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Neutrosophic cubic Heronian mean
operators with applications in multiple
attribute group decision-making using
cosine similarity functions

Muhammad Gulistan'®, Mutaz Mohammad?, Faruk Karaaslan?,
Seifedine Kadry*, Salma Khan' and Hafiz Abdul Wahab'

Abstract

This article introduces the concept of Heronian mean operators, geometric Heronian mean operators, neutrosophic
cubic number—improved generalized weighted Heronian mean operators, neutrosophic cubic number—improved general-
ized weighted geometric Heronian mean operators. These operators actually generalize the operators of fuzzy sets,
cubic sets, and neutrosophic sets. We investigate the average weighted operator on neutrosophic cubic sets and
weighted geometric operator on neutrosophic cubic sets to aggregate the neutrosophic cubic information. After this,
based on average weighted and geometric weighted and cosine similarity function in neutrosophic cubic sets, we devel-
oped a multiple attribute group decision-making method. Finally, we give a mathematical example to illustrate the useful-

ness and application of the proposed method.
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Introduction

The multi-attribute decision-making (MADM) or
multi-attribute group decision-making (MAGDM)
widely existed in the field of management, military,
economy, and engineering techniques' > to get an accu-
rate evaluation information in the premises of decision
makers (DMs) to make feasible and rational decision.
There is a variety of limitations in real-world problems
such as uncertainty and complexity of the decision-
making environment, too much abundant data and
inconsistent and indeterminate with respect to fuzzy
information. To process this kind of information, in
1965 Zadeh? first introduced the fuzzy set (FS) theory.
After that Atanassov proposed the intuitionistic
fuzzy set (IFS).>® In IFS, Atassanav added a
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non-membership function to decrease the shortcomings
in which the FS has only the membership function
whereas the IFS is composed of the truth-membership

function and falsity-membership function and
satisfies the conditions Az, (u), Ara(x) € [0,1] and
0<Ap,(u) + Apyx)<1. Moreover, in 1998

Smarandache’ defined the neutrosophic set (NS). In
NS, Samarndache added indeterminacy-membership
function, that is, NS is characterized by truth-
membership A7(u), indeterminacy-membership
Apa(u), and falsity-membership Ag,(u). Moreover, the
NS is the generalization of FS and IFSs. For applica-
tions point of view we refer the readers.®'© Further,
Jun et al., proposed the concept of neutrosophic cubic
set (NCS) by adding truth-membership Az, (1),
indeterminacy-membership  A4;,4(u), and falsity-
membership Ag,(u) in the form of interval NS and
truth-membership A7,,(#), indeterminacy-membership
Apq(u) and falsity-membership Ag,(u) in the form of
NS.'"" Al-Omeri and Smarandache'? introduce the idea
of neutrosphic sets via neutrosophic topological spaces
(NTs), and some other types of NSs such as neutro-
sophic open sets, neutrosophic continuity, and their
application in geographical information system. NCS is
the generalization of FS, cubic set, and NS. Many
researchers used NCSs in different directions such
as,"*'® to have more applications. So many others dis-
cussed different aspects of NCS environment on
MADM like, Peng et al.,'” Zhang et al.*® Ye,*"*? Shi
and Ye,” Lu and Ye,”* Pramanik et al..>>*® GRA%
and Dalapati and Pramanik,*® Liu and Wang®' pro-
posed the aggregation operator and applied in
MAGDM problems. NS theory has various applica-
tions in numerous fields such as data record, control
theory, problems and decision-making theory. Xu and
Yazer*? and Xu®® proposed some arithmetic aggrega-
tion operators and geometric aggregation operators for
intuitionistic fuzzy information and these operators did
not consider the correlations of aggregated arguments.
After that, in 2007 Beliakov et al.** proposed the
Heronian mean (HM) operators, which are an impor-
tant aggregated arguments and possess the characteris-
tic of correlation of aggregation operators. HM
operators can deal with the interactions among the
attribute values and neutrosophic cubic numbers
(NCNs) can easily express the incomplete, indetermi-
nate and inconsistent information. Liu (The research
note of HM operators. Shandong University of
Finance and Economics, 2012, personal communica-
tion) in 2012 extended HM operator to the generalized
HM operator.*®> Yu and Wu® studied the interval-
valued intuitionistic fuzzy information aggregation
operators and their applications in decision-making.
Further work to aggregate the interval-valued intuitio-
nistic fuzzy information Liu*” proposed some operators
such as generalized interval-valued intuitionistic fuzzy

Heronian mean (GIIFHM) operator, generalized
interval-valued intuitionistic fuzzy weighted Heronian
mean (GIIFWHM) operator, an interval-valued intui-
tionistic uncertain linguistic weighted geometric aver-
age (IVIULWGA) operator, an interval-valued
intuitionistic uncertain linguistic ordered weighted geo-
metric (IVIULOWG) operators and also developed the
idea of interval-valued intuitionistic uncertain linguistic
variables, decision-making problems and their opera-
tional laws. Yu®® proposed the idea of decision-making
problems under intuitionistic fuzzy environment and
introduced some aggregation operators, such as the
intuitionistic  fuzzy geometric Heronian mean
(IFGHM) operators and the intuitionistic fuzzy geo-
metric weighed Heronian mean (IFGWHM) operators
and their properties. Liu et al.,*® proposed the aggrega-
tion operator and applied in MAGDM problems. We
extend the idea of Li et al.,* provided in Liu et al.*
Therefore, in this article, we will extend neutrosophic
numbers (NNs) to NCNs, and propose some HM
operators for NCNs, including the improved general-
ized weighted geometric Heronian mean (IGWGHM)
operators which can satisfy some properties, such as
reducibility, idempotency, monotonicity and bounded-
ness. At the end, these properties are applied to multi-
attribute group decision-making problem (Figure 1).

