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Abstract: In the present exploration, our objective is to investigate the importance of Hall current
coatings in the establishment of Cattaneo–Christov (CC) heat flux model in an unsteady aqueous-based
nanofluid flow comprising single (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes (CNTs)
amid two parallel rotating stretchable disks. The novelty of the presented model is strengthened
with the presence of homogeneous-heterogeneous (HH) reactions and thermal stratification effects.
The numerical solution of the system of coupled differential equations with high nonlinearity is
obtained by applying the bvp4c function of MATLAB software. To corroborate the authenticity of
the present envisioned mathematical model, a comparison table is added to this study in limiting
case. An excellent harmony between the two results is obtained. Effects of numerous parameters on
involved distributions are displayed graphically and are argued logically in the light of physical laws.
Numerical values of coefficient of drag force and Nusselt number are also tabulated for different
parameters. It is observed that tangential velocity (function of rotation parameter) is increasing for
both CNTs. Further, the incremental values of thermal stratification parameter cause the decrease in
fluid temperature parameter.

Keywords: coatings; Hall current; Catttaneo-Christov heat flux; carbon nanotubes; homogeneous–
heterogeneous reactions

1. Introduction

Nanofluids consist of solid particles called nanoparticles with higher thermal characteristics
suspended in some base fluid. Moreover, convective heat transfer through nanoparticles has motivated
many researchers for its industrial applications, pharmaceutical processes, domestic refrigerators,
chillers, heat exchangers, electronic cooling system, and radiators, etc., [1]. Nanofluids are considered as
the finest coolants for its various industrial applications. Nanofluids exhibit promising thermos-physical
properties e.g., they have small viscosity and density and large thermal conductivity and specific heat [2].
As far as transportation of energy is concerned, the ideal features of nanofluids are the high thermal
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conduction and low viscosity [3]. Choi and Eastman [4] primarily examined the upsurge in thermal
conductivity by submerging nanoparticles into the ordinary fluid. Because of these thermos-physical
characteristics, nanofluids are considered as the finest coolants that can work at various temperature
ranges [5]. Sheikholeslami et al. [6] found a numerical solution ferrofluid flow under the influence of
applied magnetic field in a hot elliptic cylinder. It is examined by them that strong Lorentz force is
a source in declining the temperature of the fluid. The water-based nanofluid flow with numerous
magnetite nanoparticles amid two stretchable rotating disks is numerically studied by Haq et al. [7].
Khan et al. [8] numerically addressed the water and ethylene glycol based nanofluid flow containing
copper nanoparticles with suction/injection effect between parallel rotating stretchable disks. Saidi
and Tamim [9] examined the pressure drop and heat transfer properties of nanofluid flow induce
amid parallel stretchable disks in rotation by considering thermophoresis effects. Hayat et al. [10]
also found a series solution of Jeffrey nanofluid flow between two coaxial rotating stretchable disks
having convective boundary condition. Pourmehran et al. [11] numerically simulated the nanofluid
flow between coaxial stretchable rotating disks.

Molecules of carbon atoms arranged in a cylindrical shape to form a structure called carbon
nanotubes (CNTs). This arrangement of the molecule may be by rolling up of single sheet or by multiple
sheets of graphene [12]. The novel properties of CNTs are light weight and high thermal conductivity,
which make them potentially useful. CNTs are not dangerous to the environment as they are composed
of carbon atoms [13]. The CNTs are the most desirous materials of the twenty-first century. Modern
applications of CNTs are in microfabrication technique, pancreatic cancer test, and tissue engineering,
etc., [14]. The flow of nanofluid containing both types CNTs with thermal radiation and convective
boundary condition effects is examined analytically by Imtiaz et al. [15]. The water-based nanofluid
flow containing CNTs of both categories under the impact of magneto-hydrodynamics (MHD) amid
two parallel disks is studied by Haq et al. [16]. Mosayebidorcheh et al. [17] did heat transfer analysis
with thermal radiation impacts of CNTs-based nanofluid squeezing flow between two parallel disks
numerically via the least square method. Effects of thermal radiation in a magnetic field comprising
both types of CNTs aqueous based nanofluid flow by two rotating stretchable disks are debated by
Jyothi et al. [18]. Transparent carbon nanotubes coating to obtain conductive transparent coating is
analyzed by Kaempgen [19]. Keefer et al. [20] studied carbon nanotube-coated electrodes to improve
the current electrophysiological techniques. Enzyme-coated carbon nanotube as a single molecule
biosensor was reported by Besteman et al. [21]. Some recent investigations featuring Carbon nanotubes
amalgamated fluid flow may be found in [22–30] and many therein.

