be many stations idle in the remote areas
and not enough stations in the areas with higher require-
ments. This requires mobile charging infrastructure in the
appropriate areas while taking account of different factors
such as mileage, demand priority, and the distribution of
customers. Therefore, it is important to deploy charging
stations with the objectives of maximizing the coverage
area and minimizing the total cost required for the de-
ployment of charging infrastructure.

• Scheduling optimization of EVs charging: To deal with
the scheduling of a charging load from a large number
of EVs, an IoV-based interactive and efficient charging
management needs to be investigated [9]. The IoV-based
scheduling can enable the real-time interactions among
the charging stations and the EVs by utilizing various
devices and sensors. The scheduling of EVs charging
can be optimized by considering different objectives, such
as maximizing the total profit of a service provider and
minimizing the service price from the perspective of EV
users. Furthermore, several parameters, including wait
time, total charging time, and distance between EVs and
charging stations, should be taken into account while
performing the scheduling optimization.

A. Contributions

In this paper, we propose an IoV-based framework for
deployment mobile charging infrastructure deployment and
scheduling for intelligent transportation systems. The main
contributions of this paper are summarized below:
• We propose an optimal deployment mechanism to min-

imize deployment cost of mobile charging infrastructure
while considering charging requirements of EVs.

• We propose a scheduling scheme for optimizing charging
schedule of EVs with joint minimization of travelling

cost for changing and charging cost in terms of time and
charging price.

• The performance gains achieved in both the cases are
depicted via simulation results and some promising future
research directions are provided.

The rest of the paper is organized as follows: Section II pro-
vides an overview of related work. System model is presented
in Section III. We present the proposed IoV-based framework
which consists of optimal deployment of mobile charging
stations and scheduling optimization of EVs in Section IV.
Performance evaluation and simulation results are discussed
in the Section V. Finally, Section VI draws conclusions and
outlines future research directions.

II. RELATED WORKS

In this section, we provide an overview of the state-of-the-
art sensors and communication technologies assisted (i) de-
ployment of mobile charging infrastructure and (ii) scheduling
optimization of EVs charging.

A. Deployment of Mobile Charging Infrastructure

Regarding the deployment of charging infrastructure, dis-
tribution companies are interested in reducing the planning
and deployment cost while maximizing profit. On the other
hand, EV users strive to increase their benefits by finding
optimal charging station which can fulfill their requirements.
The total cost of EV batteries, charging stations, energy storage
systems, and electricity demand charges is minimized by
optimal deployment of charging stations in [8]. The formulated
problem is a mixed integer linear programming model for
which results are demonstrated in real-world scenario of bus
network in Salt Lake City, Utah. A two-stage scheme is
proposed for simultaneous allocation of EV charging stations
and distributed renewable sources is proposed in [10]. In the
first step, candidate locations are selected based on reliability
index, attraction index, and price of land index. Whereas
in the second step, optimum number of charging stations
and probabilistic model for charging stations placement is
determined based on the given specifications. Authors in [11]
investigated optimal deployment of charging stations to maxi-
mize the covered path flows while considering path deviation
and non-linear elastic demand. A tailored branch and pricing
method is proposed to solve the optimal deployment problem.
A joint deployment of charging stations and photovoltaic
power plants for EVs is studied in [12]. The EV routing and
charging problem is solved by label-setting algorithm which
considers time-dependent charging fee for different charging
stations. Authors then adopted a surrogate-based optimization
algorithm optimally design charging stations, photovoltaic
plants, and time-dependent charging fee. A heuristic method
is proposed for optimal deployment of EV charging stations
is proposed in [13] to minimize the charging time while
considering constraints on driving range and traffic conditions.

Furthermore, authors in [14] proposed an EV charging sta-
tion placement method by considering an integrated electrical
and transportation network, and the costs related to the voltage
regulation, EV station construction, protection device update,
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and distribution expansion. Subsequently, the authors analyzed
the impact of protection and voltage regulation upgrades on the
placement of EV charging stations and showed the significance
of incorporating protection device upgrade while planning EV
charging stations in urban areas. Authors in [15] developed
non-deterministic and agent-based models to minimize the
total EV travel distance and to find the optimized locations
of EV charging stations, respectively. Binary lightning search
algorithm is adopted for optimal sizing and location of fast-
charging stations in [16]. Authors considered different aspects
such as grid power loss, transportation loss, and build-up costs
while utilizing road traffic density, battery state of charge and
Google maps. Authors in [17] investigated optimization model
for the optimal placement of charging station to minimize cost
and ease of use. The potential locations are determined and
mixed integer linear programming problem is solved to obtain
optimal solution for the placement of charging stations.