Preliminaries

In this section, we give some helpful terminologies from
the existing literature.

Definition | (NS). Let U be a non-empty set.” A
neutrsophic set in U is a structure of the form
A = {u; Ap (1), Apa(u), Ap(u)|u € U}, is characterized
by a truth-membership Tru, indeterminacy-membership
Ind and falsity-membership Fal, where Arp.y, A,
Apy : U —[0,1] such that 0<Agp,(u) + Apa(u) +
AFal(u)<3-

Definition 2 (NCS). Let X be a non-empty set.'! A NCS
over U is defined in the form of a pair Q = (4, A) where
A= {47, Ay Araiw)|u € U} is an interval NS
in U and A = {(M;ATru(u)s A]nd(u)a AFal(u))'” € U)} is a
NS in U.

Definition 3 (HM operator). A HM operator of dimension
n is a mapping HM : " — [ such that (The research
note of HM operators. Shandong University of

Finance and Economics, 2012, personal
communication)
HM(”],MZ, cee n n(n+ I)ZZ\/MI (1)

=1j=i
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Figure 1. A flowchart of NCNs based on MAGDM problem.
where 7 =[0,1] then the function HM is called min(uy, uy, ..., u,) < GHM™ (uy, uy, ..., u,)

Heroinan mean (HM) operator.

Definition 4 (geometric Heronian mean operator). A GHM
operator of dimension # is a mapping GHM : [" — [
such that (The research note of HM operators.
Shandong University of Finance and Economics, 2012,
personal communication)

1

w- (s i) o

=1j=1i

GHM(L!l, Uy, ...,

where x,y =0 and I = [0, 1]. Then the function GHM™”
is called generalized Heroinan mean (GHM) operator.
It is easy to prove that GHM operator has the follow-
ing properties:

Theorem | (idempotency). Let w; =uVj=1,2,...,n,
then

GHM™Y(uy,up, ..., uy) = u
Theorem 2 (monotonicity). Suppose (uy,uy, ...,u,) and

v,) be two collections of non-negative num-
1,2, ...,n, then

(V13v2’ MR
bers, if u; <v;Vj =

GHM™*Y(uy,uy, ...,u,) < GHM"Y(vi, vy, ..., V)

Theorem 3 (boundedness). GHM operator lies between
the max and min operators, that is

< max(uj,uy, ...,u,)

Since the HM and geometric mean (GM) operator only
consider the interrelationship of the e input arguments
and do not take their own weights into account. In the
following, we will introduce another HM operator
which is called the weighted generalized Heronian mean
(GWHM) operator and shown as follows.

Definition 5. Letx,y=0 and u;(i = 1
tion of non-negative numbers.*°W =
is the weight vector of w;(i = 1,2, ...,
wi=0,> 7w =1,if

2, ...,n) be a collec-
(Wla WZ’ e 3W}’I)T
n) and satisfies

GWHM?” Y (uy,uy, ..., u,)

3)
(oS Smron)

then GWHM? Y is called a generalized weighted HM
(GWHM) operator.

Definition 6.(The GHM operator). Let x,y=0, and
u;(i=1,2, ...,n) be a collection of non-negative num-
bers, if®’

GGHMx’y(ul, Uy, ..o U

H H (xu; + yu; )"<"+1>

1j=1
(4)
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The GGHM™” is called the generalized geometric
Heronian (GGHM) operator.

Definition 7. Letx,y=0, and u;(i = 1,2, ...,n) be a col-
lection of non-negative numbers.?® W = wi,wa, ...,
w,,)T is the weight vector of u;(i = 1,2, ..., n) and satis-
fies WiZO, Z:l: Wi = 1, if

GGWHM?” ¥ (uy,uy, ..., uy)

- H ﬁ((xuz-)w' + () YT ()

AR e ety

then GGWHMP?Y is called the generalized geometric
weighted Heronian mean (GGWHM) operator.

Definition 8. Let x,y=0 and uw;(i = 1,2, ...,n) be a col-
lection of non-negative numbers (The research note of
HM operators. Shandong University of Finance and

Economics, 2012, personal communication).
W = (wy,wy, ...,wn)T is the weight vector of
wi(i = 1,2, ...,n) and satisfies w; =0, >/, w; = 1, if

IGGWHM?” Y (uy,uy, ..., uy,)

2nt1-i) W

T 6)
1 n n ZW’( (
S 101 RO

i=1j=1

then IGGWHM? ¢ is called the improved generalized
geometric weighted Heronian mean (IGGWHM)
operator.

