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Abstract

Mobile phone-based sensing is a new paradigm that aims at using smartpohnes to answer sensing requests and collect useful

data. Nowadays, a wide variety of domains ranging from health-care applications to pollution monitoring are benefiting from such

collected data. However, despite its increasing popularity and the huge amount of data provided by users, there is no platform

where mobile phone owners can effectively sell their data. In this paper, we propose the idea of a data monetization platform

using two-sided market theory. In this platform, the data is viewed as an economic good and the data sharing activity is considered

as an economic transaction. The proposed platform considers the case of abundant data. An experimental analysis is conducted

to compare our approach against the peer-to-peer model using a real case study from the health care domain. We show that our

proposed platform has the potential to generate higher profit for both data providers and data consumers.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: Personal data monetization, Data quality, Data pricing, Two-sided market, Demand curve, Supply curve, Mobile phone sensing

1. Introduction and Motivation

The widespread adoption of the Internet and smartphones led to the production of huge amounts of data that can

be used in a wide variety of domains including targeted marketing, credit and loan evaluation, medical research, and

crime analysis. This opens the door for multi-billion dollar businesses involving buying and selling customer data18.

Companies like Google and Facebook are earning much of their revenues by enabling marketers to target a specific

audience, based on the audience characteristics. According to3, Facebook earned a total revenue of $3.85 billion in the

fourth quarter of 2014 from ads - a fact that allows marketers to reach the personal data of their users. Credit bureaux,

such as Equifax, Experian and TransUnion sell their consumers’ personal data to retailers, banks, insurance firms, and

government agencies. The federal agency for Medicare and Medicaid Services, another class of organizations that are

engaged in the business of buying and selling personal data, sells medical claims that include medical, demographic,

and geographic personnel data to third parties6. However, instead of being sold directly by their owners, data is being
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E-mail address: ahmedbataineh87@gmail.com
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sold by organizations that embed terms in the agreements with their customers to take the permission to use their

personal data.

Mobile applications have also taken advantage of the widespread adoption of the Internet and smartphones. Ac-

cording to the International Data Corporation (IDC), the number of smartphone users is expected to reach 982 million

users by the end of 20157. This degree of market penetration, combined with the capabilities of phones’ embedded

sensors have revolutionized the methods of collecting and analyzing sensed data far beyond the scale of what was

possible by traditional sensing methods (i.e. wireless sensor networks). This has led to the collection of huge amounts

of personal data that could have a monetary value4. However, despite the huge demand for mobile sensed data, the

development of mature and efficient platforms that enable individuals to trade their data has not been adequately ad-

dressed. Existing proposals such as13 primarily focus on the trading of data from the perspective of organizations

without involving individuals - the actual data owners. Some existing organizations, such as1,5, offer data services,

which collect and aggregate personal data from individuals for specialized applications. Those services usually reward

individuals with non-monetary rewards. Mobile phone sensing14 applications still suffer from the same problem; the

vast majority are based on volunteering despite the various costs incurred by individuals participating in sensing tasks.

In addition, current collected data vary in type and quality and their monetary value should also vary depending on

the need and the requirements of the data consumers. In fact, most of the collected data using mobile phone sensing

can be seen as personal, a data type that has been successfully used in many domains such as target marking. However,

from data consumers point of view, acquiring data is not an easy task as they: 1) need to target the right providers,

those who can provide the required data quality; 2) usually have a limited budgets for data acquisition; and 3) need to

collect a specific amount of data to satisfy their needs. Things are not better when it comes to data providers. They

also need to 1) find consumers interested in their data; 2) know the monetary value of their data based on the ”market

need”; and 3) maximize their profit.

Contributions: Currently, the data market is suffering from the following problems: 1) There is no platform for

monetizing data that involves a wide range of primary data providers; 2) Individuals (primary data owners) are either

not compensated for sharing their personal data or are compensated by non-monetary rewards; 3) There is a lack of

platforms that enable individuals to sell their personal data directly. Usually, secondary data owners like organizations

are controlling this operation and benefiting from it; and 4) There is a lack of clear classification of data types and

data quality levels; a classification that is required by a wide range of domains such as the health care domain, but

also required for estimating the monetary value of the data - a value that may change over time.

