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ABSTRACT Fog computing has proved its importance over legacy cloud architectures for computation,
storage, and communication where edge devices are used to facilitate the delay-sensitive applications. The
inception of fog nodes has brought computing intelligence close to the end-devices. Many fog computing
frameworks have been proposed where edge devices are used for computation. In this paper, we proposed
a simulation framework for fog devices that can use end devices to handle the peak computation load to
provide better Quality of Services (QoS). The regional fog nodes are deployed at network edge locations
which are used as an intelligent agent to handle the computation requests by either scheduling them on local
servers, cloud data centers, or at the under-utilized end-user devices. The proposed device-to-device resource
sharing model relies on Ant Colony Optimization (ACO) and Earliest Deadline First(EDF) Algorithm
to provide a better quality of service using device available at multi-layer design. The concept of using
IoT devices as fog nodes has improved the performance of legacy fog based systems. The proposed work
is benchmarked in terms of system cost, efficiency, energy, and quality of service. Further, the proposed
framework is with xFogSim in terms of task efficiency.

INDEX TERMS Fog computing, IoT, resource management, fog simulators, OMNeT++.

I. INTRODUCTION

W ITH greater needs for sensor devices and the internet
of things, a huge amount of data is produced which

requires extensive computing resources. The concept of 5G
has further increased the data generation rate with high-speed
data rate between the device-to-device communication is
used. Therefore, compute extensive tasks can be offloaded
to cloud data centers with an additional cost of multi-hop
network latency, end-to-end delay, bandwidth, and conges-
tion. However, to facilitate the delay-sensitive tasks such as
medical, power, gas and oil leaks, the concept of fog com-
puting is adopted that helps in performing task computations
on near fog devices. Thus, reducing the network load while
sending the data to cloud data centers. This inclusion helps
in reducing task latency, end-to-end delay, and bandwidth.
In a multi-agent fog environment, the concept of fog broker
is used which manages the local fog nodes, defines task
execution policies, and communicates with other devices [1].

A generic layered architecture of the fog computing en-
vironment is given in Fig. 1. There are three layers in
conventional fog networks. The lower level comprises IoT
devices that request resources from gateway broker nodes.
The second step comprises gateway nodes that connect the
end-user devices with fog nodes and also perform resource
management. In case, the gateway broker does not have
vacant resources it requests nearby brokers for resources. The
broker returns the task results to IoT devices. The application
that can be facilitated through fog nodes is security systems,
healthcare systems, or facial detection, etc. The gateway
broker can schedule the task to local resources; however,
doing that constantly can result in long queues which can
degrade the system performance [2].
In recent years, most of the work has been focused on
scheduling algorithms, task distribution, and the energy
preservation of handheld devices. The adoption of 5G has
changed this concept of using central nodes for compute-
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intensive tasks execution. In 5G, device-to-device commu-
nication is used to achieve high throughput, low power
consumption, and wide-area coverage [3]. In the proposed
work, the concept of device-to-device communication is used
which enhances overall system performance and reduces
waiting time as well as network congestion [4].

FIGURE 1: Fog Computing Architecture Pyramid Diagram

In this article, we proposed a simulation framework for
fog networks that inherit the concept of the device to device
communication to offload the task to the nearby end device.
These end devices are named as volunteer nodes because
they volunteer their resources and communicate directly with
task requesting nodes to achieve the device-to-device com-
munication feature of 5G. There are gateway nodes act as
a broker node to resolve the incoming computing requests.
The dedicated fog devices and volunteer devices are used
to perform computation. The framework is dynamic, devices
having sufficient energy, and available resources can partic-
ipate in the resource sharing model where the broker nodes
allocate requests to the most capable device, keeping in view
the energy and other constraints. When a task is performed,
the volunteer computing device sends results directly to the
requesting device and acknowledges to the broker device.
The other salient features of the framework are:

• Efficient energy management module which enables the
system to preserve energy through task scheduling over
devices having significant energy.

• Safe handover mechanism under mobile environment,
especially, When both end user device and volunteer
fog nodes are mobile, the localization becomes very
complex.

• Configurable mobility module that allow researchers to
include their own mobility models through the extensive
markup language.

• Inclusion of collaborative geographically distributed fog
locations to ensure the availability of resources.

• Addition of backend datacenters for batch processing
tasks having less stringent deadlines, and computation
intensive.

• Quality of service (QoS) and resource localization based
allocation algorithm to ensure that the task gets its
required QoS with least possible communication delay
to improve overall system performance.

