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Abstract: Quaternion orthogonal designs (QODs) have been used to design STBCs that provide
improved performance in terms of various design parameters. In this paper, we show that all QODs
obtained from generic iterative construction techniques based on the Adams-Lax-Phillips approach
have linear and decoupled decoders which significantly reduce the computational complexity at
the receiver. Our result is based on the quaternionic description of communication channels among
dual-polarized antennas. Another contribution of this work is the linear and decoupled decoder for
quasi-orthogonal codes for non-square as well as square designs. The proposed solution promises
diversity gains with the quaternionic channel model and the decoding solution is independent
of the number of receive dual-polarized antennas. A brief comparison is presented at the end to
demonstrate the effectiveness of quaternion designs in two dual-polarized antennas over available
STBCs for four single-polarized antennas. Linear and decoupled decoding of two quasi-orthogonal
designs is shown, which has failed to exit previously. In addition, a QOD for 2× 1 dual-polarized
antenna configuration using quaternionic channel model shows a 3 dB gain at 10−5 in comparison
to the same code evaluated for 2× 2 complex representation of the quaternionic channel. This gain
is further enhanced when the received diversity for these the cases is matched i.e., 2× 2. The code
using the quaternionic channel model shows a further 13 dB improvement at 10−5 BER.

Keywords: quaternion orthogonal designs; space time block codes; polarization diversity; decoupled
decoding; 5G

1. Introduction

Wireless communication through multiple antennas is used extensively in today’s
telecommunication standards owing to the multiple benefits they offer [1]. More specifically, in addition
to providing high data rates through spatial multiplexing, multiple antennas can be used effectively
to combat multi-path fading. There are numerous ways in which multiple antennas can be used to
provide diversity in wireless signals such as using time, frequency, space, polarization, etc., and the
underlying codes carry certain desirable properties such as orthogonality [2]. These properties can
be exploited effectively at the receiver side to obtain decoupled solutions with the least complexity.
However, because of environmental scattering and imprecise antenna spacing, the diversity gains start
to diminish and also pose the problem of coupled solutions, which are computationally expensive at
the receiver [3].

With the advent of fifth generation (5G) systems that demand very high data rates and ultra
reliability, the paradigm is shifting from simple multiple-input multiple-output (MIMO) to massive
MIMO systems where the base station is anticipated to be equipped with hundreds of antennas.
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Therefore, there is a dire need to study other forms of diversity techniques with new antenna designs
that contain, for instance, both polarizations for transmissions and require no extra bandwidth.
Polarization diversity enables the simultaneous transmission and reception of information signals
using the orthogonally polarized antennas [4]. It has been shown that using a special mathematical tool
of quaternion algebra, the transmission/reception/decoding of these MIMO systems can be described
effectively [5].

The quaternion orthogonal designs (QODs) are under rigorous research, for instance, see [6–12].
However, an important construction technique in these previous designs is that they were either
extensions of complex orthogonal designs (CODs) with some necessary properties to be applicable
as QODs, or they were constructed from quasi-complex space time block codes (STBCs). However,
despite the main motivation of exploring polarization diversity in dual-polarized antennas using
quaternions, these QODs focused on construction of codes and their decoding.

The decoding of the codes presented previously seem to necessitate that only square
orthogonal designs can produce decoupled decoding. In [13], the decoupled decoding solution
for quasi-orthogonal codes has been presented based on a wireless communication channel model
using the dual-polarized antennas which is derived from the quaternionic channel representation.
This model is restricted in terms of its application to only the zero cross polar scattering environments.
Also, it restricts the number of dual-polarized antennas at the receiver. Both the above are conservative
conditions on a generic wireless communication arrangement. The quaternionic channel proposed
in [14] provides codes with optimal rates exploiting polarization diversity along with space and time
diversities resulting in higher diversity gains. Dual-polarized antennas are characterized by their
polar and cross-polar components. In [14], authors demonstrated the use of quaternionic channel with
dual-polarized antennas fully exploits the polarization diversity resulting in higher diversity gains.
Also, the use of this system model naturally embeds the cross-polar scattering as demonstrated in [15].