To resolve these issues, we propose a platform for personal data trading, using two-sided market theory. A two-

sided market is defined as a trading platform dealing with two distinct user groups that provide each other with

benefits16. The double-sided market trading platform we propose enables individuals (primary data owners) to offer

their data as economic good - data that is then classified into groups based on its type and quality. Furthermore,

in order to determine the potential consumers for each data group, data consumers are classified based on the data

quality they require. The trading platform determines both the purchasing price for data providers and the selling

price for data consumers. The price of each data group is estimated based on the price that consumers are willing to

pay. Data groups are ranked and separated by their prices. Obviously, consumers who are interested in higher quality

data groups are charged a higher price. By using the power of two-sided market, our platform aims to help guarantee

the trading of data by attracting more providers and consumers. Using a real-life data set from the health care domain,

an experimental analysis to compared our proposed platform with a peer-to-peer model, from the perspective of data

costs and the payoff for data providers, is conducted. The comparison shows that when using the two-sided market

model, the data cost for consumers is much lower and the data payoff for providers is much higher.

2. System Description

2.1. Background : The Two-Sided Market Concept

A two-sided market, also called two-sided network, is an economic platform having two distinct user groups that

provide each other with mutual benefits16. The benefits to each group exhibit demand economies of scale. Credit

card holders, for instance, favor credit cards accepted by more merchants, while merchants favor cards carried by

more holders. Two-sided market platforms choose the right price to charge each group and considers the fact that

adoption on one side drives adoption on the other side. Demand curves on both sides are not fixed: they shift inward
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Fig. 1: Personal Data Monetization Platform

(negative network effects) or outward (positive network effects) in response to growth on either sides. Two-sided

market Platforms charge the side whose demand increases more strongly in response to growth on the other side and

subsidizes the side whose price is sensitive. Two-sided markets are found in many industries including credit card

platforms, recruitment sites (job seekers and recruiters) such as Monster, search engines (advertisers and users) such

as Google, Internet auctioneers (buyers and sellers) such as E-Bay, social networks (users and advertisers) such as

Facebook and Twitter, video-game consoles (gammers and game developers) such as Sony game, and yellow pages

(advertisers and consumers) such as daily newspapers.

2.2. Platform Description

The proposed platform, as shown in Figure 1, consists of three parties: data providers, a data broker, and data

consumers. The broker is an online platform equipped with the needed infrastructure to store, process, and share

data. The broker provides services that enable data providers and data consumers to perform data selling and buying

transactions. Using those services, data providers are able to upload their data, set different pricing preferences, as

well as accept or reject offers provided by the broker. Data consumers are able to request data and set different

pricing preferences, amounts, types and qualities of required data, as well as accept or reject offers provided by the

broker. The broker works rationally. This implies that data pricing and the data buying and selling mechanisms are

determined based on a number of factors, such as: the number of providers; the number of consumers; the data types

offered; the data quality parameters; and other economics factors. Data consumers are organizations whose business

often requires huge amounts of data with particular specifications. Consumers’ requirements vary in terms of the

type, quality, and amount of data based on their scope and their applications’ needs. We classify data consumers into

groups based on the data quality they require. Each consumer group is interested in a particular group of data quality;

however, the interest of consumers may change during the selling/buying process. Providers can be smartphone

users, or individuals, having some personal data to sell. Most of them are not professionals and don’t know how

they can monetize their data. However, we assume that all data providers behave rationally and can calculate their

utilities according to the type of the data they own. Since the provided data varies in type and quality, we propose to

classify it accordingly into categories. The classification structure consists of two levels: data type and data quality.

Data quality is defined by a vector of attributes which directly affects the data price. These attributes are dynamically

defined based on the consumers’ needs and may vary from one platform to another. For each data type, the related

data quality groups have the same quality vector with different values for the defined attributes.

The proposed platform works as follows: The broker uses his knowledge of the market (further discussed at a later

point) to calculate the optimal price for each group of data providers and data consumers. The broker then offers these

prices. Providers may accept or reject this offer based on their utilities. Consumers may accept or reject the broker’s

offer, or they may change their interest and select a different data quality level with a different corresponding price.

The broker then buys the data from providers and sells it to consumers.
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2.3. Assumptions and Limitations

In this paper, we propose to study personal data monetization using two sided-market for cases in which there is no

monopoly on either side of the market and in which there is relatively large supply and demand. The data of concern

is not real-time data. In other words, the value of the data is not affected by time. The amount of data required by a

consumer is much greater than the data provided by one provider, in the sense that consumers need many providers

to satisfy the required amount of data. The same data can be sold more than once for different consumers. The

broker is not able to discriminate the price among data providers providing the same quality of data or among data

consumers requiring the same quality of data. In this scenario, we assume that the broker has complete knowledge

about the supply size (number of providers), the demand size (number of consumers), the quality of the data needed

by consumers, and the quality of data offered by providers. The broker dominates the entire process of buying and

selling the data.