The rest of the paper is structured as follows: Section II
covers the related work. The system model is presented
in Section III. Section IV covers the proposed framework
in detail and system evaluation is covered in Section V.
Finally, the conclusion and future directions are presented in
Section VII.

II. LITERATURE REVIEW
This section covers the existing work on fog computing
frameworks and simulators.

A. FOG COMPUTING FRAMEWORKS
YAFS et al. [5] proposed a simulation framework to en-
able users to simulate fog networks in the context of node
placement. The authors allow users to place fog nodes based
workstations at different network topologies to perform result
comparison.
Belli et al. [24] proposed a fog based mobile crowdsensing
platform for the efficient users’ recruitment process. They
utilized the concept of using mobile nodes to perform specific
tasks in a complex fog network. The mobile nodes advertise
their battery and CPU power and the fog node takes the
offloading decision. However, the fog nodes are not utilized
for computation purpose; thus, only act as a task distributor.
Tom et al. [25] proposed a routing protocol labeled as Low
Power Lossy Area Network for smart metering. The authors
incorporated a middle node i.e. aggregator between meters
and fog nodes. Using the intermediate node, the authors claim
to improve the packet delivery ratio by 35% and decreased
end-to-end delay by 13%. The simulation is performed using
Contiki OS [26].
Natesha et al. [27] proposed an IoT application module
placement strategy for fog network environment. The authors
benchmark the proposed work using iFogSim and claim a
significant decrease in delay and power consumption.
Huang et al. [28] proposed a mathematical model to generate
automated test cases based on path coverage for a dynamic
fog environment.
Avaisi et al. [29] proposed an efficient car parking system
that uses fog computing concepts to reduce network latency
and delay. The solution is tested using iFogSim and com-
pared with a similar solution in a cloud-based environment.
Further, significant improvement has been observed in terms
of latency and performance.
Rehman et al. [30] proposed a trust-based task mapping
and resource sharing framework for vehicular fog networks.
They applied the concept of 5G and utilized the concept
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TABLE 1: Fog Simulators Comparison

Simulator GNU Platform Fog Mobility Customize-able Energy Cloud Device-Layer
GPL Independent Federation Support Algorithm Integration as fog

YAFS [5] X X 7 7 7 X 7 7

RECAP [6] X X 7 7 7 X X 7

FogTorch [7] X X 7 7 7 7 7 7

MobFogSim [8] X X 7 X 7 7 7 7

FogDirSim [9] X X 7 7 7 7 7 7

PFogSim [10] X X 7 X 7 7 7 7

Edge-Fog cloud [11] X X 7 Limited 7 7 7 7

SimpleIoTSimulator [12] 7 X 7 X 7 7 7 7

OPNET [13] X X 7 X 7 X 7 7

iFogSim [14] X X 7 7 7 7 X 7

EdgeNetworkCloudSim [15] X X 7 7 7 7 7 7

PureEdgeSim [16] X X 7 7 7 7 7 7

MyiFogSim [17] X X 7 7 7 7 7 7

iFogSimWithDataPlacement [18] X X 7 7 X 7 X 7

EdgeCloudSim [19] X X 7 X 7 7 X 7

StormOnEdge/SpanEdge [20] X X 7 X 7 7 X 7

DockerSim [21] X X 7 X X 7 7 7

EmuFog [22] X 7 7 7 X 7 7 7

xFogSim [23] X X X X X Limited X 7

Proposed Framework X X X X X X X X

of trust matrix to form an off-street cluster of vehicles. A
task mapping algorithm is also proposed which enhances the
efficiency of resource sharing.
Nashaat et al. [31] proposed an IoT application placement
algorithm for a fog environment. The authors classified the
algorithm into two phases. The first phase is to prioritize IoT
application requests based on application usage, user expec-
tation, and environment run-time context. It used QoS viola-
tion as feedback, in the second phase it places the request
to fog node based on its computing capability, proximity,
and its response time. This model showed improved system
performance plus a minute increase in power consumption.
Dar et al. [32] proposed and designed a delay-aware accident
detection and response system. The authors believe that in
developing countries, economy scale vehicles are used which
are not digitally equipped. Therefore, an Android phone
is used where the application detects accidents through its
sensors. This information is sent to the nearest hospital.
Deep et al. [33] proposed a 5G optical fog node which creates
cyberspace near IoT devices. The devices can efficiently
upload tasks to the fog node and gets the response within
the time-bound.
Rafique et al. [34] proposed a resource allocation strategy in
fog network. A hybrid modified cat swarm optimization al-
gorithm (MCSO) and a modified particle swarm optimization
algorithm (MPSO) is used for task allocation at the fog nodes.
They distributed resources based on incoming demands. The
main objective is to reduce delay and response time.
Ammad et al. [35] proposed a new multi-level energy-