Thermal energy transformation possesses significant importance in engineering applications such
as fuel cell efficiency, biomedical applications including cooling of electronic devices, heat conduction
in tissues, energy production, heat exchangers, and cooling towers etc., [31]. Classical Fourier law
of heat conduction was employed to describe the mechanism of heat transfer. But this model gives
parabolic energy equation that is medium encountered initial disturbance instantly which is called
“heat conduction paradox.” Cattaneo [32] tackled this enigma by introducing the time needed for the
conduction of heat via thermal waves at a limited speed which is known as thermal relaxation time.
The modification in Fourier law gives hyperbolic energy equation for temperature profile. Christov [33]
further inserted Oldroyd’s upper convective derivative to maintain material invariant formulation.
This upgraded model is known as Cattaneo- Christov heat flux model. The aqueous fluid flow by
two rotating disks with the impact of CC heat flux is studied by Hayat et al. [34]. Dogonchi et al. [35]
scrutinized the squeezed flow of nanofluid encompassing CC heat flux and thermal radiation effects.
Lu et al. [36] discussed the unsteady squeezing nanofluid flow between parallel disks comprising
CNTs with CC heat flux model and HH reactions. The recent advance studies on CC heat flux is done
by many researchers [37–40].

The aforementioned literature survey (Table 1) reveals that unsteady nanofluid flow containing
CNTs with CC heat flux under the influence of hall current between two rotating stretchable disks is
not yet discussed. Additional impacts like HH reactions and thermal stratification of the presented
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mathematical model may be considered as added features toward the novelty of the problem. The
problem is solved numerically by using the bvp4c function of MATLAB software.

Table 1. A comparison table depicting uniqueness of presented mathematical model.

Author CC Heat
Flux

HH
Reactions

Nanofluid
with CNTs Hall Effect Thermal

Stratification
Rotating

Parallel Disks

Hayat et al. [10] × × × × ×
√

Imtiaz et al. [15] × ×
√

× ×
√

Hayat et al. [34]
√

×
√

× ×
√

Lu et al. [36]
√ √ √

× ×
√

Present
√ √ √ √ √ √

(×) shows effect is absent and (
√

) shows the presence of effect.

2. Problem Formulation

Consider an axisymmetric unsteady MHD water base nanofluid flow between continuously
stretchable disks with hall current effect amid non-conducting rotating disks at z = 0 and z = h. The
disks rotate at constant angular velocities Ω1 and Ω2 about its axis. Magnetic field B0 that is uniformly
distributed is applied in the normal direction of the disks (Figure 1). Furthermore, the stretching rates
of the disks are a1 and a2. Temperature T2 = T0 +

Br
1−ct refers to the temperature of upper disk while

the disk’s temperature at z = h is T1 = T0 +
Ar

1−ct in a thermally stratified medium.
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Figure 1. Schematic picture of the fluid flow.

For isothermal cubic autocatalysis, a model for homogeneous and heterogeneous reactions with
reactants as chemical species are A∗and B∗ and was proposed by Merkin and Chaudary [41] and is
given by:

A∗ + 2B∗ → 3B∗, rate = Kc = ab2, (1)

A∗ → B∗, rate = Ksa, (2)

The continuity equation is

∇.
→

V = 0, (3)
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The momentum equations are

∂u
∂t

+ (
→

V.∇)u =
−1
ρn f

p∗r +
µn f

ρn f
(∇2u) −

σn f

ρn f

BO
2

1 + m2
(u−mv), (4)

∂v
∂t

+ (
→

V.∇)v =
µn f

ρn f
(∇2v) −

σn f

ρn f

BO
2

1 + m2
(v + mu), (5)

∂w
∂t

+ (
→

V.∇)w =
−1
ρn f

p∗z +
µn f

ρn f
+∇2w, (6)

The relevant energy equation is

(ρCp)n f (
→

V.∇)T = −∇.
→
q , (7)

where T represents the temperature, Cp the specific heat and
→
q the heat flux. Heat flux in perspective

of Cattaneo–Christov expression is satisfied.