3. Model Description
Data providers are classified into n groups based on their data type. D = {d1,d2, . . . ,dn} is a set of groups where

d j ∈ D is a group of data producers, which provide the same data type. Each group d j ∈ D is reclassified into m
subgroups based on the quality of their data. d j = {d j

1,d
j
2, . . . ,d

j
m}, where d j

i is a set of data producers providing the

same data type with the same quality.

Similar to providers, consumers are classified into n groups based on the data type they require. C = {c1,c2, . . . ,cn}
is a set of groups where c j ∈ C is a group of consumers interested in a data type provided by d j ∈ D. Each group

c j ∈C is reclassified into m subgroups based on the data quality needed. c j = {c j
1,c

j
2, . . . ,c

j
m}, where c j

i is a set of data

consumers requiring the same data type with the same data quality. Consumers c j
i are mainly interested in the data

quality provided by the producers d j
i .

3.1. Demand

The broker offers different prices for each data quality group and reveals the available amount for each one. Con-

sumers interested in the same data quality are charged the same price. Data consumer i has a utility function which

is increases based on the amount and quality level of data and decreases based on the offered prices. Consumers

calculate the optimal utility and then select a certain quality group with a corresponding price. Any consumer i ∈ c j
i

may therefore switch and become interested in a different data quality group such as d j
k .

In economics, the demand curve is the graph depicting the relationship between the price of a certain commodity

and the amount of that commodity that consumers are willing and able to purchase at that given price. It is a graphical

representation of a demand schedule. Analyzing the history of the market is a powerful method of learning about

demand and modeling relationships between its parameters, even in the absence of knowledge about the present

market. We assume that a linear regression approach is applied by the broker on the history of the market and that the

demand is a linear and continuously differentiable function.

The demand from the consumer group c j
i on the data group d j

i , denoted by q j
i(c j

i )
, is a function of the amount of

data s j
i and its price p j

i offered to consumers. q j
i(c j

i )
, presented in Figure 2a, has an inverse relationship with the data

price since consumers tend to buy data when its price falls. Also note that q j
i(c j

i )
shifts to the right (has a positive

relationship) when increasing the amount of data, since consumers who believed the data was too expensive will now

be incited to buy it due to the increased amount available. The equation for the demand, depicted in Figure 2a, is as

follows:

q j
i(c j

i )
= α j

i +−β j
i p j

i + γ j
i s j

i (1)

where α j
i is constant, and β j

i and γ j
i are slopes of the demand curve with respect to the price and amount of data. The

total demand from all consumer groups on the data group d j
i , denoted by q j

i , is given by equation (2).

q j
i =

m

∑
k=1

α j
k +−β j

k p j
i + γ j

k s j
i (2)
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3.2. Supply

The broker offers different prices for each data quality group and reveals the available demand for each one.

Producers providing the same data quality are charged the same price. The provider calculates the optimal utility by

calculating his data value and deducting its cost.The value of the data depends on many factors such as its quality, the

competition among providers, and the demand size.

In economics, the supply curve is a graphical representation of the relationship between the product price and

the number of sellers that are willing and able to supply this product. Similar to demand, we assume that a linear

regression approach is applied by the broker on the history of the market and that supply is a linear and continuously

differentiable function.

The supply from the data group d j
i , denoted by s j

i , is a function of the total demand q j
i of the group and the price

per data unit x j
i offered by the broker. s j

i , presented in Figure 2b , has a positive relationship with the price per data

unit, since providers tend to sell the data when its price raises. Also note that s j
i shifts to the right (has a positive

relationship) when demand increases, since providers who thought the price was too low will be incited to sell to

increase their revenues. The equation for the supply s j
i , depicted in Figure 2b, is as follows:

s j
i = ε j

i +δ j
i x j

i +θ j
i q j

i (3)

where ε j
i is a constant, and δ j

i and θ j
i are slopes of the supply curve with respect to the price per data unit and the

total demand, respectively.