efficient framework for fog and IoT based smart networks.
Two additional layers, energy-efficient hardware, and policy
layers are introduced in the IoT-fog-cloud network to make
energy-aware decisions. The energy required to execute a
particular task is also estimated. Further, various case studies
are discussed to evaluate the performance of the proposed
framework which includes the smart airport, smart agricul-
ture, smart hospital, and smart parking.
Coutinho et al. [36] proposed a toolkit for fog computing
emulation. They designed the fogbed in a virtualized envi-
ronment which enables users to understand fog concepts and
test fog components using third-party available tools.

B. FOG SIMULATORS
RECAP [6], is a fog/cloud simulation framework which can
be used to simulate large scale fog, edge, and cloud network
scenarios for applications related to control and decision.
The simulator provides support in predicting the impact on
Quality of service (QoS), workload, and resources.
iFogSim [14] is a simulation toolkit for fog network environ-
ments. It adopted the concepts from CloudSim. The iFogSim
has three main components, i.e. physical, management, and
logical. Buyya et al. [37] elaborated the concept of iFogSim
and its usage in various applications.
piFogBed [38] is the first fog computing testbed which is
based on Raspberrypi and can easily be configured to use
with a realistic fog network. However, for the evaluation, the
authors simulated a medical monitoring system.
MobFogSim- [8] is an iFogSim based simulator that enables
the modeling of the node’s mobility and service migration. In
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this simulator, the impact of mobility on service migration is
studied using an experiment-based approach. MockFog [39]
is a freely available simulator where users can simulate small
scale fog networks, and test the performance by setting up
the network characteristics. Héctor [40] is a simulator for
automatic testing of IoT devices. The simulator generates
virtual testbeds with customizable network characteristics.
PureEdgeSim [16] is used for performance evaluation of
cloud, edge, and fog networks and simulation of resource
management strategies. A Fuzzy Decision Tree-based re-
source allocation algorithm is also proposed which enables
the system to adopt IoT environment changes. Finally, a case
study is simulated to evaluate the simulator’s performance
and valuable results are collected.
SatEdgeSim [41] is PureEdgeSim based simulator for mod-
eling satellite edge computing-based networks. The impact
of various task deployment strategies is studied. A com-
parison is also given between conventional task deployment
strategies and proposed strategies. The results show that the
proposed model is efficient in terms of delay, energy con-
sumption, and task success rate. xFogSim [23] is a simulator
designed in OMNeT++1 which can be used to simulate dis-
tributed fog networks. Medium-scale networks are simulated
and it has a very efficient task distribution algorithm that
chooses the best fog node depending on the cost, availability,
and response time. The simulator allows researchers to sim-
ulate complex network scenarios, and evaluate the network
performance.
The proposed system has many additional features as com-
pared to xFogSim. In exFogsim, only the dedicated fog
devices are used to compute tasks but in the proposed
framework the concept of device-to-device communication
is applied which increases the available system resources
because here some user nodes will be acting as fog devices
to compute tasks. An efficient and collaborative resource
sharing algorithm is proposed that chooses the best available
option for task computation from volunteer, fog, and cloud.
The task acceptance ratio is increased because no task is
dropped due to a limited number of fog devices. An efficient
energy management module is deployed. Table 1 shows a
detailed comparison of the proposed simulation framework
with many existing fog simulators.

III. SYSTEM MODEL
The system architecture is represented in Fig. 2. There
is Gn number of fog locations and each fog location is
equipped with Wm fog gateway nodes. Whereas, the zn
fog devices are dedicated computing nodes. There are Un
heterogeneous devices which include IoT sensors, mobile
nodes, user devices, vehicles, roadside sensors. Except for
the sensors, all can work in two modes simultaneously i.e.
computation seeker and computation provider. These mobile
nodes update the gateway nodes about their available energy,
and computation power through heartbeat messages. When

1https://omnetpp.org/

a user node Ui generates computation request xi and send
it to nearby gateway fog node Wi available in their region.
The gateway nodes forward this request to dedicated fog
node zi or forward to a volunteer user node Vi. If a task is
completed on the dedicated fog node, it sends the result to the
requesting node directly and acknowledges the gateway node
about this task expectation to ensure desirability and avoid
data loss. The desirability means whether a task received its
desired quality of service or not. The same happens if the
task is computed on the user node. In both scenarios, systems
ensure device-to-device communication to reduce extra delay
and to reduce the burden at the centralized fog node. All
this communication is being performed staying in the LAN
network. In some cases, the system can communicate with
cloud servers through a wide area network.

