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Magnetic resonance imaging (MRI) is precise and efficient for interpreting the soft and hard tissues. Moreover, for the detailed
diagnosis of varied diseases such as knee rheumatoid arthritis (RA), segmentation of the knee magnetic resonance image is a
challenging and complex task that has been explored broadly. However, the accuracy and reproducibility of segmentation
approaches may require prior extraction of tissues fromMR images.,e advances in computational methods for segmentation are
reliant on several parameters such as the complexity of the tissue, quality, and acquisition process involved. ,is review paper
focuses and briefly describes the challenges faced by segmentation techniques from magnetic resonance images followed by an
overview of diverse categories of segmentation approaches. ,e review paper also focuses on automatic approaches and
semiautomatic approaches which are extensively used with performance metrics and sufficient achievement for clinical trial
assistance. Furthermore, the results of different approaches related to MR sequences used to image the knee tissues and future
aspects of the segmentation are discussed.

1. Introduction

Arthritis is one of the serious, prevalent joint diseases that
cause disability and health issues in a large population.
,is arthritis is categorized with progressive degradation
of joint tissues with a variety of abnormalities [1] and is a
serious issue in recent years. Nearly sixty to seventy
percent of people older than 60 years suffer from arthritis
[2, 3]. Osteoarthritis is the damage of joint cartilage and
leads to damage of functionality in the knee and hips, and
the early signs can be observed with tears in cartilage. But
rheumatoid arthritis is an autoimmune disease that
largely affects the soft tissues around joints, bones, and
cartilage. ,erefore, the thickness and volume of the knee
joint are the important parameters to evaluate rheuma-
toid arthritis.

Different imaging modalities can be deployed to estimate
the quantitative measures of knee arthritis. But the ability of
magnetic resonance imaging to provide the quality imaging

of bones with soft tissues, cartilage, and tendons as illus-
trated in Figure 1, for the diagnosis and treatment of diverse
diseases, is extensively utilized. Magnetic resonance images
provide information about damage and inflammation with
more sensitivity than other modalities. ,e magnetic reso-
nance images may contain hundreds of slices depending on
the sample rate. ,e magnetic resonance images are a
valuable instrument for the treatment and study of different
ailments. ,e significant cost of labor, hours for analyzing a
single scan by the radiologist, and insensitive for detection of
progression of arthritis make the treatment more difficult,
expensive, and inefficient.

Regardless of which disease is under study, the pro-
cessing architecture includes a step known as segmentation
for extracting the quantitative measures. ,e segmentation
is a process of selecting the area of interest (AOI) con-
cerning certain characteristics. Let X, Y, and Z be a finite
grid of p, q pixels with Y set of intensities and Z objects,
respectively.
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X � (x � (p, q): p � 0, 1, . . . , p − 1, q � 0, 1, . . . , q − 1),

Y � (0, 1, . . . , y − 1),

Z � (0, 1, . . . , z − 1).

(1)

Let g: X⟶ Y and m: X⟶ Z denote the image and
an area, respectively. ,e image segmentation divides an
image g into Z-connected subimages.

,is process of segmentation is important in providing
the information about knee structure and the progress of the
disease to the radiologist for diagnosis. However, this is a
perilous and complex task for numerous reasons such as
irregular shape, size, and connecting tissues. ,erefore,
many studies have focused on the progress of different
methods to segment the knee magnetic resonance images
[4, 5]. Although many studies on automatic and semiau-
tomatic approaches are conducted, this segmentation from
the magnetic resonance image is a future research problem
[6] for the development of fully automated accurate and
precise techniques. ,us, this scientific review provides a
comprehensive knowledge of different computational
methods utilized for the segmentation of magnetic reso-
nance images. ,e review also focuses on exploring the
challenges during segmentation.