The IGGWHM has the properties, such as reducibility,
idempotency, monotonicity, and boundedness (The
research note of HM operators. Shandong University

of Finance and Economics, 2012, personal
communication).
Theorem 4 (reducibility). Let W = (1/n,1/n, ..., 1/n)"
then

IGGWHM?” Y (uy,uy, ..., uy,) ™

= GGWHM?”Y(uy,uy, ..., u,)
Theorem 5  (idempotency). Let  x; = x, where
j=12,...,nthen

IGGWHM?” Y (uy,up, ..., u,) = x (8)

Theorem 6 (monotonicity). Suppose (uy,us, ...,u,) and

(v1,Vv2, --.,vy) be two collections of non-negative num-
bers, if u;=v;Vi = 1,2, ..., n, then

IGGWHM* (uy, uy, ..., u,)
= IGGWHM™ (v, va, ..., v,)

Theorem 7 (boundedness). The IGGWHM™” operator
lies between the max and min operators, that is

min(uy, uy, ..., u,) < IGGWHM" (uy,u,, ..., u,) 9)
5 un)

= max(ul, Uz, ...

We analyze some special cases of the IGGWHM opera-
tor which are defined as follows:

1. Wheny = 0, then

IGGWHM*  (u, up, ..., u,) =

From here we see that WGGWHM™? does not have
any relationship with x.

2. When x = 0, then

2n+1-)  wi
nn 1) &

IGGWHM® (u,uz, ....un) = [ [] () 2
i=1j=1

(11)

Similarly, IGGWHM?” does not have any relationship
with y.

3. Whenx = y = 1, then

IGGWHM" ' (u1,u5, ..., uy)

2Ant1-i) W
T 1) &

i=1j=i

(12)

Definition 9 (cubic Hamy mean). Suppose (v;,v;) where
i=1,2,..,nis a collection of non-negative real num-
bers and parameter £ = 1,2, ...,n."8 Then, the cubic
Hamy mean (CHM) is defined as follows

1

k k k
2 (H vi» 11 V@)

I<ij<-iosn =1 Jj=1

CHM(5,. v)) = ‘
n
(+)

(13)

[Eet
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where (i1, 12, ..., 1) navigate all k-tuple arrangement of
k

(1,2, ...,n) and (Z) is the binomial coefficient and
n\ _ n!
k k\(n — k)

Definition 10. Let U = {uy,uy, ...,u,} be a finite set
and two NCSs be x={x,x3,...,x,} and y=

{y] S V2 e ,yn} where Xj = ((ijalxj’ FX]) (Txialxjan/))
and y; = ((Tyj,IyJ,F s (B],Iy],F ) for j =1, 2,

are two collections of NCNs.?* Then cosine measure of
S(h) is proposed based on the distance as follows

. On)

NCNIGWH™* (0,0, . ..

- (1111 L A ) A ), )\ 22
i=1j= I—Ax (ul)ATru(u])

NCNIGWH™ (01,03, ..., 0On)

_
Z Z wle

1j=1

where W is the set of all NCNss.

Il
\I.EB:

b (o)

Theorem

G=1.2,..,

8 Let x,y=0, and 0 = (f(’q,.,Sb].)
n) be a collection of NCNs with the weight
vector W = (wy,wy, ...,w,,)T such that w;=0 and
>i—1wj =1, then the result aggregated from
Definition 11 is still an NCN, and even

Tl 1-11- (ﬁ ﬁ <1 B (1 _‘prnd(ui))x(l _‘Zlfnd(”j))y’ )Wiw,>[nfilw (16)
i=1j=i \ 1= (1= 45, () (1 — 47, ()
o (1= (1= g ) (1 zawm%>wﬁ7fww |
1-[1- s
(il_[ljl_[i < 1— (1 — A () (1 — Ary(w))))

S(h) = —Zw/

j =1
=Tl #175 ~T | =T+ i =Ty + V= + Iy =Fy
Ccos W m

Ty =Ty | + [y=1; | + 1Fg—F, |
+ cOS a?l Rl 6'/ X Al T

(14)

Some HM operator based on the NCN

In this section, we define cNCNIGWHM operator and
NCNIGWGHM operator, their properties and differ-
ent operations.

Definition || (the NCNIGWHM operator). Let x,y =0, and
0; = (Ry;, Sp,) where

Raj = {‘ZITm(uj)"zllﬂd(uj)’AFal(uj)} and
S}; = {ATru(uj)aAlnd(ui)’AFal(uj)}

(G=1,2,...,n) be a collection of NCNs with the
weight vector W = (wy, wy, ...,w,,)T such that w; =0
and 7', w; =1, then an NCNIGWH operator of

dimension » is a mapping NCNIGWH : ¥" — ¥, and
has

Proof. Since

o = { (‘:Ixrm(ui) 1- (1 _;Ilnd(ui))x,l
l (A (), 1 = (1 = Apalus))*, 1 —

(1 = Ara)") }

(1 — Apa(u;))")

{ (i)~ Aww,)) — dra(w))’) }
(A (1), 1 — (1 — Apa(uy)Y, 1 _AFal(uz) ))
(‘a);‘;u(ui)‘;l"%m(uj)’ 1 ~_ (1 - A’lend(ut 1 - A[Vld(u]) >
QQ; — 1- (1 _AFal(ul ) (1 _AFal(uj)
(Anu(ul)ATm(uj)a 1- (1 - Alnd(ut 1 - Alnd(u) )
11— (1 7Al-‘al(u1 ) (1 7A1'al(uz
and
wiw; O ® O =

- (1 _A)%ru(ui)‘:‘i)}m(uj))mwj
(1 -1 7;1["0!(”1')) (1 f;llnd(uj))y)mlw’/
(1 = (1= Arau))" (1 —AFal(U/))y>w’M
- (1 _A)Ic"ru(ui)A)}m(uj))w"W/
(1= (1 = o))" (1 = Apa))’)"™
(1 - (1 —AFal(Ll,'))x(l _AFal(ui))y)w,w,
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then