TABLE 2: Summary of Notations

Sr. Symbol Definition
1 Gn Distributed Fog Locations

2 zn Dedicated Fog Nodes

3 Wn Gateway Nodes

4 Un User nodes seeking computation

5 Vn User nodes volunteer resources

6 Dz
i Computation delay (queue + service)

7 νi Service rate at fog node zi
8 ui Average arrival rate at zi
9 DLxi Network delay to local fog broker

10 DVxi Network delay to volunteer node

11 DGj
xi Network to remote location

12 xi Computation request

13 γ size of the request x in Bytes

14 EiNet The energy required to transmit a Byte data

15 U Network element utilization rate

16 Ψiidle Network element’s idle power

17 ζiidle Network element’s idle network capacity

18 Ψimax Network element’s maximum power

19 ζimax Network element’s maximum network capacity

20 Eη Energy consumption when task is computed in cloud

21 ER Energy consumption in case nearby fog location

22 Eiα,xi Energy consumed by access network

23 Tγ Time required to process γ sized request

24 Tact,γ Time consumed to process active request of size γ

In the proposed work M/M/c model is adopted [42] where
the system follows a queue with multiple computing nodes.
However, the arrival rate is simulated using the Poisson
process. The total arrival rate λT at fog device zi is given
in eq. 1.

λT =
∑

zi∈zn

λzi . (1)

Where λzi
is the average arrival rate at ith fog node z.

The system will accept new task request if the total arrival
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FIGURE 2: Proposed system architecture – devices communicate with fog devices, offload tasks. The fog nodes are connected
with cloud data centers. Fog gateways are the intelligent devices decides whether offload tasks to dedicated fog nodes in its
location, neighbor locations or nearby volunteer user nodes.

rate λT is less the total workload capacity of the system νT .
According to Liu et al. [43] the decision ι is made by equ 2.

ι =

{
1.0 λT ≤ νT
νT
λT

λT > νT
(2)

The task execution rate Dz
xi

is determined using [44].

Dz
xi

= ι.λT =

{
λT λT ≤ νT
νT λT > νT

(3)

The computational delay for a request xi is calculated using
eq. 4:

Dxi
= Dz

xi
+Dn. (4)

Considering the system is first to come first serve based
queue and Dz

xi
means task execution delay which is a

combination of both queuing delay and the service delay.
The notation Dn denotes the network delay. There are three
possibilities in our proposed work, i). The task is computed
on a dedicated fog device in a nearby fog location ii). the task
is computed on local dedicated fog devices and iii). the task
is computed on a volunteer user node. If the task is executed
on a dedicated fog device within the same fog location then
the network delay is calculated using eq. 5 where du,zi is the
network delay between user and fog device.

DL
n = du,zi . (5)

The eq. 6 is used to calculate the network delay when a task
is executed on a remote fog node.

DRn = du,zi +
∑
f∈zr

dzi,f . (6)

Here du,zi
means the delay between user and local fog

device, and dzi,f is the average delay between local fog
device and the remote fog device. In eq. 7, the network
delay is given when a task is computed on a local volunteer
node [45].

DVn = Lui,w + Luj ,w + Lui,uj
. (7)

This is the best-case scenario where Lui,w is the latency
between ith user and gateway, Luj ,w is the latency between
jth user and gateway, and Lui,uj

is the latency between ith
and jth user for the jth user result transmission.

The distance between a user node and volunteer node is
determined by standard distance equation 8 where p(x,y) and
v(x,y) are the coordinates of user u and volunteer node v
respectively in a two-dimensional plane.

dv ←
√

(py − vy)2 + (px − vx)2 (8)

The energy of the system is divided into three categories.
i). energy consumed by the access network devices (α) e.g.
switches/routers when a request xi of size γ is transmitted in
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a fog network Ezα,xi
ii). energy consumed by the fog device,

volunteer user device, or cloud servers for request processing
(ψ) i.e. Ezψ,xi

. iii). sometimes additional data is required that
consume network energy for this request i.e. β ∗ Ezρ,xi

where
β is the ratio Nsent/Nreceived of the number of the request
sent/received to the cloud. According to Deng et al. [45], the
total energy consumed by fog is given in eq. 9.