3.3. Payoff

The broker’s net payoff is calculated by subtracting the total costs of collecting and selling the data from the total

revenue. The cost of data for the broker, denoted by Cd , can be classified into two categories. The first is the cost

of purchasing the data from providers, which is calculated by multiplying the quantity of data purchased by the price

per data unit. The second is the cost of collecting the data, denoted by C, which includes infrastructures, staff and

departments, licenses, advertisements, distributions, compensations, etc. The total cost can be written as:

Cd = (
n

∑
j=1

m

∑
i=1

s j
i ∗ x j

i )+C (4)

The total revenue is calculated by multiplying the quantity of data sold by the price of the data unit. The broker’s

net payoff is given by equation 5. Using equations 2 and 3, we can rewrite 5 as 6. The optimal solution of q j
i , s j

i , p j
i

and x j
i can be obtained from the first order conditions given by the derivative of 6 with respect to all demands and

supplies.

Payo f f = (
n

∑
j=1

m

∑
i=1

q j
i ∗ p j

i )− (
n

∑
j=1

m

∑
i=1

s j
i ∗ x j

i )−C (5)
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Payo f f =
n

∑
j=1

m

∑
i=1

(q j
i )

2 −∑m
k=1 α j

k q j
i −∑m

k=1 γ j
k s j

i q j
i

∑m
k=1 −β j

k

+
(s j

i )
2 − ε j

i s j
i −θ j

i q j
i s j

i

δ j
i

−C (6)

4. Experimental Analysis

The interactions between the two sides of the market can easily yield multiple equilibria. For example, an equi-

librium may exist at which neither providers nor consumers adopt the interaction via the broker. In the following

analysis, we will focus on an equilibrium with positive interaction via the broker. We show that there exist thresh-

old values of prices offered to consumers and prices per data unit above which providers and consumers accept the

interactions via the broker. We will use a case study using real-life medical data to conduct our experimental analysis.

In our experiments, we adopt the parameters of the case study presented in20. In this case study, a broker collects

data from diabetics and disseminates the data to interested organizations. The data is classified into three groups, as

shown in table 1, based on the values of certain medical attributes. Table 1 shows the average cost of 200 records for

each group.

Table 1: Costs of Diabetics’ Data with Different Quality Levels 20

Group No Quality level (NP, PA, RN) Implementation costs Data costs of 200 records Price per diabetic Total costs

Group1 31-100,29-200,yes 13000$ 12000$ 60$ 25000$

Group2 100-101,200-400,No 13000$ 5163$ 25.815$ 18163$

Group3 101-201,400-500,yes 13000$ 12479$ 62.395$ 25479$

We performed an analysis on a fixed amount of data records (200 records) from group 1. The total cost of data as

shown in the table is 25000$, which includes 13000$ in implementation costs and 12000$ to purchase the data of 200

diabetics at a cost of 60$ per diabetic. In our terms, x1
1 = 60$ and s1

1 = 200. According to2, the selling price of such

data ranges in the market ranges from 40$-80$, which means 20-40 cents per record. We made the assumption that

the number of consumers interested in the data of group 1 is 2000, and the demand curve, given by the equation 7, is

defined over prices range from 20-40 cents. The supply, s1
1, is neglected in equation 7 since it is fixed in our analysis.

Using equation 5 and the calculation shown in section 3.3, the maximum broker’s payoff occurs at q1
1 = 2000 and p1

1

= 40$.

q1
1 = 4000−50∗ p1

1 (7)

Consider the first scenario, where interested organizations decide to purchase the data directly from diabetics (i.e.

without broker). Since the broker pays 60$ per diabetic, diabetics will not accept any lower price. However, the

organizations also need 13000$ in implementation costs. In this scenario, the organizations’ costs is 25000$. Figure
3a explains the relationship between the costs when interacting via the broker and the price offered by the broker. As

depicted in Figure 3a, costs of buying data from the broker is much less than the cost of collecting the data without

the broker. Thus, organizations decide to interact with the broker.

In the second scenario, diabetics decide to bypass the broker and sell their data directly to interested organizations.

Since the broker charges the organizations 20 cents per record, organizations will not accept paying a higher price.

Diabetics need 600$ to access the contact information of interested organizations (Exact Data website2 sells orga-

nizations’ contact details at 30 cents per record). In this case, the diabetics’ payoff is -200 after deducting the cost

of access to organizations’ contact information, and if we assume that all organizations are interested in buying their

data directly from diabetics. Figure 3b illustrates the diabetics’ payoff over the price offered by the broker when they

decide to bypass the broker. As depicted in Figure 3b, the providers’ payoff is negative as long as the total revenues,

after deducting the cost of collecting organizations’ contact information is less than the price offered by the broker.