P

n
D _(WinQi-c ® Q,V)
J=1 X

1= 1 TT (1 — 43, ) A, ()™

i=1j=1i

1— (1 = Apau))" (1 _;Ilnd(uj))y)wmy

/

[m1-(1 _IZIFal(ui))x(l _Ileal(uj))y
B 1=

U TTIT (1 A )™

Furthermore

wiw;

~
Evy
™

1- <'ﬁ1jﬁ ( Tru(u )ATru(u]))

1 wiw;

Wiw;

(‘ﬁ1 ﬁ (1= (1 = Apalu))* (1 A[nd(”j))y)
i=1j=

~——
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(1 - <H1 H (1 - Tru(u )Arm(”/)) ) - ‘/)
i=1j=
- (1 - (ﬁ] 11 (1 (1= @) (1 = Anat))’ )) )
i=1j=1i
n n ~ wiw; ii v N
1-— (1 — <H1 H (1 (1 —Apa/(u,)> (1 —Apa,(uj))y> ) =1/=1 )
i=1j=i
S\
- ( I 11 (1 = A3y <uf>)““”’>
1-]1- (ﬁl f[ (1= (1 = Apa(un))* (1 —A/nd(uf))y)wiwl>
i=1j=i
I <ﬁ1 IT (1= (1 = Apa(u) (1 - AFM(uj))}')‘”'W’)
i=1j=1i
X,y
which complete the proof of Theorem 8 NCleGWHM ©1,0, .. On)
Moreover, the NCNIGWHM operator also has the  — (Rey» Sh)
following properties. = {Anu()), Ana(u)), Arar() ¥, {A (), Anauty), Apar(uj) } }
(17)
Theorem 9 (idempotency). Let Q; = (R,,Sy) (=1, Proof. Since 0; = (Ry;,Sp) (G = 1,2, ...,n), and then
2, ....n), then Y according to equation (16), we have
T NCNIGWHM*Y(Qy, 0, ..., 0,)

(1 - (Hl II (1 — 4%, (A, (u)) > > )
i=1j=i
1— (1 - (ﬁl ﬁ (1 — (1 = Apa(@))" (1 = Apa(w))” > />Zuz| ,>
i=1ly=1
. (1 ) <ﬁl ﬁ (1 - (1 _AFQI(M))X(I _AFal(u))y)w‘W/>’Z:'/Z:IW‘“/>
1=1y=1
= <1__[ 1;[ ( (u)A (u))ww,>
1 — (ﬁ li[ (1—{(1 fAlnd(u))x(l AInd(u))y)w,w,>
T (ﬁl ﬁ(l - (1 _AFul(u))X(l —AFal(u))}’)vv’AMQ-)
i=1ly=1

1
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x+ty
n Xty

+ Wiw Ziu,“,
( " y( )) j)' 1j=1 ,

(1 — (1 _A]nd(u))x+y)w,-w/.)l 1,2:]

wiw;

n n ~ x+y\Wivi \ 2, wiwj
1— l—<H H (1—(1—AFa1(u)) ) )l]/ ]
i=1j=i
; =5
/:l;w,u,
L= (H IT(1- A5t (u ))w.-wv)
i=1j=i
; 5
i= I/E:I"Mj
(H H (1-a —Aznd(u))”y)‘w>
i=1j=i
iz]];w,‘w/
1 - (H H (1 - (1 AFal(u))X‘Fy)Wle)
i=1j=i
; 5
1— (1 r+y(u));jz iWj ‘:]/Z:pr/
1
i Xty
szwj PP
- (1 <I_Alnd(u)) )r 1i=1 ==
; S
>3 T\ 30
1— (1 (1_AFal(u)) )z 1j=1 ==
— 5
1 - (1 — x+y(u))zz:l/z:1 j 1:]/:1‘”“7
1 nE
ZZWM, Sy wiwj
1-— (1—(1—Alnd(u))X+))l 1= 2424
Z Z WiW;j —_—
1-— (l - (1 fAFaz(u))Xer),:]_/:] == '}
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1

(1= (1 -7 w))™
- (1 - (1 — (1 = Apa(w))
1 — (1 - (1 — (1 = Ap(u))
(1= (1= 47 @)
(1= (1= (1 = Apa(u))* ™
(1= (1= = Apa(w)

=

X

1 —
1 —

x+y>

)

(G- (o)
(0457 6)77,1 = (1 = Apata))* ™

Theorem 10 (monotonicity). Let Q=
Q (Ra B} Sb ) (]
NCNs If Ql Q VJ (supposeAT,,,(u,) ATu(u,)

A]nd(uj) Alnd(uj) AFal(Uj) AFal(”])
(uj) Alnd(”j)/

NCNIGWHM* (01,05, ....0,)
= NCNIGWHM**(Q,, 05, ...