Ez = Ezα,xi
+ Ezψ,xi

+ Ezα2,xi
+ β ∗ Ezρ,xi

(9)

Here Ezα,xi
is the energy consumed by access network ele-

ments to upload request xi to fog device, Ezψ,xi
is the energy

consumption during process and storage operation at fog de-
vice, and Ezα2,xi

is the energy consumed by network elements
when the result is returned to requesting user. When task is
computed at volunteer user device, the energy consumption
is computed in eq. 10

EF = Ezα,xi
+ Ezψ,xi

+ Ezα2,xi
(10)

The system has a feature of leasing resources from nearby
fog locations, so the energy consumption when a request is
computed in a remote location is given in eq. 11

ER = ERα,xi
+ ERψ,xi

+ ERα2,xi
. (11)

Where ERα,xi
is the energy consumed by network nodes to

transmit data to a remote location, ERψ,xi
and ERα2,xi

are the
energies consumed during processing request and returning
result to requesting user respectively. In some rare cases,
the request is processed in cloud servers. Hence the energy
consumed in that case is given in eq. 12

Eη = Eηα,xi
+ Eηψ,xi

+ Eηα2,xi
. (12)

The access energy consumed by the network elements e.g.
switches/routers is calculated in equation 13

E iα,xi
= γ ∗ E iNet

+ γ ∗ (Ψi
idle/ζ

i
idle + Ψi

max/U ∗ ζimax) (13)

The energy consumption for execution of request xi at ith
volunteer node is given in eq.14

E iψ,xi
= γ ∗ E iψ (14)

and the energy consumption during task execution at a fog
device i is calculated using eq. 15

E iψ = Ψi
idle ·

Tγ
TTotal

+ Ψi
max ·

Tact,γ
TTotal

(15)

In next section, system components are discussed in de-
tails.

IV. PROPOSED FRAMEWORK
The proposed simulation framework consists of mobile and
static nodes. Let’s assume, there are n fog locations. Each
fog node has a broker node that can resolve the incoming
computing requests. Moreover, there are few mobile devices
which act as a fog node to share their resources. Whereas,
the requests are generated from user devices that only send
requests which are resolved through fog broker. The user
device sends job tasks to the fog broker with the strict QoS
constraints. The fog broker schedules the incoming compu-
tation jobs to a local fog node or volunteer device. A detailed
flow of tasks and their control is shown in Algorithm 3.

A. DESIGN COMPONENTS AND UTILITIES
The core components of the proposed framework include
user devices, volunteer user devices, fog gateway, centralized
fog nodes, and backend cloud data center.
User devices – are the nodes which include IoT sensors,
mobile devices, and other handheld devices. These devices
communicate with gateways devices to resolve computation
requests.
Volunteer user devices – volunteer devices are the mobile
fog nodes which can share their resources on request. The
volunteer devices broadcast their resource information along
with available energies to nearby fog gateway nodes. This
received information is used to select the most suitable device
for the request. The volunteer node executes the assigned task
and returns the result directly to the requesting user nodes.
Thus, for result delivery no intermediate node is considered,
this is to reduce the delay and network congestion. The task
execution at volunteer node is illustrated in algorithm 2.
Fog gateway – is responsible for receiving resources re-
quests, heartbeats messages from the user, and volunteer
devices. The gateway selects the suitable device for the
incoming request and forwards the task to the selected de-
vice accordingly. The potential computation devices include
dedicated fog nodes available at fog gateways, neighboring
fog locations, cloud data centers, or volunteer end devices.
The resource allocation algorithm is responsible for selecting
the computation device.
Dedicated Fog Servers – refer to the nodes available at each
fog location having significant computing resources with no
energy constraints. These servers can accommodate multiple
requests at a time. The fog servers share their resource infor-
mation along with task residence time with gateway nodes.
This information is used for computation device selection.
Cloud data centers – This module can handle compute and
data-intensive tasks. Moreover, with specific APIs, sensor
data can be stored in the data centers. Further, this mod-
ule is added to support batch processing with no stringent
deadlines; whereas, these tasks may require resources for
concurrent execution. In such cases, the framework provides
an interface to upload those tasks to the cloud where more
compute resources are available. Such tasks may include
machine learning and artificial intelligence algorithms where
the intermediate results are the input for the next layer. In
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such situations, the cloud data centers perform the required
computations and share the results with fog nodes for better
intelligent decisions.
Mobility Models & Handover – The mobility is an im-
portant aspect of performance degradation in a mobile en-
vironment. The fast-moving vehicles or devices can very
rapidly disassociate from the network [46]. Therefore, data
loss and re-transmissions decrease overall network perfor-
mance/efficiency. In the proposed framework, devices can
adopt different mobility models. The list of mobility modules
that exist is Linear, Circular, Gauss Markova, Turtle, etc.
Moreover, to handle the impact of various mobility modules,
a handover module is inherited to help device association
through access points to prevent data loss.