B. Scheduling Optimization of EVs Charging
The scheduling of EV aggregator in the uncertain environ-

ment can reduce the cost and improving the charging of EVs
[18]. An interval optimization approach is proposed to model
uncertain grid price to solve a multi-objective problem which
considers minimization of deviation profit and maximization
of average profit. An optimization model is presented in [19]
to minimize the annual total scheduling costs. A heuristic
procedure is proposed for optimal solution while consider-
ing recharging trips and heterogeneous EVs. The authors in
[20] proposed a predictive algorithm for the low-complexity
scheduling of EVs charging in which non-causal information
about the future arrivals of EVs is not available but only the
estimated statistical information. A distributed algorithm to
jointly optimize the routing selection and charging schedule
of IoV-based EV networks is proposed in [21]. This joint
optimization problem is formulated as mixed-integer non-
linear programming, and this NP-had problem is tackled by
using an approximate distributed algorithm, which enables
to calculate a routing and charging solution in a distributed
way by the EV users and a system operator. The authors in
[22] developed a fast-charging station model to generate the
statistics of charging and queuing of the EV charging stations
for any provided customer/vehicle data. Via the analysis and
numerical results, it has been shown that increasing the number
of ports for a given charging station increases the customer
service quality by decreasing the wait time, however, on
the other hand, reduces port utilization. A dynamic wireless
charging of EVs on the move and intelligent routing of EVs
to enhance driving range is investigated in [23]. The first
approach enables the exchange of power between the vehicle
and the grid when the EV is moving while the second approach
enables the EVs to utilize the mobile energy disseminators
(MEDs), i.e., mobile charging stations deployed in buses,
trucks and heavy goods vehicles. A graph-based shortest path
algorithm is proposed for the intelligent routing of the EVs
by using either MEDs or the static stations to minimize the
overall travel time.

Authors in [24] investigated deterministic based scheduling
of EVs aggregator while considering grid price uncertainty.

The upstream grid price uncertainty is modeled using robust
optimization technique. The results of proposed scheduling
scheme can be used to develop charging and discharging
strategies by the operators. An optimal scheduling scheme for
EVs and photo-voltaic systems is proposed in [25] for resi-
dential complexes while considering real-time pricing mecha-
nism. The optimal operation of energy systems in residential
complexes is modeled as mixed-integer linear programming
and a general algebraic modeling system is adopted to present
simulation results in different scenarios. The relationship be-
tween the EV selection and service dropping rate of a charging
station is investigated in [26]. An optimal pricing method
is formulated to coordinate the charging of EVs, and subse-
quently to minimize the EV charging station’s service drop-
ping rate. Also, authors in [27] proposed a machine learning-
based demand response and charging strategy to determine
the charging time of the EVs while considering real-time
pricing to minimize the overall energy cost. A Markov decision
process is employed to model the charging control process, and
the problem is then addressed by using dynamic programming
and several machine learning algorithms, including shallow
neural network, deep neural network, and k-nearest neighbors.
Swappable batteries are also being considered as alternative
EV recharging methods in EVs [28] which provides fast en-
ergy recharging service to the EV users and also a high degree
of flexibility to the grid operators to perform load balancing.
The problem of scheduling the battery charging station is
studied to schedule the charging process of the underlying
charging bays. The problem is formulated as a mixed-integer
program and then is solved by utilizing a generalized benders
decomposition algorithm.

A summary of the existing related work is given in Table
I. Unlike the existing work, we propose an IoV-based frame-
work that consists of deployment and scheduling of charging
infrastructure management system while considering the min-
imization of installation cost, charging requirements of EVs,
finding optimal charging station based on EV requirements.
The proposed framework will also enable service providers to
predict future demands of charging in a given area.