Because of their negative payoffs, diabetics decide to rely on the broker for selling their medical data.

This results’ analysis can be formalized as follows: 1) Providers of group d j
i decide to interact without the broker

and offer a price of xp < p j
i at which a certain number of consumers, denoted by qx, are willing to purchases the data

if the condition qx ∗ xp − zc > x j
i is satisfied, where zc is the cost of access to consumers. 2) Consumers of group c j

i
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decide to interact without the broker and offer a price of xc > x j
i at which a certain number of providers, denoted by

sx, are willing to sell their data if the condition sx ∗ xc +Cd < p j
i is satisfied, where Cd is the cost of contact details

collection.

5. Related Work Review

To the best of our knowledge, Personal data monetization has not been studied extensively. Only few propos-

als11,13,8,10 have studied the relationship between privacy concerns and data marketing, with a focus on organizations

as data owners. Authors in13 adopted an economics-based approach that addresses the privacy issue facing organiza-

tions and how to disseminate sensitive data to a third party data user. However, this work focuses on organizations as

data owners, and it doesn’t provide any platform for personal data monetization.

The problem of designing mechanisms for pricing data in mobile phone sensing applications has been addressed

using different models and techniques. Reddy et al15 designed a recruitment framework identifying well-suited par-

ticipants for data sensing based on spatial-temporal availability as well as participation habits.17 proposed pricing

mechanisms for crowdsourcing markets based on the bidding model in which the requester bargains with participants

to minimize the cost of data collection. The authors focused on designing a mechanism for buying items (rather

than selling) from strategic agents which requires different machinery. Yang et al.21 proposed Two types of incentive

mechanisms using game theory to motivate users to participate in mobile sensing applications: a platform-centric

incentive mechanism that is modeled as a Stackelberg game, and a user-centric incentive mechanism that is modeled

as a reverse auction game. Lee et al. and Huangfu et al.12,9 used auction mechanisms to motivate and reward truthful

contributions. However, those proposals do not provide sufficient monetization/pricing mechanisms to reward high

quality data contributors and are complex to implement in a fully distributed and highly dynamic settings.

To the best of our knowledge, this work is the first economics-based platform that addresses the monetization of

data from the perspective of individuals and consumers, and that uses the two-sided market concept. While we have

presented some research projects that have a direct link (e.g. selling personal data) or indirect link (e.g. motivating

people to participate in crowdsensing, which will generate personal data) with data monetization, the work we are

presenting in this paper differs in many ways: 1) We provide a platform for trading data rather than incentives for

providers that focus on achieving a particular level of participation. Obviously, generating a high profit is a fact

that will automatically attract and encourage users to participate; 2) None of the mentioned studies considered the

classification of data based on its type and quality; and 3) The use of two-sided mechanisms for data monetization.

Such mechanisms attract more data providers and data consumers and, as a consequence, increase the quality of data

as well as the providers’ payoff, and guarantee the availability of adequate data amounts.

6. Conclusion and Future Work

In this paper, we proposed a novel trading platform for personal data monetization, using two-sided market theory.

This platform allows individuals (primary data owners) to trade and monetize their data. It also applies an economic

approach to determining both purchasing and selling prices. In this platform, we classified the data into groups based

on its type and quality. Moreover, consumers are classified based on the quality they require in order to determine
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the potential consumers of each data group. As shown by the experimental analysis, the platform increases the data

providers’ payoff and decreases the cost of data collection for data consumers. It also guarantees an adequate level of

quality and a suitable amount of data for consumers.

Our platform is limited to the cases in which there is no monopoly on either sides of the market and in which

there is a relatively large supply and demand. In addition, the value of the sold data in the platform is not affected by

time. Our platform can be extended to include more types of data and address different possible scenarios such as the

cases in which there is monopoly on provider’s side or relatively low demands from consumer’s side. In addition, this

platform, as it stands, is not able to deal dynamically with changes on consumer and providers sides. For example,

when few consumers accept the offered price by the broker. However, extending the platform to include more types of

data and considering more scenarios may move the control from the broker to the market sides, which requires further

investigation using different techniques, particularly game theory19.
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