This paper contributes by providing iterative construction techniques for QODs from
Adam-Lax-Phillips approach for designing quaternion orthogonal codes using dual-polarized antennas.
It is remarkable to note that all generic iterative constructions of QODs result in decoupled and linear
decoders with enhanced throughput using the system model proposed in [14] that forms the main
result of this paper. Secondly, we identify that there are non-square designs which can have decoupled
solutions contrary to what has been believed that these fail to attain decoupled decoding and only
pair-wise decoding is possible for them. The proposed design enjoys freedom in exploiting the transmit
and receive diversities with no restriction on the antenna dimensions at both the transmitter and
receiver ends. It fully exploits the polarization diversity using the cross polar scattering components
of the dual-polarized antennas, making it more practical for current and future massive MIMO
wireless communication systems. We also briefly compare the performance of QODs for two-input and
singe-output (TISO) system of dual-polarized antennas with a 4× 2 multiple-input two-output (MITO)
system of single-polarized antennas. The former is shown to have key advantages over the latter. In the
end, a detailed comparison of the proposed coding and decoding design for the quasi-orthogonal
STBCs is evaluated in light of the literature. The main contributions and novelties of this paper include:

• Design of generalized iterative construction techniques for QODs from Adam-Lax-Phillips
approach has been proposed.

• For a fully quaternionic channel model, proposal of linear and decoupled decoder for the QODs
(i.e., non-square as well as square quasi-orthogonal codes) is presented.

• Seamless extension of the QODs using dual-polarized antennas with freedom of transmit
and recieve diversities and antenna dimensions for application to future multiple-input
multiple-output (MIMO) systems.

Some remarks on notations are as follows. All matrices are denoted with bold capital letters.
< and= represent the real and imaginary parts of a complex number. The quaternion field Q comprises
of a basis of anti-commuting elements 1, i, j, k, such that ij = k = −ji, jk = i = −kj, ki = j = −ik.
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Quaternion conjugate is denoted with the superscript qQ which changes sign of i, j and k. The transpose,
Hermititian transpose and trace operators are denoted in standard as (.)T , (.)H and tr(.), respectively.
Both matrices Cq and CQ, corresponds to quasi-orthogonal STBCs; however, the subscript Q indicates
that the STBC CQ is obtained from a QOD.

2. Realization of Quaternion Designs

The simultaneous transmission of symbols through a dual-polarized antenna can be modeled
through a unified quaternion q = z1 + z2 j, such that symbols z1 and z2 are transmitted instantaneously
through TH (horizontal) and TV (vertical) polarizations, respectively. This line of approach is
resurrected in [14] for single-input single-output (SISO) system by implementing an idea that the
orthogonal polarization states can be represented as quaternions [16], thereby attaining polarization
diversity gain. Unfortunately, for SISO systems the gains from different form of diversities are less
apparent and becoms proficient for large number of antennas in MIMO systems. For such systems, it is
necessary to develop an iterative approach so that higher order quaternion designs can be generated,
which forms the main topic of this paper.

We assume that each quaternion in a QOD comprises of two complex symbols which are obtained
from standard modulation schemes, e.g., quadrature phase shift keying (QPSK). To exploit diversity
gains from space and time, the orthogonal space-time polarization block codes (OSTPBC) can be
defined in the quaternion domain.

Definition 1 (QOD). A QOD Q, on pure quaternion elements {q1, q2, . . . , qn} of type {s1, s2, . . . , sn} is an
m× n matrix with entries from set { 0, q1, q∗1 , q2, q∗2 , . . . , qn, q∗n} including possible multiplications on the left
and/or right by quaternion elements q ∈ Q and satisfying the condition

QQQ =
n

∑
h=1

(sh(|qh|)2)In×n = λIn×n , (1)

where In×n is the n× n identity matrix and λ is a positive real number.

In [14], there were three QODs considered (two of order 2× 2 and one QOD with order 4× 3)
which were based on non-iterative construction techniques. In this paper, we demonstrate that
higher order QODs can easily be generated iteratively and have fast, linear, and decoupled decoders.
Indeed, ref. [3] proposed three generic iterative construction techniques, namely Adams-Lax-Phillips,
Józefiak, and Wolfe constructions. A general COD is designed for l + 1 symbols embedded in a square
matrix of order 2l such that

A =

[
G2l−1 (z1, z2, . . . , zl) zl+1I2l−1

−z∗l+1I2l−1 GH
2l−1 (z1, z2, . . . , zl)

]
, (2)

where l = {1, 2, 3 . . . } and G2l−1(z1, z2, . . . , zl) represents a COD of order 2l−1 × 2l−1 defined on
symbols {z1, z2, . . . , zl}. For example, for l = 1, G1(z1) = [z1].