III. SYSTEM MODEL

We consider a large city divided into small regions in
which charging requests are handled by local servers in each
partition. This is a valid assumption as the EVs will be
charged by charging stations in the corresponding regions.
This makes our proposed system semi-centralized which is
scalable. Fig. 1 illustrates one region in a large city for the
proposed IoV-based framework for deployment and scheduling
of mobile charging infrastructure in intelligent transportation
system. We consider NP number of possible authorized lo-
cations by regulatory authorities, where we can install the
charging stations. The estimated number of connectors and
estimated cost for the m-th potential location are denoted by
Ym and Zm, respectively. The number of connectors required
to install at each charging station is based on the flow of
EVs through a charging station. It is assumed that the each
charging station can share the following information with the
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TABLE I
SUMMARY OF RELATED WORKS [D: DEPLOYMENT, S: SCHEDULING].

Ref. Objective D S Solution

[8] The total cost is minimized by optimal
deployment of charging stations

3 7 Results are demonstrated for a bus network in
Salt Lake City, Utah.

[10] Simultaneous allocation of charging stations
and distributed renewable resources

3 7 Two-stage scheme is proposed.

[11] Optimal deployment of charging stations to
maximize the covered path flows

3 7 A tailored branch and pricing method is
proposed.

[12] Joint deployment of charging stations and
photovoltaic power plants

3 7 Label-setting algorithm and surrogate-based
optimization algorithm are proposed.

[13] Charging time minimization considering
driving range and traffic conditions

3 7 A heuristic method is proposed.

[14] Placement considering integrated electrical and
transportation network, and deployment costs

3 7 Analyzed impact of protection and voltage
regulation on placement in urban areas.

[15] Minimize total EV travel distance and to find
the optimized locations of charging stations

3 3 Developed non-deterministic and agent-based
models.

[16] Optimal location and size of charging stations 3 7 Binary lightning search algorithm is adopted.
[17] The optimal placement of charging station to

minimize cost and ease of use
3 7 Mixed integer linear programming problem is

solved to obtain optimal solution.
[18] Maximize the average profit and minimize the

deviation profit
7 3 An interval optimization approach is proposed.

[19] Minimize the annual total scheduling costs 7 3 Heuristic procedure is proposed.
[20] Low-complexity scheduling of EVs charging 7 3 A predictive algorithm is proposed to estimate

future arrival of EVs.
[21] Jointly optimize the routing selection and

charging schedule of IoV-based EV networks
7 3 Approximate distributed algorithm is used to

solve the optimization problem.
[22] Generate the statistics of charging and

queuing of the EV charging stations
7 3 Developed a fast-charging station model.

[23] Dynamic wireless charging and intelligent
routing of EVs to enhance driving range

7 3 A graph-based shortest path algorithm is
proposed.

[24] Deterministic scheduling of EVs aggregator
while considering grid price uncertainty

7 3 Robust optimization technique is proposed.

[25] Optimal operation of energy systems in
residential complexes

7 3 A general algebraic modeling system is
adopted to obtain optimal solution.

[26] minimize the EV charging station’s service
dropping rate

7 3 An optimal pricing method is proposed.

[27] Determine the charging time of the EVs to
minimize the overall energy cost

7 3 Dynamic programming and machine learning
algorithms are adopted for optimal solution.

[28] Schedule the charging process of the
underlying charging bays

7 3 A generalized benders decomposition
algorithm is adopted for scheduling.

server on request: charging station location, available number
of plugs, the average wait time to get a plug, the average
time for charging, and the cost of charging. We consider NV

number of EVs that are equipped with heterogeneous sensors
to collect their location information, remaining battery life, etc.
We assume that EVs and charging stations are equipped with
communication technologies for both long-range (LTE/LTE-
A) and limited-range (WiFi) communication technologies and
can communicate with the edge computing devices on the
road sides or with the local servers.We further assume that the
data exchanged between EVs, servers, and charging stations
is encrypted.

There are different levels of charging defined in the litera-

ture, depending on the charging time and power. For example,
level 1 charging also called slow charging, where the charging
is done by applying 120VAC/16A for 1.92kW charging. The
time it takes to charge a vehicle battery to its full capacity
is about 10 hours [29]. Level 1 charging is usually done in
houses or offices, where the EVs are generally parked for a
long time. In level 2 charging also called standard charging,
the charging is done by applying 208V-240VAC, 12A-80A for
the 2.5kW-19.2kW charging. It takes 6-8 hours to charge an
empty battery to its full capacity. Level 2 charging stations
can be deployed in an area where EV users stay for a long
time, e.g., offices. In both level 1 and level 2, the charging is
done using the on-board battery charger. In level 3 charging,
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Fig. 1. System model for IoV-based mobile charging infrastructure deployment and scheduling in intelligent transportation system.