Proof

Since

and X, y>0
Tru (u; )A Tru (U])

A%Au(u/) 1 — A%, () A, ()

(), 1— A%, )y, (u)<1-—

<1-—

Tru

)

= {{;1 1), Apna (), Arar()} s { A1), Apna (), Apar()) } }

1
Xty

1
x+y

(]Nea/-o Sb,)
,n), be two collections of

/

.0,

Arry) = Ay 7). A7) = A7, (1)) V),
then we have A%, ()

Tru(ul )A (uj) =4 Tru(ul)

AX

Tru

Tru(ul )A Tru (ul)

=

(1 = A ) A, (1), 1 — A (i) 1) ™
i=1j=i
n n wiw;
= H ( ATm(ul)ATru(ui)’l ATru(ul)ATm(uf)>
i=1j=i
and
|

a-(0 —Apaz(u))”y)’“)

A= (1= Apa) )

= (Raja Sbj)D

and

AT"“(uj) ATru
]nd(uj) Ara(uj) = AFal(”J)) then

(18)

A
Tru(uj)

(M )A Tru

SO

1:[ ( ATm(U,)A Tlu(u]')a 1 - ATm(uz)A Tru(ui)) W[Wj>

(H [T (1 = A3 .1 A’%m(u:)ATm(u/))M)
i=1j=i
i=1j=
= (H [T (1 = 45,5, ). 1 = A5, ()3, ) )
i=1j=i

i=1j
n n
- <H H (1 _A)}ru(ui)A(;"ru(uj)’ 1- Tm(u )A;"ru /)) H/>
i=1j=i

( Tru(u )ATm(uj)’ - Tru(ul)ATru(uj)) Wiwj)

i=1j=1

1

wiwj
1

1

"
E wiw;
=1

)

1

1
"
g g wiwj

==

- <H H( ATru(u')ATm(u]) 1- ATru(ul)A (”j)) MW’)
i=1j=i

1
n

n
wiwj
1

i=1j=

2. Since Apa()) < Ay, (u;), Apa(u) = Ay, () Vj, and
x,y>0, then have (1 —Izllnd(”i))x =
(1 - AInd(Uz‘))y, (1- Alnd(ui))x =(1- Alnd(ui))y

we
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and

(1 - lelnd(u/))

(

(1 _lelnd(”i)) (1 _Alnd(”/))
(1 — Apa(ui))*(1 *Alnd(”/))

(

1_
=
=(1-

Ind (U/ ))

1 - Ind(u ))::(
Ind(ul)) (

(1 - A[nd

;ll/lnd(uj))v
Alnd(u]’))’

)

@) =(1-4

L _‘:Ilnd(”i))x(l _;Ilnd(uj))y <1-(1 _A/Ind(ui))x(l —Ia/md(uj))y
1= (1 = Apa()) (1 = Apa(u))” <1 = (1 = Apy@i))™ (1 = Apa(up)”
ﬁ ﬁ (1 -4 _Alnd(u”))x(l _Izllnd(uj))y)mwj <
i=1j=i
1111 (1= 0= )" (1= ))) ™
i=1j=i
AHI IT (1= (1= Apa())* (1 = Apa(e))’)"™ <
i=1j=
Hl ]H (1 - ( ,nd(u,«)) ( _A’Ind(uj))y)w,wj
( ﬁ ﬁ (l = (1= Apa(u)) (1 *Amd(uj))y) WM‘)
i=1j=i
=(1,11,( 0 At 1 - tr))™ )
i=1j=i
(.ﬁ] ﬁ (1 -1 —A[nd(u[))x(l _Alnd(uj))y>w"”7>
r=1y=1
DI
< (fluﬁ (1= (1 = Ay @) (1 = Ayy(wy)) )WW,>
) <ﬁ ﬁ (1 = (1= Apata)" (1 _glnd(w))y)Win>
i=1j=i
o ( 1111, (1 = (= At - 2;nd<uj>)y)w>
et
(ﬁl ﬁ (1= (1 = Apa(uy))* (1 —Alnd(u]_))y)w,-w,)
! J=i
PP
( ﬁl /ﬁ (1= (1= ) (1 - A’,,,dwj))“”)WIW/)

,Ind(uj))y

then



Gulistan et al.

\%

n
=1|1- H
i=1j

SO

|
|
2N
"=

ljli[i (

3. Similar to step 2, we can prove

i=1j=i

B (ﬁ ﬁ (1 - (1= 4iw)"(1 —;11(l¢1‘))y>mm>
o (ﬁ i (] - _'E/Ingl(ui))x(] —zzi}nd(uz))v>w’w,)
i=1j=i

B (ﬁ IT (1= (1 = Apa())" (1 = Anae))") ™

i=1=1
n
i=1j=i

1
1

gl
E E wiw;
1=

n

e

(1= (1= 4y )) (1 —A’]ﬂd(u/.))y)‘“rw/>

i=1j=1

1= (1= Apa(u))* (1 —A1nd(uj))'1))wm7>

Wiwj

(1= (= A" (1 —A;ndw,))y)“”w")




International Journal of Distributed Sensor Networks

; Xty
":l.lewmy
S < 1L 11 <l — (1 = Ara(u)) (1 —zlea/(uj))y)w’Wj>
i=1j=i
1 \.l}
-
i=lj=1
<l-|1- (Hl IT (1 — (1= Ay () ( *IZIFaz(“j))y> | ]>
i=17=1
; 5
1-|1- (H IT (1= (1 = Apa(u))* (1 — AFaz(u,))y)W'W/)
i=1j=i