→
q + ε1(

∂
→
q
∂t

+
→

V.(∇
→
q ) −

→
q .(∇

→

V) + (∇.
→

V)
→
q ) − k∇T. (8)

Here, ε1 is the thermal relaxation time and k is the thermal conductivity. Utilizing the
incompressibility condition, we arrive at

→
q + ε1(

∂
→
q
∂t

+
→

V.(∇
→
q ) −

→
q .∇

→

V) − k∇T. (9)

Eliminating
→
q from Equations (9) and (7), we get

Tt + uTr + wTz + ε1(Ttt + utTr + 2uTtr + 2wTtz + wtTz + uurTr + wwzTz

+uwrTr + wTrTz + 2uwTtz + u2wrr + w2Tzz =
Kn f

(ρCp)n f

(
∇

2T
)
. (10)

As
→

V = (u, v, w) is the velocity vector, we obtain the following governing equations after applying
the boundary layer theory:

ur +
u
r
+ wz = 0, (11)

ut + uur + wuz −
v2

r
=
−1
ρn f

p∗r +
µn f

ρn f
(urr +

1
r

ur −
u
r2 + uzz) −

σn f

ρn f

BO
2

1 + m2
(u−mv), (12)

vt + uvr + wvz +
uv
r

=
µn f

ρn f
(vrr +

1
r

vr −
v
r2 + vzz) −

σn f

ρn f

BO
2

1 + m2
(v + mu), (13)

wt + uwr + wwz −
v2

r
=
−1
ρn f

p∗z +
µn f

ρn f

(
wrr +

1
r

wr + wzz

)
, (14)

Tt + uTr + wTz + ε1(Ttt + utTr + 2uTtr + 2wTtz + wtTz + uurTr + wwzTz

+uwrTr + wTrTz + 2uwTtz + u2wrr + w2Tzz =
Kn f

(ρCp)n f

(
Trr +

1
r Tr + Tzz

)
, (15)

at + uar + waz = DA

(
arr +

1
r

ar + azz

)
−Kcab2, (16)

bt + ubr + wbz = DB

(
brr +

1
r

br + bzz

)
+ Kcab2. (17)



Coatings 2020, 10, 48 5 of 21

The associated boundary conditions are

u = ra1
1−ct , v = rΩ1

1−ct , w = 0, T = T1(r) = T0 +
Ar

1−ct ,
DA

∂a
∂z = Ksa, DB

∂b
∂z = −Ksa, at z = 0,

(18)

u =
ra2

1− ct
, v =

rΩ2

1− ct
, w = 0, T = T2(r) = T0 +

Br
1− ct

, a→ a0 , b→ 0, z = h. (19)

Here, T0 is the reference temperature. A and B are the dimensional constant with dimension
[T · L−1].

Thermo-physical properties of CNTS are represented in mathematical form as follows:

A =
µn f

µ f
=

1

(1−φ)2.5 , (20)

B =
ρn f

ρ f
= (1−φ) +

ρCNT

ρ f
φ, (21)

C =
(ρCp)n f

(ρCp) f
= (1−φ) +

(ρCp)CNT

(ρCp) f
φ, (22)

D =
kn f

k f
=

(1−φ) + 2φ kCNT
kCNT−k f

ln
kCNT+k f

2k f

(1−φ) + 2φ
k f

kCNT−k f
ln

kCNT+k f
2k f

, (23)

σn f

σ f
= 1 +

3φ
(
σCNT
σ f
− 1

)
(
σCNT
σ f

+ 2
)
−

(
σCNT
σ f
− 1

) . (24)

Table 2 represents the thermos-physical characteristics of CNTs and H2O.

Table 2. Thermo-physical properties of water and carbon nanotubes.