It is now easy to generate square QODs using above mechanism [17]. We briefly indicate the
steps involved in generating a hierarchy of such designs along with the main proof. In particular,
by systematically swapping columns 1, 2, . . . , Nt/2 of matrix A with (Nt/2) + 1, (Nt/2) + 2, . . . , Nt

columns, respectively, an equivalent matrix B, is generated where Nt represents the number of antennas
of COD on which permutation is performed. This gives rise to the following result where we have
omitted the redundant argument in G for the sake of simplicity.
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Theorem 1. For a given COD A in (2), a complex amicable and symmetric-paired design can be constructed
such that the following realization
Q2l (z1, z2, .., zl+1) = A + Bj =[

G2l−1 + zl+1I2l−1 j zl+1I2l−1 + G2l−1 j
−z∗l+1I2l−1 + GH

2l−1 j GH
2l−1 − z∗l+1I2l−1 j

]
, (3)

provides a QOD of dimension 2l × 2l with complex rate (l + 1)/2l .

Proof. To prove the quaternion orthogonality (1), we begin by noticing that QQ
2l = AH − jBH , owing to

the fact that both A and B are CODs. Hence, QQ
2l Q2l = (AH − jBH)(A + Bj), in which the outer

product merely yields a Frobenius norm of complex numbers z1, z2, . . . , zl multiplied by an identity
matrix. However, the inner product AHBj− jBHA is identically equal to zero because AHB = BHA.
This follows from the construction of B which is obtained from A upon permutation of columns.

For completeness, we delve into another iterative construction technique as it also has decoupled
decoding. It is, however, different from the above approach for there is no need for necessarily
generating B by permutation.

Lemma 1. For a given square COD G2l−1(z1, z2, . . . , zl+1), the matrix

Q21×2l−1(z1, z2, .., zl+1) =

[
G2l−1(z1, z2, . . . , zl) + zl+1I2l−1 j
−z∗l+1I2l−1 + GH

2l−1(z1, z2, . . . , zl)j

]
(4)

provides a quaternion design of order 2l × 2l−1, with rate (l + 1)/2l .

Proof. The Equation (1) for above code is simplified into (GH + z∗I)(G + zI) + (−zI + G)(−z∗I +
GH). As before, the outer products of both terms result into Frobenius norm due to the orthogonality
of G. The inner product is GHz + z∗G − zGH − Gz∗, which is identically equal to zero due to
commutativity of the complex numbers.

Please note that due to the identity matrix in the term zl+1I2l−1 j, there will be at least one
element in the first time slot which does not contain j. Hence, this construction lacks in providing
non-zero QODs. Codes with non-zero entries ensure fixed average power codeword by maintaining
reduced peak power transmission from every antenna. This results in a favorably low peak-to-average
power ratio (PAPR) and diminishes the hardware implications to switch antennas on and off while
transmitting a non-zero and zero, respectively [18]. An iterative technique without such a drawback is
considered below.

Lemma 2. For two generalized CODs G2l (z1, z2, . . . , zl+1) and L2l (zl+2, zl+3, .., z2l+2) with same structure,
which are constructed on the COD formulation (2), it follows that

GH
2l L2l + LH

2l G2l = G2l LH
2l + L2l GH

2l = γI2l , (5)

where γ = 2<
(

∑l+1
k=1 z∗k zl+1+k

)
.

It is important to mention that the above lemma does not hold true for two general CODs.

For example, two Alamouti codes with different structures

[
z1 z2

z∗2 −z∗1

]
and

[
z3 z4

−z∗4 z∗3

]
, fail to satisfy

it while they can be used effectively in generating a consistent COD of the form (2). By using the above
lemma, we arrive at the following theorem which can be proved in a similar way.
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Theorem 2. For generalized CODs G2l−1(z1, z2, . . . ., zl) and L2l−1(z1+2, z2, . . . , z2l+2), a symmetric-paired
design,

Q2l+1×2l (z1, . . . , z2(l+1)) =

[
G2l + L2l j ,
L2l + G2l j

]
, (6)

is a QOD of dimension 2l+1 × 2l with complex rate (l + 1)/2l .

QODs are evaluated for the proposed construction technique for (2× 1), (4× 1) and (8× 1)
dual-polarized antenna arrangements in subsequent sections.

3. Higher Order Designs for Dual-Polarized Antennas

3.1. Designs for (2 × 1)-Dual-Polarized Antennas

To elaborate the generalized construction technique, we present a QOD of rate 1, where the COD
A contains symbols z1 and z2, while the COD B contains independent symbols z3 and z4, respectively.
Using (6), we obtain the following symmetric-paired design of order 4 × 2 with a complex code
rate of 1,

Q1 =


z1 + z3 j z2 + z4 j
z∗2 + z∗4 j −z∗1 − z∗3 j
z3 + z1 j z4 + z2 j
z∗4 + z∗2 j −z∗3 − z∗1 j

 , (7)

where l = 1, G1 = [z1], and L1 = [z3] from (6). Please note that in the above code, both ends of a
dual-polarized antenna will be used at each time slot. Therefore, the QODs obtained through this
procedure will contain non-zero complex symbols in each time slot.