B. PROPOSED RESOURCE SHARING TECHNIQUES
An adoptive resources scheduling algorithm is proposed that
inherits properties from two popular algorithms Ant Colony
Optimization (ACO) Algorithm and Earliest Deadline First
(EDF) Algorithm. In the traditional ACO algorithm, the ants
search for food, which is evaluated in terms of quantity
and quality before sharing information with others [47].
Similarly, in the proposed algorithm, the broker sends jobs to
different nodes, which send an acknowledgment back after
completing the job. The broker evaluates the performance of
the device in terms of time, the energy consumed, the queue
size, and the estimated waiting time for the next job. This
helps the broker maintaining the list of available nodes in
terms of QoS. The entire process happens asynchronously.
The proposed resource manager execution is shown in al-
gorithm 1. This is the main decision module which helps in
selecting the most suitable devices for a given task execution
request to meet the service quality. The QoS varies depend
upon the task stringent deadlines. Therefore, the task having
hard deadlines are more suitable to execute on the nearby
devices, as it can reduce the communication delay as well
as the queuing time. However, as the framework relay on
volunteer devices, and in case if no device is available, the
system negotiate with the source device for additional time
so that the task can execute over fog node. If the source
device can tolerate additional delay, the task is scheduled at
the fog node. Moreover, the task with flexible or no deadline,
the selection modules still check the available devices, their
computing power and energy. Thus, device having sufficient
energy can be opted for the execution. This selection is
performed based on distance (dv using eq. 8) from the source/
requesting device. However, to balanced the workload and to
reduce the network traffic, the no deadline tasks are send to
cloud data center.
When a task is received at a volunteer/fog/cloud device,
it is added to a queue. The queue is ordered using the
Earliest Deadline First (EDF) Algorithm [48]. This can help
in reducing the re-transmission; on deadline (timer) expiry
the system sends a control message to acquire consent to
execute the task otherwise, it can simply drop the task.
Thus, this way it reduces the retransmission of tasks, and

also the failed tasks are dropped from the queue without
execution to save time for other tasks to meet the deadline.
As illustrated in algorithm 2, an idle device having the queue
size zero, the device starts executing the incoming job and
sends the result directly to the requesting source device and
it also sends an acknowledgment to the broker gateway. This
acknowledgment is fruitful in two ways, first, the broker
keeps track of each job, means no job will be starved in the
queue. Second, the gateway broker ranks this fog node in its
list according to the performance which helps in improving
the future performance of the system. If the queue size is not
zero the incoming job is placed in the queue according to
EDF policy. Algorithm 3 gives an overview of the system
which describes the processing of the task life cycle.

Algorithm 1 Adaptive Resource Sharing Algorithm
Input V : list of volunteer nodes

xi: incoming request
p: requesting node’s position (x,y)
z: List of fog nodes
QoS: Quality of Service

Output S: optimal solution for job execution
1: dmin ← +∞ . distance between requesting and volunteer node
2: Dmin ← +∞ . computational and queuing delay of fog/volunteer

node for request xi
3: S ← {φ}
4: switch QoS do
5: case 2
6: if V is{φ} then QoS ← 1
7: else
8: for each v ∈ V do
9: if Ev < Erequestz then . v have enough energy equ 9

10: dv ← Distance(p, v) . calculate distance between
user and volunteer node using equation 8

11: Dv ← Dvxi . From equ 4
12: end if
13: if sv < αdv + βDv then . α and β are constants
14: S ← sv
15: end if
16: end for
17: return S
18: end if
19: case 1
20: for each f ∈ z do
21: Df ← Dfxi . From equ 4
22: if sf < Df then
23: S ← sf
24: end if
25: end for
26: return S
27: case 0
28: Forward request to cloud servers

V. EVALUATION
The proposed simulation framework is evaluated on Ubuntu
16.04 by simulating a smart traffic case scenario.