Consequently, articles were screened for selection based
on title and abstract. Only original papers that are published
in journals and conferences are selected. Books, book
chapters, reports, and thesis are excluded from selection
criteria. Articles that are written in English and focused on
rheumatoid arthritis disease are selected for research. Ar-
ticles written in other than English and not related to other
diseases are excluded. Articles using the machine learning
approach are included. Articles that entirely use image
processing methods are excluded from research.

,is scientific article is organized as follows: Section 2
discusses the challenges faced in the segmentation of
magnetic resonance images. Section 3 describes the various
approaches followed by automated and semiautomated
segmentation methods with their metrics in Section 4.
Section 5 includes discussion on existing work reviewed in
this article. Section 6 accomplishes the conclusion of the
review article.

2. Challenges in Segmentation of Magnetic
Resonance Image

In the recent past, several efforts have been made for the
segmentation of magnetic resonance images with the pro-
gression of arthritis. Generally, every algorithm is evaluated
with different parameters on the image. ,ese algorithms
work well with a few sets of data but do not provide efficient
performance measures. ,is is because of different features
associated with knee structure that result in difficulties with
the segmentation of magnetic resonance images.

2.1. Structure of Tissue. ,e structure of tissues is measured
in terms of thickness. In normal humans, the knee cartilage

density is about 2mm to 4mm with a curled surface with no
blood vessels, and this density decreases at the rate of ∼2.5%
to 50% [7, 8] every year in rheumatoid arthritis. ,ese
structures become thin and irregular in shape and are a
challenging task in all slices. However, the edges between
tibia and femur cartilage exhibit complications as repre-
sented in Figure 2(b), for providing reliable measures.

2.2.Magnetic Field Strength. ,e signal quantity in the mode
of fissile quality is determined in magnetic resonance im-
ages. As the frequency of the magnetic field, strength 1.5 T,
increases linearly, the signal-to-noise ratio (SNR) is am-
plified in magnetic resonance imaging [9]. Furthermore,
there is proportionality between SNR and scan time. An
increase in scan time increases the SNR value and often leads
to artifacts in the image. For a high field, i.e., 3 T or 7 T
strength, the visual quality and segmentation process of
cartilage are improved. However, in 3 T magnetic strength,
the T1-weighted images appear to be different than normal,
and in 7 T strength, the T2-weighted images interrupt the
scanning process and deploy more artifacts in the image
leading to difficulty in finding a region of interest and other
features [10].

2.3. Image Artifacts and Properties. MR imaging images are
always liable to dissimilar types of artifacts. ,ese relics are
represented in the form of the pulse signal, affected volume,
and chemical variations that precede an incorrect diagnosis.
,ese artifacts are instigated by the magnetic field, resulting
in uneven tissue representation. ,e chemical variations
result in shady and bright spots on the edges of the tissues.
,ese artifacts result in misinterpretation and may wrongly
include the area of interest consisting of artifacts. ,e de-
creased quality of the edges due to volume effect and var-
iations in signal intensities makes it difficult to develop
computational approaches.

,e local variation in tissue properties that exhibits
several problems within an image is identified as low visi-
bility areas. Figure 3 illustrates the variations and decreasing
the edge quality of the knee magnetic resonance image.

As discussed, several issues and challenges need to be
considered during the segmentation process for computa-
tional efficiency.,e above challenges discussed are not only
for automatic approaches but also for semiautomatic and
manual approaches. ,e various segmentation techniques
are reviewed and examined in the subsequent section.

3. Knee Tissue Segmentation Approaches

,e knee bone is the major and largest bone within the
human body and is the one that is most affected by rheu-
matoid arthritis disease. ,e cartilage and bone segments
and features are important for the study of this rheumatoid
arthritis disease. Recently, bone shape was proposed for
predicting the rheumatoid arthritis progression [12]. ,is
bone segmentation is a very critical assessment as connected
cartilage degeneration is possible after the reconstruction of
ACL [13]. In the class of approaches, the knee cartilage is
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physically or semiautomatically segmented, and area of
interest (AOI) is estimated. ,ere are numerous approaches
for segmentation of bone and cartilage that are reviewed in
this section, as illustrated in Figure 4.