We consider the following example for illustration. Unlike [17], we will use this design in our
proposed system model and show that it has decoupled decoding without the need for applying
projection operator.

Distinctiveness of QODs

An interesting property of QODs which distinguishes them from CODs is that there exists QODs
of complex rate greater than one, which have decoupled decoders. For instance, the following QOD
has code rate 2 and is shown to posses decoupled decoder

Q2 =

[
z1 + z2 j z4 + z3 j
z∗2 − z∗1 j −z∗3 + z∗4 j

]
. (8)

The main reason behind is that the Alamouti code is proposed for single-polarized antennas while
QODs are developed for dual-polarized antennas. Similarly, there is a QOD of rate 1 which is given as

Q3 =

[
z1 + z2 j j(z1 + z2 j)

i(z1 + z2 j) −k(z1 + z2 j),

]
. (9)

which provides decoupled decoding.

3.2. Design for (4 × 1)-Dual-Polarized Antennas

We start with an Alamouti code G2 =

[
z1 z2

−z∗2 z∗1

]
, then using (2) we first obtain a COD of order 4.

Through permutations, the matrix B is generated using (6) and finally we get the following QOD for 4
dual-polarized antennas with rate 3/4
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Q4 =


z1 + z3 j z2 z3 + z1 j z2 j
−z∗2 z∗1 + z3 j −z∗2 j z3 + z∗1 j

−z∗3 + z∗1 j −z2 j z∗1 − z∗3 j −z2

z∗2 j −z∗3 + z1 j z∗2 z1 − z∗3 j

 .

In comparison to the last three QODs, the above QOD suffers one drawback that in each time slot
we have to switch-off two polarizations (H or V) of at least two dual-polarized antennas, which results
in a high peak-to-average power ratio and is not practically desirable.

3.3. Design for (8 × 1)-Dual-Polarized Antennas

We start with a maximal rate square COD of order 22 = 4 given by

G4 =


z1 z2 z3 0
z∗2 −z∗1 0 z3

z∗3 0 z∗1 z2

0 z∗3 z∗2 −z1

 , (10)

as a seed matrix to generate the required QOD using (6). Thus, for a massive MIMO comprising of
an 8× 1 system, we have a QOD which has code rate 1/2 and is given in Equation (11).

Q5 =



z1 + z4 j z2 z3 0 z4 + z1 j z2 j z3 j 0
z∗2 −z∗1 + z4 j 0 z3 z∗2 j z4 − z∗1 j 0 z3 j
z∗3 0 z∗1 + z4 j z2 z∗3 j 0 z4 + z1 j z2 j
0 z∗3 z∗2 −z1 + z4 j 0 z∗3 j z∗2 j z4 − z1 j

−z∗4 + z∗1 j z2 j z3 j 0 z∗1 − z∗4 j z2 z3 0
z∗2 j −z∗4 − z1 j 0 z3 j z∗2 −z1 − z∗4 j 0 z3

z∗3 j 0 −z∗4 + z1 j z2 j z∗3 0 z1 − z∗4 j z2

0 z∗3 j z∗2 j −z∗4 − z∗1 j 0 z∗3 z∗2 −z∗1 − z∗4 j


. (11)

4. System Model and Decoding

We first consider a two-input and single-output system (TISO) of dual-polarized antennas where
it is necessary to emphasize the role of quaternions which is more recognizable in this case, therefore,
we have

R =

[
r1

r2

]
=

[
q1 q2

q3 q4

] [
h1

h2

]
+

[
n1

n2

]
, (12)

where each element in the above construction is a quaternion. Through first antenna in the above TISO
system, the transmission of a pair of two complex symbols is encoded in q1 and another pair in q3.
This indicates that the above QOD exploits time and space diversities along with polarization diversity,
as shown in Figure 1. It is worth pointing out that each quaternionic product, e.g., qahb contains
a crucial information about the nature of quaternion domain. If we decompose it for a general
quaternionic product then we obtain qa1hb1 − qa2hb2 + j(qa1hb2 + qa2hb1), where qa = qa1 + jqa2 and
hb = hb1 + jhb2. Therefore, we obtain four complex channel gains for each antenna in a 2× 1 system.
Subsequently, a system model for a MISO system of dual-polarized antennas can be constructed in the
same way for such a system with NT × 1 dual-polarized antennas