g Ty
S (H {1 (1 - (1~ ) ( —A’Fa,<uj>>y>””’w">
i=1j=i
According toTheorems 10-12 and Definition 12, we can get
| 5
S
i=1j=1
i=1j=i
1 5
i=1j= 1w"“:,
n n ~ x ~ M\ i
1—|1- (H I (1 — (1 —Alnd(”i)) (1 —Alnd(”j)) ) j)
i=1j=i
| T
n n ~ X ~ Y\ WiWj
1—]1- <H I (1 — (1 _AFal(ui)) (1 —Apa,(u,»)) ) )
i=1j=i
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=Zl1-]1- (ﬁl ﬁ (1 - (1 Ind(”t)) (1 ,Ind(uj)) )WW/)
i=1j=i
1—11- (ﬁ] ﬁ (1 - (1 Fal(“t)) (1 ;Tal(uf)) )MWI>
i=1j=i
Tre
1 - <ﬁl ﬁ ( Tru(ul)AATru(u]))wwj>
i=1j=i
i1/:“"”/ o
. (ﬁ 1T (1= (1~ Apua))" (1~ Apaa))”) ‘W’)
i=1j=i
1— 1= (ﬁ f[ (1= (1 — Apa(u))*(1 —AFal(”j))y)W‘W/>
i=1j=i
- (ﬁ 111 A’;;u(uz)A’%m(uj))W")
i=1j=i
=l 1-|1- <ﬁ ﬁ (1 - (1 A,Ind(ui))x(l *A,Ind(“j))y)wm
i=1j=i
1—|1- (Hl IT (1= (1= Ay )" (1 = Ay ) )W'W'>
i=1j=
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that is, NCNIGWHM™ (0,0, ...,0,) =NCNIGWH
M= (Q'I,Q'Z, ...,Q;) which completes the proof. O

Theorem Il (boundedness). Let 0= (Raj,Sbj)
G=1,2, ..~.,n)... be a collectiqn of NCNs, and
O; = (minR,;, minS}), Q;r = (maxR,,, maxSy,) or

Q— — min ATm(uj)a min A’a[nd(uj)v min }iFal(uj)o
J (mln ATru(uj)a min Alnd(uj)o min AFal(uj))

Q+ — < max IZITm(uj)a max ;llnd(uj)a max AFal(uj) )
] (max4 7,,(u;), max Apa(u;), max Apa(u;))

then

Qj_ = NCNIGWHMX"V(QU QZ’ ) Qn) = er (19)

Proof. Since 0;= O, then based on Theorems 10 and
11, we have

<(1 ) (1 - Zlnd(uj))y)wwv (1-(1 —A1nd(uj))y)wm)>

((1 - (1 - ZFaz(uj))y)W, (1-(1 AFgl(uj))y)Win)>

((1 - Zyrru(“j)) " (1- Af;m(uj))wlvv,))
((1 a (1 - Zlnd(uj))yygwj, (1—(1 —A1nd(uj)))’>w,w/)>

(1= (1= ra) ) 0= 0 —Apa,w,-))y)“"w’))

NCNIGWHM™"(Qy, 0, ..., 0,)
=NCNIGWHM* (07,05, .., 0;) = OF

Like wise, we can get

NCNIGWHM™*(Qy, 05, ....0,)

<NCNIGWHM*(0{", 05, ....0,) = 0
Then

0; <NCNIGWHM"(0y.0s, ... 0)) < 0
which completes the proof. O

We will discuss some special cases of the NCNIGWHM
with respect to parameters x and y, as follows:

1. Whenx = 0, then

NCNIGWHM®* (01, 0s, . ..

1

¥

- On) (20)

R E—
i
§ g wiwj
i=1j=1

=

wiwj

1 1

n n
§ g wiw
i=1j=1

2

wiwj

i=1j=
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2. When y = 0, then we have

NCNIGWHM*%(Q,,0,, ..., 0,) (21)

(1,00 )

1= 1- (il_ﬁlljli((l - (1 - ;ilnd(ui))y) WiW/’ (1-(1 _Alnd(ui))y)Wiwj)>

1—|1- (iﬁljﬁi((l - (1 - IA‘iFal(ux))Y>Win’ (1-( —AFal(ux))y)w[WQ)
=]l 1-11- <iﬁ1jﬁi((l - (1 - Z]M(Lﬁ))y)wfwf’ (1-(1 —A,nd(u[))y)w,»wj)>

T (tﬁuﬁz—((l ~ (1= Arate))') 00— 0 —AFamux))y)“’fo))

3. when x = y = 1, then we have

NCNIGWHM"!(Q,, 05, ...,0,) (22)
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()
i=1j=i\ (1 fATru(u/.))WfW/
= n n 1 - l_zn(u-) Wiw;
1—|1- (iljl_ll:[i< ((1 ((1 - A;j(u;))))zﬂ.w/ ))
n n 1 — 1—2a(.)yw'wf
1—]1- (il:lljni< ((1 _((1 _AI::“[Z(L:;)%)le ))

Wi

(1 - ZTm(uj)) "
(1 = Arru)) ™™

)

Wiw;

(

(1 - (1 - 21nd(”j))>
(1= (1 = ApaCs)))™™

(1= (1= Ara) )™

(1= (1 = Apa))™

)

NCNIGWGHM operator

Definition 12. Let x,y=0, and Q; = (Raj,S;,j) where
Raj = {ATru(uj)aAlnd(uj)aAFal(u_j)} and Sb = {ATru(uf)a
Ama(), Ara(up)} G = 1,2, ...,n) be a collection of
NCNs with the weight vector W = (wy,wa, ..., w,)"
such that w;=0 and 3/ ;w; =1, then an
NCNIGWGHM operator of dimension n is a mapping
NCNIGWGHM : ¥" — ¥, and has

NCNIGWGHM**(0;, 0s, ...