3.1. Manual and Traditional Computational Approaches.
It is often seen that the traditional and manual methods used
for segmentation result in reliable outcomes. In these tra-
ditional and manual methods, the tissues are manually
segmented slice by slice from magnetic resonance images.
,ough the precision, sensitivity, and specificity of the

manual methods are considered as the gold standard and
high compared to automatic and semiautomatic techniques,
it requires time-consuming efforts by the experts and pro-
vides inter- or intraobserver inconsistency by different
professionals [14]. ,ese manual techniques are not prac-
tically utilized for clinical trials, for example, Figure 5
representing femur bone which is manually segmented.

,e manual strategy for the identification of segmented
regions from the medical image is implemented with high
precision. A statistical model [15] is developed to solve the
issues related to knee image segmentation.,is method used
60 images for identification of knee thickness with an

(a) (b)

Figure 2: (a) Irregular cartilage tissue. (b) Diffused edges between the tibia and femur bone.

Inclusion criteria Exclusion criteria

(i) Original articles and conference papers

(ii) Articles published in English

(iii) Disease related to only rheumatoid arthritis

(iv) Diagnosis using machine learning approach

(v) Articles only focused on diagnosis

(i) Books, book chapters, reports, and thesis

(ii) Articles written in other than English

(iii) Disease other than rheumatoid arthritis

(iv) Articles using completely image processing approach

(v) Articles related to treatment

Figure 1: Inclusion and exclusion criteria for selecting papers.

(a) (b)

Figure 3: Artifacts in kneemagnetic resonance image: (a) susceptibility and (b) artifacts produced by chemical (dashed arrow) and variation
artifact (arrow) (reproduced from reference [11]).
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extreme and tiniest density of the cartilage. ,e method was
used on the public dataset with 150 knee images [16], and
mostly the data consisted of T1-weighted images with an

index of ∼73% and ∼74% of femur and tibia segments,
respectively.

3.1.1. Region-Based Technique. A region or area is poised of
pixels of the neighbours, and the boundary is estimated by
the difference between two regions. In this article, we
discuss the most prevalent region-based techniques re-
gion growing and thresholding and edge-based method
[17]. ,e initialization and process of segmentation start
with some seed points. ,is process divides the regions
based on the intensity of the pixel. ,e process requires
only one seed point and homogenous properties of
neighbouring pixels. Figure 6 represents the region
growing technique, where two seed points are selected to
segment the tissue.

3.1.2. /reshold or Intensity-Based Technique. ,e simplest
and speediest method for segmentation is thresholding. ,e
method assumes the regions with a diverse gray level. ,e
diverse parts of the image are identified with histogram
intensity. ,e intensity is divided into twofold: the first
portion known as the foreground is having the pixel in-
tensity higher than or equal to a threshold, second portion
known as a background having the pixel intensity less than
the threshold value as shown in equation:

Research
methodology

Results

Discussion

Future plan

Literature search

Selection and
eligible papers

Benefits and
process of

applying ML 

Distribution of
papers by database

providers

Distribution of ML in
based on clinical

aspect

Identifying and
diagnosing RA

More parameters

Standardized data

K-nearest
neighbor [35]

Voxel classifier
[34]

Random forest
[54, 65]

Convolutional
neural network

[57]

Support vector
machine [27, 70]

K-means [69]

Other hybrid methods
[13, 15, 23, 37,
50–53, 58–60]

Ta
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Figure 4: Taxonomy used in this article.

Figure 5: Manual segmentation of femur bone.
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f(x, y) �
foregroundg(x, y)≥P

backgroundg(x, y)<P
􏼨 􏼩, (2)

where f (x, y) is the pixel strength at (x, y) location and P is
the threshold value. If the threshold value is inappropriate,
then it leads to inaccurate segmentation outcomes [18]. ,is
thresholding parameter occurs as a problem in magnetic
resonance images and makes an image partition complex.