RT×1 = QT×NT HNT×1 + NT×1, (13)

which transmits symbols in T−times slots where H = [h1, h2, . . . , hNT ], such that each entry is
a quaternion ha = ha1 + ha2 j, for all a ∈ {1, 2, . . . , NT}. The complex channel gains, ha1 and ha2

incorporate the effects of cross polar scattering and the channel is assumed to be Rayleigh fading,
which implies that each element of channel gain matrix is a complex Gaussian random variable (RV)
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with zero mean and unit variance. Moreover, the noise N = [n1, n2, . . . , nT ], and nb = nb1 + nb2 j,
such that nb1, nb2 ∀ b = {1, 2, . . . , T}, represent the entries of white noise as two dimensional
independent and identically distributed (i.i.d.) complex Gaussian RVs with zero mean and identical
variance per dimension.

Figure 1. Two-input single-output (TISO) dual-polarized antenna configuration exploiting space,
time and polarization diversities.

Based on the system model given in (13), the following theorem confirms a linear decoupled
solution at the receiver for all QODs constructed in the previous section.

Theorem 3. For a given system model in (13), the ML-decoding rule assumes a linear decoupled form

min
z
||R−QH||2 =min

z

(
tr(RQR) + λtr

(
HQH

)
−

2<
(
tr
(
RQQH

)))
. (14)

Therefore, the ML-decoding rule reduces to minimizing <
(
tr
(
RQQH

))
, because the first

two terms in (14) are constants. There are two main advantages of the above ML-decoding rule.
The presence of QOD, Q, in the term <

(
tr
(
RQQH

))
, contributes only linear terms of complex symbols.

Secondly, it significantly reduces the computational load at the receiver for the reason that the term
<
(
tr
(
RQQH

))
, can easily be expressed without involving matrices at all which may be cumbersome

for large MIMO systems.
It is emphasized here that for all QODs obtained in the previous section, the decoupled decoding

rule, similar to Corollary 1, can be derived explicitly. As an illustration of the above result, we choose
among them the QODs given in (7) and (8) and demonstrate that the above ML-decoding rule is both
linear and decoupled.

Corollary 1. The ML-decoding rule (14) for QOD given in (7), reduces to

− 2 min
z1
<(rq

1z1h1 − rq
2z∗1h2 + rq

3z1h1 j− rq
4z∗1h∗2 j) ,

− 2 min
z2
<(rq

1z2h2 + rq
2z∗2h1 + rq

3z2h∗2 j + rq
4z∗2h∗1 j) ,

− 2 min
z3
<(rq

1z3h∗1 j− rq
2z∗3h∗2 j + rq

3z3h1 − rq
4z∗3h2) ,

− 2 min
z4
<(rq

1z4h∗2 j + rq
2z∗4h∗1 j + rq

3z4h2 + rq
4z∗4h1) , (15)
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where R = [r1 r2 r3 r4]
T , is the received vector with each element is a quaternion and h1 = h11 + h12 j and

h2 = h21 + h22 j.