also called fast charging, the charging is done with up to
400A for 240kW charging power using an off-board charger.
It takes approximately 30 minutes to charge a vehicle battery
in this case. Level 3 charging is suitable in areas where the
EV user is staying for a short time, e.g., shopping mall.
The EV charging level characteristics for both AC and DC
types according to the society of automotive engineers are
given in Table II. Therefore, each charging station can offer
different charging levels with varying cost. Let G be the set of
different charging levels available for the EVs. Each charging
level g ∈ G has a different associated cost for charging and
time to charge. Without loss of generality and for illustration
purposes, we consider a limited set of charging levels, i.e.,
G = {slow, normal, fast, boosted}. The cost of slow charging
for the EVs is very low; however, it takes more time to charge.
On the contrary, the cost for boosted charging is very high and
it takes less time for charging. We consider CS , CN , CF , and
CB as charging cost and TS , TN , TF , and TB as charging
time for slow, normal, fast and boosted charging, respectively,
where CS < CN < CF < CB and TS > TN > TF > TB .

IV. IOV-BASED FRAMEWORK FOR CHARGING
MANAGEMENT

The IoV-based framework for charging management con-
sists of two main components: i) optimal placement of charg-
ing stations and ii) scheduling optimization of EVs charging.

A. Placement of Charging Stations

We propose a strategy for optimal placement of charging
stations to minimize the installation cost. The local server
in IoV-based charging management system is in-charge of
all operations and have complete knowledge of EV user
requirements and their density in a given area. Thus, the local
server is responsible for the placement of charging stations. We
consider both static and mobile charging stations placement.

Therefore, mobile charging station placement can be an ongo-
ing task based on the EV users requirements. The problem of
a charging station placement can be formulated with different
objectives, e.g., maximizing coverage, minimizing cost, etc. It
is assumed that the charging station at m-th ∈ NP potential
location offers Ym number of estimated connectors and Zm

amount of deployment cost. The number of connectors Ym for
the m-th potential location depends on the flow of EVs through
it. We assume a known and fixed number of connectors at
each charging station. We propose a solution to find optimal
locations for charging stations placement out of possible NP

potential locations. We can have a decision variable Xm:

Xm =

{
1, if charging station is placed at m-th location,
0, otherwise.

(1)

Then, the total cost of placement of charging stations can
be written as:

∑NP

m=1 ZmXm. The placement cost of charging
station at the m-th location can be represented as Zm =
(ACL+CC)Ym+Cinit,m, where A is the land area requirement
for one vehicle to recharge (we consider A=25ft2), CL is
the rental cost of land per ft2, CC is cost per connector.
The cost of connector is directly proportional with the power
rating of the connector. The initial cost (cost for basic structure
and construction) of a charging station is denoted by Cinit,m.
The electrification cost of a charging station is not considered
separately as we consider it as a part of Cinit,m. We formulate
an optimization optimization problem to minimize the total
cost of placement of charging stations while considering the
cost of deployment and connectors for each charging station:
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TABLE II
EV CHARGING LEVEL CHARACTERISTICS [30].

Power
level

Type Voltage level
[V]

Capacity
[A]

Power
capacity
[kW]

Charger
type [kW]

Charging time

Level 1 AC 120 VAC 16 1.92 - PHEV:7 h/BEV: 10 h
Level 2 AC 240 VAC 80 19.2 7 PHEV:3 h/BEV: 7 h
Level 3 AC - 400A >20 - Under development
Level 1 DC 200-500 VDC <80 Up to 40 20 PHEV:22 min/BEV: 1.2 h
Level 2 DC 200-500 VDC <200 Up to 100 45 PHEV:10 min/BEV: 20 min
Level 3 DC 200-600 VDC <400 Up to 240 - Under development

min
Xm

:

NP∑
m=1

ZmXm

Subject to :

NP∑
m

XmYm ≥ βNV (2)

Xm ∈ {0, 1}.

where constraint ensures that the total number of connectors
installed in all the charging stations must be sufficient to
satisfy the charging requirements of a minimum β% of EVs
in that area. In other words, β% of EVs in the serving area
must be able to charge simultaneously.