,e global thresholding does not provide better results
for some types of images, like the images that do not have
low contrast and low pixel intensity across the image. For
these types of images, the thresholding provides a better
outcome in some parts of the image and fails in other parts of
the image [19]. In the local thresholding, the image is
partitioned into vertical and horizontal lines. ,e local
thresholding needs more time compared to global
thresholding.

3.1.3. Edge-Based Technique. ,e edges or boundaries are
relevant information in the image. ,e incidence of the
image is known by the number of changes in pixel strength
that is utilized for identifying the different regions of those
changes [20]. ,e automatic classification of boundaries is
achieved by some high filters that avoid low-intensity data
(uniform data) and preserves high-intensity data (edge
data). ,ese edges are extracted for utilization in sophisti-
cated approaches [21].,e tissues appear to be weak or break
that are not distinguishable by some methods with edge-
based region and distance information.

3.1.4. Atlas or Graph-Based Technique. ,e gray pixels of the
image are utilized to create a graph with gray indices [22].
,e atlas and graphs are designed manually by experts who
assign labels to the tissue structures. ,e segmentation
process is applied for transferring the image information

from labelled data to subjects. Hence, the efficiency of the
image segmentation relies on image registering and re-
semblance between subjects and atlas. ,e multiatlas
method [23, 24] that is a sequence of multiple graphs is used
to collect the information in terms of color, structure, and
texture of the tissues with gray values. Furthermore, the
image is partitioned into several multiple small regions and
segmented with foreground and background areas.

A three label approach that utilizes the atlas approach
[25] for bone and cartilage segmentation is applied and
evaluated on knee images. ,is study extensively described
the performance of different classifiers, and the mean Jac-
card value is 75.3% and 75.6% for femur and tibia bones.,e
graph method proposed in [26] offers a subject extraction
with dimensionality where the weights of edges are related to
boundary properties. ,e method evaluated the images
obtained from the OAI database with a better performance
parameter.

3.2. Fuzzy-Based Approaches. ,e fuzzy c-means approach
provides a better classification of medical images. ,e dis-
ease is being classified into four levels based on severity
which is introduced in [27]. ,e knee arthritis is categorized
as normal, minimal, doubtful, and moderate as per the
standard practice of the KL score. ,e morphometric
measures of the knee assigned as osteoarthritis are inves-
tigated with image processing methods. ,e outcomes in-
tensify and reinforce the traditional approaches with the
harshness of the application. ,e tissues such as gray-level
and white-level intensified are segmented with bias-filed
corrected fuzzy C-means in [28]. A combination of the level-
set and fuzzy method clusters the gray and white matter
from the magnetic resonance images.

,e graphical processing units are providing fast com-
putation along with the fuzzy method that is implemented in
[29]. A large dataset can be processed by accelerating the

. 

Point 1 

. 

Point 2 

(a) (b) (c)

Figure 6: (a) Initial image with two seed points. (b) Outcome of region growing for one seed point. (c) Outcome of region growing for two
seed points.

Complexity 5



fuzzy c-means with GPU to tackle the computational time
around 2.24 times faster. ,e specific region of interest
(ROI) is extracted, and the active contour of the cartilage
with noninterpolated areas is estimated in [30].,e identical
pixels are assigned with some classes by using the mem-
bership function to detect the pathological changes in the
tissue structure of the knee magnetic resonance image.

3.3.MachineLearningApproaches. In the recent past, a great
effort has been employed on machine learning practices for
solving the segmentation problem [31]. ,e unsupervised
learning approach does not need training or labelling the
data. ,e labelling of the image is accomplished by
exploiting shapes in the voxel strength features. ,e su-
pervised learning approach requires training for the algo-
rithm and learns from the voxel examples. ,e support
vector machines with multiple sets of images [32] are used
for the evaluation of knee cartilage with better sensitivity. 36
different dimensional features are selected and experimented
on 4 different classifiers with an AUC of 76%. ,e hidden
biomedical information is analyzed clearly for the pro-
gression of arthritis.