Case Study – A smart traffic case scenario where roadside
units work as fog brokers, dedicated fog nodes are deployed
in parking, security cameras, and sensors. The vehicles and
pedestrians are used as users and volunteer nodes. In case of
any computation requirement, the devices send computation
requests to the nearby roadside unit which allocates resources
using the list of potential devices. The request size and
other networks/ system parameters are given in Table 3. The
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Algorithm 2 Earliest-Deadline-Based Task Execution
Input v: fog node; u: user node; x incoming job
Output Nil
1: τ ← 0
2: while true do
3: if v InIdle then
4: job← Recv(x) . Receive job
5: r ← Exec(job) . Execute job
6: Send(r, u) . Send result to user node
7: Send(Ack,b) . Send acknowledgement to broker
8: else
9: Queue← Recv(x) . Receive and queue job

10: end if
11: if queue 6= {φ} then
12: job← Queue.pop()
13: r ← Exec(job) . Execute job
14: Send(r, u) . Send result to user node
15: Send(Ack,b) . Send acknowledgement to broker
16: end if
17: if τ Expires then
18: τ ← 0 . Reset timer
19: Send(mHB ,b) . Send heartbeat to broker
20: end if
21: Send(Beacon,b) . Update broker about resources
22: end while=0

Algorithm 3 Gateway Broker– The System Life-cycle
Input Msg incoming message
Output Nil
1: V : list of volunteer nodes
2:
3: R : Listofjobs
4: p: requesting node’s position (x,y)
5:
6: z: List of fog nodes
7:
8: QoS: Quality of Service
9:

10: while true do
11: switch Msg.Type do
12: case Connect
13: Add(f) . Add fog to list
14: Send(Ack, f)
15:
16: case ConAck
17: Send(Ack) . Handshake
18: case JobRequest
19: v ← FindOptimal(V, x, xp, xQoS) . Using algorithm 1
20: R← x . Insert job to list
21: TaskExecute(v,Msgu, x) . Execute Job Algorithm 2
22: Send(Ack,Msgu) . Send acknowledgement to user
23: case JobAck
24: R.Remove(x) . Remove job from list
25: case Beacon
26: Update V . Update list
27: end while

proposed framework is evaluated in terms of CPU, memory
usage, network delay with varying nodes, task acceptance
rate, packet drop ratio, execution time, and residual energy.
The results are discussed below:

Graphical User Interface Drawing Delay – As the pro-
posed framework is developed as an extension of OMNeT++;
therefore, it can run in both Graphical User Interface (GUI)
and command line interface mode. However, if the GUI based
environment is triggered, GUI setup delay is observed due to
components drawing on the screen. Figure 3 depicts the setup

TABLE 3: Simulation Parameters

# Parameter Value/Description
1 Fog Locations 4

2 Fog Brokers 10-15

3 Dedicated Fog Nodes 10-100

4 Volunteer Nodes 50-200

5 User Nodes 50-400

6 Mobility Models Linear,circular,Turtle, Gauss Markov

7 Fog Node Capacity 1000 MIPS

8 sendInterval 0.5s

9 Request Size γ 1024

10 Cloud Data-center(s) 1

11 Broker App Name BaseBrokerApp

12 Fog App Name ComputeFog

13 User App mqttApp

14 Volunteer User App VolunteerApp

15 queueType DropTailQueue

16 WLAN Bitrate 54Mbps

17 radio.transmitter.power 3.5mW

- Component Value/Version
1 OS Ubuntu 16.04 64x LTS

2 CPU(s) Intel CoreTM i5-1035G1 1 GHz

3 Core(s) 4

4 Threads 8

5 Memory 8 GB

6 Graphics Nvidia 2 GB

7 Omnet++ 4.6

8 INET 3.2.4
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FIGURE 3: One time system booting delay while in GUI
mode

delay with increasing number of nodes. Therefore, with the
increase in the number of nodes, the delay increases, and for
2000 network nodes it reaches about 650 seconds which is
too high; however, no significant delay has been observed
CLI mode. Therefore, CLI mode is recommended for large-
scale complex simulation having many devices using hetero-
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geneous mobility models.
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FIGURE 4: Average memory and CPU usage of system
according to number of nodes and request rates (µ)

CPU and Memory Usage – In the proposed simulator,
each node consists of several sub-modules which include the
mobility, application, and energy module. Hence, with the
increase in the number of nodes/devices the memory usage
and CPU usage increase as well. Figure 4 shows the CPU
and memory usage observed with increasing the number of
nodes and task generation rate from 200 - 800 ms. Figure 4(b)
shows the CPU usage with various task generation rate. As
the task rate increases, the system CPU usage also increases.
Similarly, memory consumption is also compared with in-
creasing nodes and task generation rate. Figure 4(a) shows
that more memory resource usage.