The problem in (2) is mixed-integer programming, which
is generally NP-hard. The optimal solution can be obtained
by enumerating all possible combinations of Xm. However,
this is a computationally expensive solution and not suitable
for a large number of potential locations and the number of
charging stations. To tackle this issue, we adopted branch and
bound algorithm (See [31] for more details) for the placement
of charging stations given in Algorithm 1. The computational
complexity of the branch and bound algorithm in the average
case is notably low, which can be considered as a reasonable
estimate of the performance [31].

B. Scheduling Optimization of EVs Charging

Fig. 2 presents a flow diagram for the proposed scheduling
optimization depicting the frame exchange among the EVs,
local server, and charging stations. In our proposed scheduling
optimization scheme, the EVs can request for charging to local
server by sending charging request packet if the residual charg-
ing is less than a pre-set threshold. The residual energy will be
determined by the sensors installed on the EVs. The threshold
can be setup considering the EVs have sufficient charging
to reach charging stations. The request packet contains the
requesting EVs ID, location, and budget. For efficient charging
request, we adopt RF-MAC protocol proposed in [32], which
ensures that the EVs with residual charging less than threshold
will get channel access before giving access to any other EV
or devices. Similar to RF-MAC protocol, the EVs other than
requesting for charging and devices are forced to freeze their
data transmission to give priority to the EVs with residual
charging less than threshold. The local server will receive

Algorithm 1 Charging infrastructure placement algorithm
1: Set X∗m = 0 ∀m ∈ {1, 2, ..., NP } and ξ∗ = 0
2: while there are active locations do
3: Select an active location j and mark it as inactive
4: Solve linear programming (LP) relaxation: denote solu-

tion as X(j) and LP relaxation of Problem(j) as ξLP (j)
5: if ξLP (j) ≥ ξ∗ then
6: Prune node j
7: else if ξLP (j) < ξ∗ and X(j) is feasible for integer

program then
8: X∗ = X(j)
9: Prune node j

10: else if ξLP (j) < ξ∗ and ψ(j) is infeasible for integer
program then

11: Mark the children of node j as active
12: end if
13: end while
14: return The best solution and it’s minimum value

Scheduling optimization (4)

EV Server Charging 
station

Fig. 2. Flow diagram for the scheduling optimization of EVs.
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charging request packet and sends an acknowledgement to the
EVs and broadcast request to the charging stations.

We consider that charging stations can be mobile or static.
The charging stations willing to participate in the bid then
sends acknowledgment to the server with their location, avail-
able number of plugs, the average wait time to get a plug,
the average time for recharging, and cost needs to be paid for
charging. The server will also get information about traffic
congestion on the road to determine travel time to each
charging station. The server then performs optimization based
on the information from EVs and charging stations as well
as traffic congestion. The objective is to minimize the utility
function, which consists of the distance between a charging
station and the EV, travel time EV takes to reach charging
station, the charging price, and wait time.

We consider that EVs can charge from charging stations
deployed at NP potential locations. Then the utilization matrix
can be written as:

U =


u11 u12 u13 . . . u1NP

u21 u22 u23 . . . u2NP

...
...

...
...

...
uNV 1 uNV 2 uNV 3 . . . uNV NP



where unm ∈ {0, 1} is 1 when n-th EV is using charging
station deployed at m-th location and 0 otherwise.

We also define the travel distance for all EVs to potential
locations for the charging stations:

D =


d11 d12 d13 . . . d1NP

d21 d22 d23 . . . d2NP

...
...

...
...

...
dNV 1 dNV 2 dNV 3 . . . dNV NP


where dnm ∈ < is the distance between n-th EV and charging
station deployed at m-th location.

The utility function can be defined for the scheduling
optimization of n-th EV for charging station deployed at m-th
location as:

∆n,m = unmφ(dnm) +
∑
g∈G

vgmψ(pgm, t
g), (3)

where φ(dnm) is the cost to travel distance dnm, vgm de-
termines the mode of charging, pgm is the charging price
plus parking price, and tg is the number of slots allocated
for charging. ψ(pgm, t

g) is the cost which includes price for
charging. The utility minimization problem can be formulated
as:

min
U,vg

m

:
∑
n

∑
m

∆n,m

Subject to:

C1 :
∑
n

unm ≤ 1,∀m

C2 :
∑
m

unm ≤ 1,∀n

C3 :
∑
g

vgm ≤ 1,∀m

C4 :
∑
g∈G

vgmΦ ≤
∑
n

unm(Tn),∀m

C5 :
∑
n

∑
m

unm ≥ βNv

C6 : β ∈ [0, 1]