,e subcortical segmentation method is used to con-
struct the graph [33]. ,e reliable and automated seg-
mentation of structures from magnetic resonance images is
more important for shape analysis and volumetric study.,e
random forest classifier is used for assigning a cost for each
node in the graph and evaluates the dice index and putamen
measures. A method based on the K-NN strategy [34]
showed successful segmentation for cartilage.,e cartilage is
segmented from the background that leads to false-positive
values. Furthermore, the study was modified and presented
with SVM [35]. ,e main difficulty of SVM is the distri-
bution and independence of data instances. To incorporate
the contextual data such as intensity and structural infor-
mation, the ML approach builds feature vector [36] with
simultaneous use of multiple images.,emethod utilizes the
T1-weighted images for cartilage segmentation problems
that are multicontrast and deposited with fat and water
gradient. A method based on pattern recognition [32] for
gradient data of the knee cartilage segment reports averages
dice value to 0.76.

3.4. Deep LearningApproaches. A priori knowledge of shape
analysis using a convolution neural network [37] is proposed
that incorporates the SSM. ,e method uses 40 validation
and 50 subjects for the estimation of knee images. ,e voxel
accuracy of 89% is estimated with manual adjustment, and
the correlation between the developed method and the
ground truth is investigated. ,e automated segmentation is
based on the CNN approach [38]. ,is method applies
volumetric structure on images and manually segments the
magnetic resonance images. ,e automatic segmentation of
images achieved better outcomes with a dice similarity score
of 0.95 and a precision of 0.95 on femur tissue.

,e contextual constrained neural network combined
with level set evolution [39] is used for the segmentation of
knee magnetic resonance images. ,e movement of the

patella in the knee T2-weighted image should be normal, so
tracking this with segmenting the femur and patella is re-
quired. ,e performance of the T1-weighted knee magnetic
resonance images in terms of ASD and RMSD is estimated
with the convolution network proposed in [40]. ,e deep
learning approach has some promising issues, such as high
dependency on the quality and amount of training data that
tends to overfit of data [41].

,e 3D deformable approach introduced in [42] uses
CNN with 3D simplex deformable modeling. ,e method
performs pixelwise, multiclass classification which has been
tested on the public knee image dataset. ,is method
provides state-of-the-art performance with superior accu-
racy and segmentation error of VOE. An extended version of
the method is proposed in [43] for segmenting the cartilage
lesion detection. ,e T2-weighted fast spin-echo magnetic
resonance images of 175 subjects are used with CNN. ,e
ROC and k statistics were used for analyzing the perfor-
mance and intraobserver detection of cartilage lesions. ,e
volumetric assessment of knee cartilage is introduced in
[44]. ,e dice score and VOE are estimated for different
architectures using the CNN approach.

4. Performance of Segmentation Approaches

Most of the studies that involve segmentation of the cartilage
have been evaluated by estimating the performance pa-
rameters against the ground truth.,is ground truth is being
prepared using manual extraction methods by an expert. To
estimate the efficiency of progressive methods for estimating
the cartilage boundaries, different metrics such as sensitivity,
specificity, reliability, dice similarity coefficient (DSC), ac-
curacy, and efficiency are considered from [6, 45, 46]. Based
on the ground truth and developed methods, the sensitivity,
specificity, DSC, and accuracy are measured using equations
(3)–(6), respectively:

sensitivity �
TP

TP + FN
, (3)

specificity �
TN

TN + FP
, (4)

DSC �
2TP

((TP + FP) +(FN + TP))
, (5)

accuracy �
TP + TN

TP + TN + FP + FN
, (6)

where TP is true positive, i.e., area correctly labelled as
cartilage area, TN is true negative, i.e., area correctly labelled
as noncartilage area, FP is false positive, i.e., area incorrectly
labelled as cartilage area, and FN is false negative, i.e., area
incorrectly labelled as noncartilage area. ,ese parameters
are estimated with base values over the segmented areas.