2n + 1-4)

w(n ¥ 1)
)

bl Qn)
wj

~r

Zk ="

wiwj

1\ 2

n_n
E g wiwj
=1j=1

))

=

l—

D=

1
n_n

R

i=1j=1

where W is the set of all NCNss.

Theorem [2. Let x,y=0, and Qj:(i?aj,Sb/.) where

Raj = {ATru(uj)yAlnd(uj)vAFal(uj)} and
Sb = {ATm(uj)aA[nd(uj)aAFal(uj)} (] = 1’2’ ERRE 11) be a
collection of NCNs with the weight vector
W = (wi,wy, ...,wn)T such that w;=0 and

27: ,w; = 1, then the aggregated value by equation
(23) can be expressed as
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NCNIGWGHM**(Qy, 0, ..., 0,)
2n+1-i) 1 xiv
~ ~ Wt 1) A
1 _ 1 _ ﬁ ﬁ (1 - (1 - A%‘u(ui))’ (1 _A)Tm(u/))>’ I{Z:]Wk
==\ (1= (1= 4%, ), (1 — A%, ()
2n+1-0) | 5 iy
non N ) _ IS, (24)
= I (1 - A ) |~ A @)
i=1j=i
An+ 1) g ﬁ
R
LA X 0y x y .
U T1 T (1= A (w). 1 = Afy @A)
i=1j=i
Similar, the proofs of Theorem 8 and Theorem 12
are omitted. '
Moreover, similar to the proofs of Theorems 9-11, it is B mind 7, (1), MinA (), mind ()
easy to prove that the NCNIGWGHM operator also O = ((minAm,(i;-)’ mil’lA[nd(LJl'), minAFal(L]l‘),))
has the following properties. ” '/’ !
o = (maxirm(uj),maxlemd(uj), maxA (1)), )
Theorem 13 (reducibility). Let W = (1/n,1/n,1/n, ..., / (maxd ru(u;), maxd pa(u;), maxApa(u;))
1/n)" then h
en
NCNIGWGHM*Y(04, 0>, ..., 0,
(01,0200 (25)  Of <NCNIGWHM™(01, 0. ....0) =<0 (28

= NCNIGWGHM"Y(Q1, 02, ..., 0u)

Theorem 14 (idempotency). Let O; = (Ra/,Sb/)(j =1,2,
...,n)(j=1,2,...,n) then

NCNIGWGHM* (01, 0, ..., 0n) = (R4 Sp)  (26)
Theorem 15 (monotonicity). Let Q; = (i%a]., Sp) and
Q/' = (i{;j,S;,j) (Gj=1,2,...,n) be two collections of
NCNs. If 0= Q}Vj (suppose A () = ;I’Tm(uj),
Apa(uy) = Ay ), Apa(y) = Ay (),

Arn(wy) = A, (W), Aima(uj) = Ap,,(wy),

AFal(uj) ZAFal(uj))’ thel’l

NCNIGWGHM®*(Q1, 05, ..., 0,) o
=NCNIGWGHM**(Q,,0,, ..., 0,)
Theorem 16 (boundedness). Let

0 = (Ea/,Sbj)U =1,2,...,n) be a collection of NCNs,
and

Q; = (min i?a/., min Sp,)
0 = (max R,,max Sp)

or

Some special cases of the NCNIGWGHM with respect
to parameters x and y are discussed as following:

1. When x = 0, then

NCNIGWGHM" (01, 0>, ... 0)
An+1-i) | %
- WD) Z
non (1= (1 = Ap)),
- 1—HH< ( ’;”(f))y> =
i=1j=i\ 1— (1 _ATm(uj))
2n+1-i) 1 L
T &
_ n n - , Z“’k
B 1- ’Hl l_.[ (1 _A)I}nd(uf)’l _A)Ind(uj)) ke
i=1j=i
Ir

non Wi

V=TT IT (1 = A ), 1 = A () =

i=1j=i

2. When y = 0, then
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NCNIGWGHM*%(01,0,, ...

(-

— A% up), 1

» On)

- 1111

i=1j=1i

1 - (1 _ATru(ui))Xy
1— (1 — Ay, )

2nt i)y T
> FICEaD) )

1
2n+ 1

) T

1
n>

2n + 1-i)

(1 — A5 (uy))

1— A (), 1 —
(30)

Obviously, y =0, NCNIGWGHM™” does not have
any relationship with w. In addition, the parameters x
and y do not have the interchangeability.

3. Whenx =y =1, then

NCNIGWGHMY(Q,,0,, ...

i

(1 _Alnd(uz)AIn(/(uj) 1—

- On)

11— (1 _IZITru(ui))(l
1-— (1 —ATru(ul))(l _ATm(ui))

A(ui)A(uj))

The approach to multiple attribute group
decision-making with NCNs

In this section, we shall introduce the approach to mul-
tiple attribute group decision-making with the help of
the NCNs. We apply NCN-improved generalized
weighted Heronian mean operator to deal with the
attribute group decision-making problems under the
NCNs environment with an illustrated example.

Applications in multiple attribute group decision-
making problem

In the problem of multiple attribute group decision-
making, the developed procedure can easily be used for
the better decision.