(4)

where charging time should take care of travel time
tdistanceTravel
nm , time demand of the n-th EV Tn, wait time

for the m-th station twait
m , and the number of slots allocated

to the n-th EV tg; we collectively denote them Φ = (tg +
twait
m + tdistanceTravel

nm ). The tdistanceTravel
nm , twait

m , and tg will
be collected at server by having the most updated information
from both EVs and charging stations. The constraints 1-5
ensures the following: C1: an EV can only be charged at one
charging station, C2: a charging station can only serve one
EV at any given time, C3: a charging station can only select
one charging mode option at any given time, C4: ensures that
charging time is within the range of time demand of EVs. C5:
the number of EVs served must be greater than β%.

Similar to (2), one potential approach is to get an optimal
solution to the problem in (4) is to compute all possible
combinations of n and m. This is not suitable for a solution
for a serving area with a large number of EVs and charging
stations. Therefore, we consider a branch and bound algorithm
for the scheduling of EVs (similar to Algorithm 1). Once
the scheduling process is optimized at the server, then an
acknowledgment is sent to the EV with information about the
selected charging station, charging mode, and the cost. The
EVs after getting all the information will send a packet to
agree with the given parameters. Finally, a booked message is
sent to the charging station, which is selected as an optimal
charging station for a given budget and distance to the EV.

V. SIMULATION RESULTS

In this section, we analyze the performance of proposed
framework for the optimal placement of charging stations
and scheduling optimization of the EVs charging. For the
optimal placement of charging infrastructure, we evaluate the
performance in terms of normalized values of cost and the
number of connectors by considering the number of potential
locations NP = 10-20. We consider two cases based on the
number of EVs and β (percentage of EVs that should be
charged simultaneously): i) NV = 200 for β = 50% and
80% and ii) NV = 300 for β = 50% and 80%. We also
consider two cases for scheduling optimization of EVs in
smart cities: i) NV =20 EVs and NP =40 charging stations in
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Fig. 3. Performance evaluation of optimal placement of charging infrastruc-
ture: normalized values of the cost and the number of connectors versus
location index for individual potential locations for (a) Np=10, Nv=200,
β=50 and (b) Np=10, Nv=200, β=80.

a rectangular field of 2000m×2000m for β = 50% and ii)
NV =30 EVs and NP =40 charging stations in a rectangular
field of 2000m×2000m for β = 100%.

A. Placement of Charging Infrastructure

Figs. 3(a) and 3(b) depict the normalized values of cost and
the number of connectors versus location index for individual
potential locations for β = 50 and 80, respectively. In both
cases, the number of potential locations NP = 10, number
of EVs NV = 200, and the maximum number of connectors
Ymax = 50. The optimally selected locations for charging
infrastructure placement are also shown for a given β in Figs.
3(a) and 3(b). A β = 50 means, we want at least 50% vehicles
to be charged simultaneously through all selected charging
stations. The number of optimally selected locations in case
of Fig. 3(a) (β = 50%) is three (location 5, 7, and 8) and the

optimum cost is 4, 325 USD. In case of Fig. 3(b) (β = 80%)
the number of optimally selected locations is six (location 3,
4, 5, 7, 8, and 10) and the optimum cost is 8, 980 USD. It
is evident that the optimum cost for charging infrastructure
deployment increase when the value of β increases, i.e., more
charging infrastructure is required for the higher values of β.

Similarly, Figures 4(a) and 4(b) show the normalized values
of cost and the number of connectors versus location index for
individual potential locations for β = 50 and 80, respectively.
However, we consider the number of potential locations NP =
10−20, NV = 300, and Ymax = 50. The number of optimally
selected locations in case of Fig. 4(a) (β = 50) is five (location
3, 4, 5, 7, and 8) and the optimum cost is 7, 635 USD. In case
of Fig. 4(b) (NP = 20 and β = 80) the number of optimally
selected locations is sixteen and the optimum cost is 18, 885
USD. Once again it is clear that the optimum cost for charging
infrastructure deployment increase with the increase in β and
number of EVs in the area NV .