Sensitivity is the parameter for a ratio of true positives
and measures approximate to 100% for accurate classifi-
cation of cartilage areas of ground truth and developed
methods. In this parameter, the total quantity of small false
negatives represents high sensitivity. ,e specificity
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parameter provides the ratio of true negatives that are ap-
propriately identified through comparative analysis. A
combined effect of both sensitivity and specificity reflects the
best efficiency of the developed approach. Accurateness is a
measure for representing the ground truth agreeing with the
developed methods. It shows how many correctly classified
cartilage areas are included and noncartilage areas are ex-
cluded. Other performance parameters are also considered
by many researchers.

4.1. Automatic Segmentation Approaches. Automatic seg-
mentation frommagnetic resonance image is being achieved
for widespread studies in rheumatoid arthritis, which makes
the process that requires to be accomplished fast and
consistent. Research provides more sophisticated methods
to segment the images and moves towards an entirely au-
tomatic process. Once the tissues are segmented, the
quantitative or measurable analysis is carried out by esti-
mating the volume, density, and structure of the tissues.
Most of the automated techniques that are grounded on
voxel arrangement require a large number of training
dataset. ,e most used machine learning approach is
K-nearest neighbour applied with a multivariant classifier.

Several studies have discussed the utilization of voxel
classification to segment the tissues. Although these voxel
methods can segment the magnetic resonance images, the
data required is the primary concern. ,e main limitation of
this kind of method is the generation of a new dataset. ,e
automatic methods used by different researchers with dif-
ferent metrics are demonstrated in Table 1. All methods
discussed in the table are utilizing intensity or pixel for the
computation. Generally, image segmentation can be
achieved by using numerous parameters such as edges,
regions, clusters, and image intensity. ,e threshold-based
segmentation approach is limited by tissue properties such
as (a) varying intensities of cartilage region, (b) low signal
intensity, and (c) low visibility of tissues.,e development of
these techniques is still under research, and a lot yet has to be
discovered. Current developments in the area of segmen-
tation have been aimed at multiple pulse sequence of
magnetic resonance images.

To automatically segment the tissues from the magnetic
resonance image, the successive approach is performed with
automated segmentation by extracting probabilities using
the k-NN classifier. ,e statistical shape and models are
more precise segmentation methods. However, the utiliza-
tion of these methods has some limitations due to the
initialization of sensitivity [62].

4.2. Semiautomatic Segmentation Approaches. ,is ap-
proach requires minimal user intervention during the seg-
mentation process. ,ese approaches are considered for
reducing the efforts required for manual segmentation.
,ese approaches with the need for human interaction
complete some tasks of pattern recognition and image
processing. ,e semiautomated approach uses some of the
methods such as snake contours, gradient vectors, water-
shed, graph search, and region growing for segmentation. As

depicted in Table 2, the methods used for semiautomatic
segmentation have resulted in great success in extracting the
soft and hard tissue features. A repetitive averaging filter is
used for replicating Gaussian function in the deblurring
process. To dehaze the images by segmentation using the
super pixels technique [72], intensities are summed and the
transmission map is estimated. ,is method preserves the
features such as texture and edges of real-time images.

,e semiautomated approach requires less computa-
tional time and provides an accurate outcome in the studies
when compared with manual techniques, but includes the
human interaction, viewer inconsistency that needs to be
performed. Figure 7 represents the femur and tibia tissue
segmentation using the atlas-based approach for sagittal and
axial images. ,e method discussed in [14] provides a
multicontrast image that has a rich set of the feature given
for classifier using support vector machine technique.
Furthermore, besides the local features, the global features
are also included in the anatomical direction of femur and
tibia bones. SVM is extended, and new SVM-DRF includes
the independent estimation of pixels to incorporate the
spatial dependency between neighbouring pixels.