The ML-decoding rule (14) for QOD given in (11), reduces to

− 2 min
z1
<(rq

1z1h1 + rq
1z1h∗5 j− rq

2z∗1h2 − rq
2z∗1h∗6 j + rq

3z∗1h3 − rq
3z∗1h∗7 j− rq

4z1h4 − rq
4z1h∗3 j + rq

5z∗1h∗1 j + rq
5z∗1h5

− rq
6z1h∗2 j− rq

6z1h6 + rq
7z1h∗3 j + rq

7z1h7 − rq
8z∗1h∗4 j− rq

8z∗1h8) ,

− 2 min
z2
<(rq

1z2h2 + rq
1z2h∗6 j + rq

2z∗2h1 + rq
2z∗2h∗5 j + rq

3z2h4 + rq
3z2h∗8 j + rq

4z∗2h3 + rq
4z∗2h∗7 j + rq

5z2h∗2 j + rq
5z2h6

+ rq
6z∗2h∗1 j + rq

6z∗2h5 + rq
7z2h∗4 j + rq

7z2h8 + rq
8z∗2h∗3 j + rq

8z∗2h7) ,

− 2 min
z3
<(rq

1z3h3 + rq
1z3h∗7 j + rq

2z3h4 + rq
2z3h∗8 j + rq

3z∗3h1 + rq
3z∗3h∗5 j + rq

4z∗3h2 + rq
4z∗3h∗6 j + rq

5z3h∗3 j + rq
5z3h7

+ rq
6z3h∗4 j + rq

6z3h8 + rq
7z∗3h∗1 j + rq

7z∗3h5 + rq
8z∗3h∗2 j + rq

8z∗3h6) ,

− 2 min
z4
<(rq

1z4h∗1 j + rq
1z4h5 + rq

2z4h∗2 j + rq
2z4h6 + rq

3z4h∗3 j + rq
3z4h7 + rq

4z4h∗4 j + rq
4z4h8 − rq

5z∗4h1 − rq
5z∗4h∗5 j

− rq
6z∗4h2 − rq

6z∗4h∗6 j− rq
7z∗4h3 − rq

7z∗4h∗7 j− rq
8z∗4h4 − rq

8z∗4h∗8 j) ,

(16)

Please note that we have four complex channel gains between a TISO system of dual-polarized
antennas, as shown in Figure 1. As this system is equivalent to a MIMO 4× 2 system of single-polarized
antennas, therefore, it may appear that it should have eight channel gains in total with two for each link.
However, in our proposed model each quaternionic product results in the same number of channel
gains. The receiver now computes the decision metric minz ||R−QH||2, which involves matrices.
On the other hand, an optimal decoder (14) is also used to receive signal that significantly reduces total
time consumed. In the end, we give the decoder for QOD (11).

Corollary 2. The ML-decoding rule (14) for QOD (11) is given in (16) where R = [r1 r2 r3 r4 r5 r6 r7 r8]
T ,

is the received vector with each element is a quaternion and hi = hi1 + hi2 j, i = 1, 2, ..., 8.

5. Key Aspects of QODs under Quaternion Channel

5.1. Comparison with Benchmark Codes

Dual-polarized antennas can exploit the space, time and polarization diversities suitably and the
designed codes based on QODs are used to serve this purpose. The BER performance of the codes
Q1, Q2 and Q3 is given in Figure 2. Notice that the designs Q1 and Q3 have overlapping BER curves,
attaining the same diversity gains; however, Q3 has a relatively better throughput than Q1. We now
perform a consolidated comparison of QODs developed for two dual-polarized antennas against
conventional STBCs designed for four single-polarized antennas to indicate the major differences.
For four transmit single-polarized antennas, the authors in [19,20] used amicable designs to construct
minimum decoding quasi STBCs that essentially require the products AHB and BHA to be equal
where A and B are amicable STBCs. This drastically reduces the code rate which in our designs remain
stable as they require only the property of being symmetric property. In particular, for four and eight
transmit antennas, there are two “square” STBCs constructed (Equation (20) in [19]), which have rates
1 and 3/4, respectively. We denote their STBCs with CYT given as

CYT1 =


z1 z2 −z3 −z4

−z∗2 z∗1 −z∗4 z∗3
z3 z4 z1 z2

z∗4 −z∗3 −z∗2 z∗1

 , (17)

where z1 = cR
2 + jcI

3, z2 = cR
2 + jcI

4, z3 = cR
3 + jcI

1 and z4 = cR
4 + jcI

1, where j refers to imaginary unit.
Previously, the authors in [20] obtained the following square OSTBC (Equation (11) in [20])
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CYT2 =


x∗1 − x2 x∗1 + x2 x∗3 −x∗3

jx1 + jx∗2 −jx1 + jx∗2 jx∗3 jx∗3
−x3 x3 x∗1 − x∗2 x∗1 + x∗2
−jx3 −jx3 jx1 + jx2 −jx1 + jx2

, (18)

which was shown to have significant performance edges over previously known codes proposed
in [21,22]. Because of the orthogonality condition, the above code CYT2 has less code rate than quasi
code CYT1. Figure 3 provides a comparison of the quaternion equivalent of the codes CYT1 and CYT2

using the channel model presented in [14]. These codes have complex receivers as they fail to have
decoupled decoders in complex domain. In this work, linear and decoupled decoding of these codes is
possible due to the proposed decoder design based on the channel model presented in [14]. On the
other hand, the state-of-art linear dispersion STBCs are proposed for four transmit antennas in [23] of
maximal rate 1 when the distance between transmit antennas satisfies a physical constraint.