Network Delay – The network delay is a core parameter
to understand the quality of service offered by a framework.
It also depends on the task generation rate. The framework
evaluation is performed in terms of quality of service and
task generation rate. Figure 5(a) depicts the network delay
with varied quality of service. The figure shows the network
delay while executing the task at various layers to meet their
service demand. The network delay is proportional to the
distance between devices and available data rate [49]. The
proposed algorithm tries to meet the service requirement
through volunteer devices, local execution at fog nodes,
or through the help of cloud data centers. However, if no
suitable volunteer node is available, the task service demand
is met through execution at the fog node. The network delay
increases linearly with the increase in the number of nodes
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FIGURE 5: Network delay with varying devices and task
generation rate.

because more nodes requesting compute requests which cre-
ates long queues at nearby fog locations and causes network
traffic congestion. Figure 5(b) shows the network delay with
varying task generation rate (200-800ms).
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FIGURE 6: A comparison of task acceptance ratio with
xFogSim

Efficiency(%) – The efficiency is defined as the ratio
of executed and total generated tasks. The efficiency of a
proposed framework is compared with xFogSim [23] and the
results are shown in Figure 6. Task acceptance ratio means
the number of tasks a fog/volunteer node accepts. The drop
tail queue is implemented at every fog node; thus, after the
pre-defined threshold, the fog device stops accepting incom-
ing tasks. Thus, on a higher arrival rate, the xFogsim denying
the device resource request due to the limited number of
resources available at the fog node. Whereas the proposed
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framework has more resources due to the usage of volunteer
nodes, the task service rate is high.
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FIGURE 7: Packet Drop Ratio (%) due to network conges-
tion

Packet Drop Ratio (%) – Packet drop is an important
measure especially in a wireless environment where the low-
level devices can send messages without knowing the channel
availability. In our framework, the device can send packets
after a 200ms gap to avoid channel congestion; however, due
to a large number of devices offloading tasks, a bottleneck is
developed at the gateway brokers. Thus, due to the limited
buffer size, the gateway drop packets. Figure7 show a packet
drop ratio with varying number of nodes. Thus, to resolve
such issues, macro levels deployment can facilitate better
results as discuss in future directions.
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FIGURE 8: The system cost; a combination of queuing cost
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System Cost – The system cost is defined as the sum of
communication, queueing delay, and execution time. It is an
important measure to gauge the performance of the system
to meet the quality of service. Fig. 8 represents the system
cost at different levels which utilized to meet the QoS. It is
observed that the cost is maximum when tasks are uploaded
to cloud data centers because of the communication and
queueing delay. Whereas, the cost is minimal when jobs are
forwarded to volunteer devices. It is due to the device-to-
device communication and limited queue size at volunteer
devices. Further, the cost at fog nodes is intermediate as it
has long queues due to its centralized regional deployment
and intermediate communication delay.

Residual Energy – Fig. 9 shows the average residual en-
ergy of volunteer computing devices concerning simulation
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FIGURE 9: The average residual energy of volunteer node
with respect to simulation time (s)

time. The energy of the devices decreases as simulation time
passes as it is consumed for task execution. The proposed
framework also provides an energy module to observe energy
usage due to resource sharing.

VI. AVAILABILITY

The simulator is developed under GNU General Public Li-
cense, freely available for academics research purpose. It
can be accessed from github at https://github.com/rtqayyum/
mFogSim.

VII. CONCLUSION

Fog computing has proven its role for delay-sensitive applica-
tions in both domestic and industrial environments. This pa-
per proposed a simulation framework based on a IoT device
grid that can act as a fog node to execute the requested tasks.
The mobile devices are promoted to fog nodes depending on
their energy level and computation capacity. The nodes can
move following the pre-defined mobility models. To achieve
service quality, an algorithm is proposed which helps in
better utilizing the available resources and achieve maximum
system throughput. Thus, the framework provides a multi-
level resource sharing model. The tasks are allocated based
on task deadlines. The evaluation section shows a significant
gain in performance by adopting various IoT devices as a
work force for the roadside units. However, the proposed
work relies on nearby IoT devices; thus, limited availability
or access to these devices can effect the performance of the
proposed system.
In the future, we are planning to expand this work by in-
corporating machine learning algorithms to predict device
mobility patterns and select the most suitable device for task
offloading. Similarly, another way forward is to explore the
task dependency issues for the fog computing environment.
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