5. Discussion

,e assessment of tissues is the crucial stage in assessing the
progression of rheumatoid arthritis. ,e segmentation
process is not only needed for treatment but also used for
quantitative parameter estimation. ,is has become a need
due to complex variations related to different tissues in the
knee magnetic resonance image. ,e segmentation tech-
niques discussed above are broadly classified as traditional or
manual, machine learning approach, deep learning ap-
proach, automatic approach, and semiautomatic approach.
Manual segmentation is a tedious task and has result var-
iability amongst professionals within the same image
dataset. Semiautomatic segmentation is a less complex task
compared to manual segmentation but is the same in terms
of variations of manual segmentation. ,e intraobserver
reproducibility for the density is measured in several areas of
cartilage [73]. ,e discussed techniques are included such as
region growing, active contour, and graph-cut. All these
techniques require less human intervention and provide
better sensitivity, specificity, and dice similarity scores. To
overcome the drawback of inter- or intraobserver, many
researchers came up with automated segmentation ap-
proaches that are discussed and reviewed in Section 4.

Table 3, provides a comparative analysis of other articles
and this article.,is paper shows an indetail insight selecting
all the features related to rheumatoid arthritis. In Table 3,
this review work selects synovial fluid and meniscus that is
the main source for rheumatoid arthritis. ,e use of mag-
netic resonance images and machine learning approaches is
the key parameter for selecting the review articles. ,is
review gives an overview of different techniques utilized for
the segmentation of tissues with resolving major challenges
in the magnetic resonance image. ,e techniques available
require more time for computation for segmentation of the

Complexity 7



Table 1: Automated segmentation approaches.

Study MR sample Number of
subjects Methods used Efficiency measures

[47] 3D DESS 33 subjects Region growing and seed
selection

DSC 82.8%, 83.1%, and 72.6% for femur, tibia, and patella,
respectively

[15] T1-weighted 3D DESS 20 subjects Side selection and coupled
cartilage segmentation

DSC 0.80
Sensitivity 90.0
Specificity 99.8

[48] 3D DESS 20 subjects Spatial fuzzy C-mean DSC of femur, tibia, and patella are 87.1, 81.1, and 84.8,
respectively

[37] DESS 50 subjects Statistical shape model Accuracy 74± 5
DSC 86.1%

[49] 2D scan 100 subjects Random walker algorithm DSC 0.8758

[50] DESS 8 subjects DRLSE algorithm
DSC 90.28

Sensitivity 91.14
Specificity 99.12

[35] 3D DESS 10 subjects K-nearest neighbor
Sensitivity 84.2
Specificity 99.9

Dice volume 0.81
[34] 3D image 139 subjects Voxel classification DSC 0.80± 0.04

[51] DESS 13 subjects Hierarchical classifier and
random forest Surface positioning errors femur 0.03± 0.19 tibia 0.10± 0.17

[52] T1-weighted 3D SPGR
and T2-weighted GRE 9 subjects ,ree-label segmentation Median dice coefficient femur 0.935 and tibia 0.938

[53] 3D SPGR 155 subjects Longitudinal three label
segmentation

Femur DSC 75%
Sensitivity 78%
Specificity 99.9%

[54] Sagittal DESS 88 subjects Convolution neural
network DSC 83.8%

[55] DESS 40 subjects Active appearance model
(statistical model) RMSE for femur 1.49, tibia 1.21

[56] PDW TSE 14 subjects Distance-weighted
directional gradient Intensity level, 2∼4

[57] T1-weighted 30 subjects Multiatlas segmentation
constrained graph Femur average surface distance 0.36mm

[58] 2D ASM 140 subjects Rigid multiatlas registration Dice volume tibia 0.8 and femur 0.87

[59] T1-weighted SPGR 20 subjects Statistical method
DSC of femur 0.871, tibia 0.852, and patella 0.645. Sensitivity
of femur 0.947, tibia 0.949, and patella 0.909. Specificity of

femur 0.988, tibia 0.993, and patella 0.996.