For a brief fair comparison of QODs with benchmark codes, we construct the complex analogues
of QODs by applying operator C such that C(z1 + z2 j) = [z1 z2]. In this way, we obtain four equivalent
quasi-codes (yet quaternion orthogonal) for four transmit single-polarized antennas given as

CQ1 =


z1 z3 z2 z4

z∗2 z∗4 −z∗1 −z∗3
z3 z1 z4 z2

z∗4 z∗2 −z∗3 −z∗1

 , (19)

CQ2 =

[
x3 + x4i x0 + x2i x3 + x4i x1 + x2i
x3 + x4i −x1 + x2i −x3 − x4i x0 − x2i

]
, (20)

CQ3 =

[
z1 z2 z3 z4

z∗2 −z∗1 −z∗4 z∗3

]
, (21)

CQ4 =

[
z1 z2 z∗1 −z∗2
iz1 iz2 iz∗2 −iz∗1

]
, (22)

with which a comprehensive comparison can be done with CYT1 or CYT2. Subsequently, we carry out
a detailed comparative analysis, which proves that the designs developed in the quaternion domain
have performance edge at many fronts such as computational complexity, improved throughput,
exploitation of polarization diversity, decoding delays and linear decoupled decoding, etc.
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Figure 2. BER vs. SNR performance of QODs Q1, Q2 and Q3.
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Figure 3. BER vs. SNR performance of QODs CYT1 and CYT2.

5.2. Computational Complexity

The computational complexity in the proposed decoupled decoder is O
(

4
(

N
)(

T
)
2
)

, where N
is the number of transmit antennas and T is the number of timeslots used to transmit one code
block. For the coupled case, this computational complexity has been dependent on ζ and has been

defined as O
(

4ζ
(

N
)(

T
)
2
)

. The computational complexity of the proposed decoder is dependent
only on N and T. This results in promising gains in terms of the computational complexity of the
proposed decoupled decoder in comparison to the coupled decoder. Detailed complexity analysis of
the proposed decoupled decoder for Q1–Q5 is presented in Table 1.

Table 1. Comparison between the computational complexity of the proposed decoupled decoder.

(ζ, N, T) (4,4,4) (4,4,2) (2,4,2) (3,8,4) (4,16,8)
Coupled decoder 8192 4096 256 4096 65,536
Decoupled decoder 128 64 64 256 1024
Percentage improvement 98.44% 98.44% 75% 93.75% 98.44%

Table 1 shows the computational complexity for the QODs. Additionally, the complexity of the
receiver for the quasi-orthogonal codes, e.g., CQ1, CQ2, CQ3 and CQ4, has also been addressed as the
proposed solution provides a decoupled decoding solution using the quaternionic channel, as shown
in Figure 4, where the coupled ML decoder would have failed completely.
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Figure 4. BER vs. SNR performance of QODs CQ1 , CQ2 , CQ3 and CQ4 .
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In Table 2, we briefly summarize the main points which play a dominant role in the quaternion
domain when employed for dual-polarized antennas.

Table 2. Significant features of the quaternion domain and their comparison with their counter codes
in complex domain.

Complex Designs Quaternion Designs

CYT1 CYT2 Q1 Q2 Q3 Q4

Type Quasi Orthogonal Orthogonal Orthogonal Orthogonal Orthogonal
Code Rates 1 3/4 1 2 1 3/4
Coding/Decoding Delay X X × × × ×
Decoupled Decoder × × X X X X
Space & Time Diversities X X X X X X
Polarization Diversity × × X X X X

5.3. Number of Receive Antennas

The physical implementation of the design in [13] is limited with the use of even number of
dual-polarized antennas at the receiver. For massive MIMO systems, this is space and cost inefficient
with restrictions on the freedom of diversity at the receiver end. The proposed model works for any
number of receive dual-polarized antennas, NR, i.e., (NT × 1), . . . , (NT × NR); NR ≥ 1. In Figure 5,
the diversity gains for QOD Q4 due to the increase in number of receive dual-polarized antennas has
been demonstrated.
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Figure 5. BER Vs SNR performance of Q4 for (4× 1) and (4× 2) antenna configurations.

5.4. Diversity Gain

Diversity is influenced by the change in number of receive antennas. In [13], the authors addressed
the problem of decoding in quasi-orthogonal codes. The complex representation of the quaternionic
channel was considered with zero cross-polar scattering and constraints on the number of receive
dual-polarized antennas. This solution had limited benefits due to its reservations in independently
exploiting the polarization diversity with the combination of quaternions and dual-polarized antennas.
In contrast, the proposed solution provides the decoupled decoding of non-square as well as square
quasi-orthogonal codes without any restrictions on the environment as well as the antenna dimensions.
In Figure 6, the effects of restricting the cross-polar scattering has been highlighted. It is evident
that ‘CQ3 Quaternion 2× 1’ shows a diversity gain of about 3 dB at the BER of 10−5 in comparison
to the ‘CQ3 Complex 2× 2’. This clearly shows that the quaternionic channel model fully exploits
the polarization diversity using the dual-polarized antennas with the effects of cross-polar scattering
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naturally embedded into the quaternion representation of channel. Thus, the use of quaternionic
channel model provides diversity gains in comparison to its complex channel equivalents as well as
the complex representation of the quaternionic channel model [13].
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Figure 6. BER vs. SNR performance comparison of CQ3 for decoupled decoder in [13] and the
quaternionic channel-based decoder.