B. Scheduling Optimization of EVs Charging

Fig. 5 shows the randomly distributed EVs Nv=40 and 20
charging stations deployed using the results of optimization
problem in (2). We consider β=50% (i.e., at least half of the
EVs should charge simultaneously by all charging stations).
For a given budget and the locations of the EV, the scheduling
optimization suggests an appropriate charging station to the
EV. It is noted in Fig. 5 that exactly half of the EVs (i.e., 20)
are connected with the charging stations. For a given scenario,
it is possible that multiple EVs can be connected to a single
charging station depending on the number of connectors.

Figs. 6(a) and (b) depict the number of time slots for EV
constraint, wait time, and slots allocated at each charging
station versus location index for individual charging stations.
We consider Np = 20, β = 50% and Np = 30, β = 100%
charging stations for Nv = 40 EVs in Figs. 6(a) and (b)
respectively. The allocated slots plus wait time should be in
the given constraint for each EV. It can be observed that
for some charging stations, EVs have to wait before starting
to charge and for others, they can start immediately. It is
noted that at all charging stations, the allocated slot time plus
wait time is within the given constraint of the EVs. Thus,
scheduling optimization can help EV users to find an optimal
charging station for their given budget requirements in the
IoV-based charging management system. Similarly, it helps
charging service providers to know about the demand and
budget of EV users, which can certainly help them to improve
their infrastructure.

The proposed scheduling scheme may see some unexpected
errors in the case of damaged infrastructure, sudden road block
because of accidents or similar reasons, electricity blackout,
and lack of connectors at charging stations.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed an IoV-based framework for
the charging management of EVs. We considered two main
aspects of IoV-based charging management: mobile charging
infrastructure deployment and scheduling optimization for
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Fig. 4. Performance evaluation of optimal placement of charging infrastructure: normalized values of the cost and the number of connectors versus location
index for individual potential locations for (a) Np=10, Nv=300, β=50, and (b) Np=20, Nv=300, β=80.
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Fig. 5. Optimally assigned charging stations to EVs for 20 deployed charging
stations and 40 EVs.

EVs. We first formulated an optimization problem for the
optimal placement of charging stations to minimize the overall
installation cost of charging stations. We then proposed a
scheduling optimization of EVs charging to minimize the
utility (which consists of the cost to travel, cost of charging,
cost to travel to the charging station, and cost for the time
EV has to wait before charging). We adopted the branch and
bound algorithm to find optimal solutions for the proposed
formulations. Extensive simulation results have been presented
to support the effectiveness of the proposed framework. It
is emphasized that the scheduling of EVs allocates charging
stations according to the budget requirements of the EV users
and can also reduce the wait time before charging for EV users.
The potential limitations of the proposed work are the assump-
tions used in this paper, i.e., sufficient electricity supply for
charging stations and reliable communication infrastructure is

available for communication between EVs, charging stations,
and server.

Possible future directions for the IoV-enabled efficient en-
ergy management are: 1) the proposed scheduling optimization
problem can be studied by considering renewable energy
resources, such as solar and wind for the charging stations.
These charging stations will enable EV users to purchase
cheap charging as compared to the utility, 2) mobility of
EVs can be incorporated for efficient charging management,
3) by using the vehicle to grid (V2G) technology, the peak
energy requirement problems can be handled effectively, by
selling electricity back to the grid from vehicle battery in peak
hours that results in solving peak clipping problem. Similarly,
in the non-peak hours, customers can charge their EVs by
purchasing cheap electricity, and 4) the proposed solution may
have privacy concerns (such as location and behavior tracking)
for EVs users, which need to be addressed for the successful
deployment of IoV-enabled system.
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[27] K. L. López, C. Gagné, and M.-A. Gardner, “Demand-side management
using deep learning for smart charging of electric vehicles,” IEEE
Transactions on Smart Grid, vol. 10, no. 3, pp. 2683–2691, May 2019.

[28] X. Tan, G. Qu, B. Sun, N. Li, and D. H. Tsang, “Optimal scheduling
of battery charging station serving electric vehicles based on battery
swapping,” IEEE Transactions on Smart Grid, vol. 10, no. 2, pp. 1372–
1384, Mar. 2019.

[29] A. Hess, F. Malandrino, M. B. Reinhardt, C. Casetti, K. A. Hummel,
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Professor in the Department of Applied Science
Engineering at Thompson Rivers University, Kam-
loops, BC, Canada. Previously, he held academic and
research positions at Ryerson University, Carleton
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