[60] T1-weighted FS 14 subjects Validation of statistical
method Meniscus DSC 0.75, sensitivity 0.72, and specificity 1.00

[61] T1-weighted 100 subjects Coarse to fine method with
min-cut DSC of femur 0.947, and tibia 0.968

Table 2: Semiautomated segmentation approaches.

Study MR sample Number of
subjects Methods used Efficiency measures

[63] PDW SPAIR 12 subjects Random forest Femur DSC 94.9%
Tibia DSC 92.5%

[27] T1-weighted axial 103 subjects Support vector machine Accuracy 72%
[58] CCBR 159 subjects PLDS method Dice volume 0.82
[64] 3D SGPR 4 subjects Region growing Error −6.53%

[65] T1-weighted
image 5 subjects Active shape model Mean error −0.57

[66] Flash 3D 15 subjects B-spline with manual
adjustment Interobserver 3.3 to 13.6

[45] 3DMR 20 subjects Active contour ,ickness 0.996 and 0.998 for femur and tibia

[4] SPGR 7 subjects Watershed transformation
DSC 89.5%

Sensitivity 90%
Specificity 99.9%
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entire knee magnetic resonance image. Some of the auto-
mated and semiautomated approaches discussed above are
highlighted with the main strengths and drawbacks. How-
ever, the growing rate of data and increasing rate of com-
putational power make the machine learning and deep
learning approaches most promising for future applications
concerning IoT applications [79–83].

6. Conclusion

,is systematic review approximates themagnetic resonance
imaging key parameters reminiscent of rheumatoid arthritis.
Our nature of the study selects sensitivity, specificity, and
dice similarity index for an approximation of imaging re-
sults. However, from the results of our study, more frequent

Table 2: Continued.

Study MR sample Number of
subjects Methods used Efficiency measures

[23] 3D DESS 320 slices Graph-cut algorithm DSC 94.3%

[67] Flash GRE 50 subjects K-means with manual
adjustment

DSC 0.77 and 0.80
Sensitivity 83.1 and 85.3

Specificity 99.9 and 099.9 for femur and tibia bones,
respectively

[68] DESS 17 subjects Support vector machine DSC patella 0.82, tibia 0.83, and femur 0.86
[23] 3T MR images 10 subjects Graph-cut method DSC 0.943
[13] 3D DESS 12 subjects Active contour model Root mean square 0.8% to 1.3%
[69] 3D DESS 10 subjects Mesh morphing approach Mean S.D of femur 0.87, tibia 0.40 and, patella 0.53
[70] T1-weighted 15 subjects Watershed method Cartilage volume tibia 3.3mm

Figure 7: First row: segmentation of knee bone (left: original image, middle: automated segmentation, and right: segmented bone). Second
row (left: original image, middle: automated segmentation, and right: cartilage segmented) (reproduced from reference [25]).

Table 3: Comparative analysis with other published review articles.

Article
Datatype considered Medical disease

considered
Classification and summarization of existing work

Magnetic resonance
imaging Machine learning Cartilage Meniscus Ligaments and

lesions
Patella, tibia, and

femur bone
Synovial
fluid

[74] √ √ X X √ X X
[75] √ √ √ X X X X
[76] √ √ X √ X X X
[77] X √ X X X X √
[78] √ √ X X X √ X
,is
article √ √ √ √ √ √ √
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parameters for rheumatoid arthritis disease such as synovial
fluid volume, meniscus volume, the dissimilar structure of
tibia, femur, and tears of ligaments. Different segmentation
techniques are considered for review with pros and cons of
themselves that may increase the productivity of a novel
hybrid approach.

Our future work includes selecting more parameters
that are directly related to rheumatoid arthritis. ,e sy-
novial fluid and cystic lesions are the less considered
features than the cartilage and other bone tissues. ,ese
considered features may be used in the future for targeted
treatment, in those most required for rheumatoid arthritis
diagnosis.
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