In Figure 7, the effect of the freedom of the receive diversity is shown. A decoupled decoding
solution of quasi-orthogonal codes has been presented here without any restriction on the cross-polar
scattering and the number of receive antennas. In comparison, in [13], the authors presented a
decoupled decoding solution using the complex representation of the quaternionic channel model
under the constraint conditions of zero cross-polar scattering and number of receive dual-polarized
antennas. In Figure 6, ‘CQ3 Quaternion 2× 1’ with one receive dual-polarized antenna shows better
performance in comparison to ‘CQ3 Complex 2× 2’ with two receive dual-polarized antennas. If the
receiver antenna dimensions of these two codes (i.e., ‘CQ3 Quaternion’ and ‘CQ3 Complex’) are matched
(i.e., (2× 2)), we can see the diversity gain of ‘CQ3 Quaternion 2× 2’, in Figure 7, is about 13 dB at BER
of 10−5 when compared with ‘CQ3 Complex 2× 2’, in Figure 6. Thus, we can see that the freedom
in receiver antenna dimensions has a huge impact on the diversity gain when quaternionic channel
model is used with the dual-polarized antennas. Also, the best exploitation of polarization diversity
is executed using the polar as well as the cross-polar components without any dependence on the
number of receive antennas.
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Figure 7. BER vs. SNR performance of CQ3 for one and two receive dual-polarized antennas.
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5.5. Cross-Polar Scattering

Scattering and reflections result in polarization variations where cross polar scattering is natural.
The orthogonal quaternion codes are decomposed into quasi-orthogonal STBCS in [13] to provide
a decoupled decoding solution. Yet, this model has constraints to have zero cross polar scattering
environment, a limiting scenario in real communication systems. Such an exercise appears redundant
as decoupled decoding solution for dual-polarized antennas based on a generalized quaternionic
channel model was already detailed in [14], which considers both the polar as well as non-cross polar
scattering and provides linear decoupled decoding solution for quasi-orthogonal STBCs.

This work presents a generalized decoupled decoding solution for the quasi-orthogonal
STBCs using the quaternionic channel model irrespective of any constraints regarding the cross
polar scattering, the number of received dual-polarized antennas and coding/decoding delays.
This design provides a decoupled decoding solution for any number of transmit and receive
dual-polarized antennas.

6. Conclusions

This paper presented an evaluation of the conditions employed on the construction of QODs that
achieve better diversity gains by exploiting space, time and polarization diversities using quaternion
algebra. Iterative construction techniques for QODs have been presented based on Adam-Lax-Phillips
approach for dual-polarized antennas. A remarkable contribution of this work is linear and decoupled
decoding solution of codes including square as well as non-square quasi-orthogonal designs,
which failed in the past. Additionally, the solution presented here is generalized for both polar as well
as cross polar scattering environments and is independent of the number of receive dual-polarized
antennas. The diversity gains due to the proposed solutions for coding and decoding of QODs are
promising. In future, evaluation of this proposal for generating non-zero codes will be interesting.
Evaluation of these iterative construction techniques for higher dimensions is another direction to
explore. This work can also be validated in future using practical testing to compare the theoretical
diversity gains to the findings of the real channel models between the single and dual-polarized
antennas with similar antennas dimensions.
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Abbreviations

The following abbreviations are used in this manuscript:

H Horizontal
V Vertical
STBC Space Time Block Codes
COD Complex Orthogonal Designs
QOD Quaternion Orthogonal Designs
5G Fifth Generation
MIMO Multiple-Input Multiple-Output
SISO Single-Input Single-Output
TISO Two-Input Single-Output
MISO Multiple-Input Single-Output
OSTPBC Orthogonal Space Time Polarization Block Code
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QPSK Quadrature Phase Shift Keying
PAPR Peak-to-Average Power Ratio
RV Random Variable
FLOPs Floating Point Operations
BER Bit Error Rate
SNR Signal-to-Noise Ratio
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