Suppose H = {H;,H,, ..., Hy,} is a set of alterna-
tives, G; = {G1, Ga, ..., G,} is a set of attributes or cri-
teria, and w = (wy, w,, ..., w,) is the weighted vector of
the criteria, where, w;¢[0,1] and >  w; = 1. Then, the

- ATru(uj)) P

1,2, ...,n) with
,m) is expressed

evaluation value of an attribute G; (j =
respect to alternatives H; (i = 1,2, ...

by an NCN qi, = (((}Trm‘j, 5]1ndij, Gratij)s (GTruijs Gindij» GFalij))
(=12, =1,2,...,m) where  Gnuij, Gmaijs
QFallj [O 1] dnd q Truij> 4 Indij» qFaly [Oa 1} SO; the deci-

sion matrix is obtained as: D = (g;j),, x ,- The steps of
the decision-making based on NCNs are given as
follows:

Algorithm

Step 1. The DMs take their analysis of each alterna-
tives based on each criteria. The performance of
each alternatives H; with respect to each crteria G;.
Step 2. Calculate the NCNIGWHM operator
(R, RS, ... k) to obtain the collective evaluation
value of alternatives H; with respect to each
criteria G;.

w

2nt1-i) W
n

) i ¥ 1)

2(n + 1-i)
n(n + 1)

Step 3. Calculate the cosine similarity using
Definition 10 in article.**
Step 4. Rank all the alternatives.

Step 5. End.

Numerical example

This section introduces an illustrative example to
show the application of the above MAGDM method
based on NCN. An investment company intends to
choose one product to invest its money from four
alternatives H;(i =1,2,3,4). Where H; medicine
company, H, = textile company, H; = mobile com-
pany, and H, = car company. The weights of the
indicators are w = (0.5,0.3,0.1,0.1). Three criteria
have been evaluated and they are shown as
follows: G; = Tax Rate, G, = Demand/Supply and
G; = Wages. In order to get a most suitable choice
we will use the above-mentioned algorithm as
follows:
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Score Values

s1
52 Score Values

S3
S4
m Score Values

Figure 2. Line chart of alternatives versus score values of
alternatives.

Step 1. Let H = {H,,H,, H3, Hy} be a set of alterna-
tives and G = {G}, G, G5} be the set of criteria. Let
D be set of decision matrix. The decision matrix
evaluates each alternative based on given criteria.

h
h
h
h

Step 2. Calculate the NCNIGWHM operator by
formula (15) to obtain the collective evaluation
value (K4, bk, ... k¥ ) of alternatives H; with respect
to each criterion G; and w = (0.5,0.3,0.1,0.1), we

can get

0.01,0.04],[0.01,0.04], [0.03,0.1], (1.9, 1.9, 1.9))
0.009,0.06], [0.03,0.14],[0.014,0.11], (1.9, 1.9, 1.9))

([
H{
1([0.005,0.053],[0.03,0.12],[0.0012,0.15], (1.9, 1.9, 1.9))
il

0.004, 0.02], [0.006, 0.03], [0.02,0.05], (1.9,1.9, 1.9))

Step 3. To calculate the cosine similarity using
Definition 10, we get

S(hy) = 0.11305, S(hy) = 0.06520

G, Gy G;
([0.45,0.53], ([0.34,0.56], ([0.25,0.56],
[0.16,0.25], [0.65,0.73], [0.46,0.75],

H, [0.36,0.64], [0.46,0.67], [0.74,0.85],
[(0.65,0.37, (0.66,0.85, (0.65,0.84,

0.74)) 0.76)) 0.95))
([0.45,0.74], ([0.46,0.74], ([0.17,0.45],
[0.76,0.85], [0.75,0.87], [0.19,0.76],
H, [0.46,0.84], [0.16,0.57], [0.74,0.93],
(0.86,0.95, (0.86,0.95, (0.54,0.85,

D= 0.96)) 0.75)) 0.96))
([0.25,0.73], ([0.53,0.54], ([0.16,0.54],
[0.56,0.77], [0.45,0.63], [0.43,0.94],

H; [0.18,0.86], [0.35,0.84], [0.24,0.85],
(0.86,0.85, (0.65,0.76, (0.65, 0.96,
0.94)) 0.94)) 0.93))
([0.44,0.93], ([0.14,0.36], ([0.24,0.63],
[0.36,0.74], [0.25,0.73], [0.26,0.76],
Hy [0.46,0.94], [0.76,0.78], [0.17,0.85],
(0.76,0.85, (0.45,0.84, (0.76,0.85,
0.96)) 0.95)) 0.94))
I
Ranking of alternatives
152
1 o
0.8
20.6 _
>0,4 — Q
D
B
[0} 0.5 1i5 2 2i5 3 35 4 4.5
-0.2 )
X-axis

Figure 3. Graphical representation of the ranking values of alternatives.
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S(h3) = 0.02935, S(hg) = 0.02535
shown in Figure 2.

Step 4. Rank all the alternatives, we get the sequence
of candidates as follows: &y = hy = h3 = h4y shown
in Figure 3.
Step 5. End.

Conclusion

In this article, we have discussed the idea of NCNs and
different operators such as HM, GHM, weighted
Heronian mean, generalized Heronian mean, and gen-
eralized weighted geometric mean operators. We
applied HM to the NCSs. The NCS can be defined as
the three elements such as truth, indeterminate, and
incomplete information. The Heronian mean can repre-
sent the relationship of the aggregated values and
MADM method. Finally, a numerical example is given
to verify the proposed method.
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