Physical Properties Base Fluid (H2O) MWCNTs SWCNTs

Cp(
J

kg k) 4179 796 425

ρ
(

kg
m3

)
997.1 1600 2600

k
(

W
mk

)
0.613 3000 6600

Following transformation are used to convert the above nonlinear partial differential equations to
dimensionless ordinary differential equations.

u = rΩ1
1−ct f ′(η), v = rΩ1

1−ct g(η), w = 2hΩ1√
1−ct

f (η),θ = T−T2
T1−To

,

p∗ = ρΩ1ν

(1−ct)2

(
P(η) + r2

2h2 ε
)
, η = z

h
√

1−ct
, a = c0ϕ̃, b = c0̃l.

(25)

Equation (11) is satisfied automatically, Equations (12) to (17) are transformed into the following
form:

A1

(
f ′ +

η

2
f ′′

)
+ Re

(
f ′2 − 2 f f ′′ − g2

)
+ ε−

σn f

σ f

MRe( f ′ −mg)
B(1 + m2)

=
A
B

f ′′′, (26)

B
A

Re
[(

g +
1
2
ηg′

)
A1 + 2( f ′g− f g′)

]
−
σn f

σ f

MRe(g + m f ′)
A(1 + m2)

= g′′ , (27)

∂p∗

∂z
= (A1( f + η f ′) − 4 f f ′)B(1− ct)Re− 2

(1− ct)
A

f ′′ , (28)
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A1
(
s + θ+ 1

2ηθ
′
)
+ (s + θ) f ′ − 2 fθ′ + γ[

(
s + θ+ 7

8ηθ
′
)
+

f ′
(

f ′ + 1
2η f ′′

)
(s + θ) + 2 f ′

(
s + θ+ 1

2ηθ
′
)
− 4 f

(
1
2ηθ

′′ + 3
2θ
′
)
+

( f + η f ′)θ′ + f ′2(s + θ) − 4
A1

f ′θ′ − 2 f f ′′ (s + θ) + 4
A1

f 2θ′′ − 4
A1

f f ′θ′

= D
C (

1
PrReθ

′′ + 1
Pr (s + θ)),

(29)

1
2
ηϕ̃′ −

2
A1

f ϕ̃′ −
1
Sc
ϕ̃′′ + k1ϕ̃l2 = 0, (30)

1
2
ηl̃′ −

2
A1

f l̃′ −
δ
Sc

l̃′′ − k1ϕ̃l2 = 0, (31)

with transformed boundary conditions

f (0) = 0, f (1) = 0, f ′(0) = γ1, f ′(1) = γ2, g(0) = 1,
g(1) = Ω,θ(0) = 1− s,θ(1) = 0, P(0) = 0,

(32)

where

M =
σ f BO

2(1−ct)
ρ f

, A1 = c
Ω1

, γ1 = a1
Ω1

,γ2 = a2
Ω2

, Sc = h2c
DA

, Pr =
υ f (ρCp) f

k f
, Ω = Ω2

Ω1
,

k1 =
Kcc2

o (1−ct)
c , k2 =

ksh(1−ct)1/2

DA
δ = DB

DA
,γ = cε1

1−ct , D =
kn f
k f

, B =
(ρCp)n f

(ρCp) f
.

(33)

By assuming the chemical species alike, we take diffusion coefficient of both species equal, so that
δ = 1. And thus we have l̃(η) + ϕ̌(η) = 1, we get from Equations (30) and (31)

1
Sc
ϕ̃′′ −

1
2
ηϕ̃′ +

2
A1

f ϕ̃′ − k1(1− ϕ̃)2ϕ̃ = 0, (34)

ϕ̃′(0) = K2ϕ̃′(0), ϕ̃′(1)→ 1, (35)

Differentiating Equation (26), we get

A1

(3
2

f ′′ +
η

2
f ′′′

)
+ Re(2 f f ′′′ − 2gg′) −

σn f

σ f

MRe( f ′′ −mg′)
B(1 + m2)

=
A
B

f ′′′′, (36)

3. Skin Friction and Local Nusselt Number

Shear stresses at lower disk in radial and tangential directions are τzr and τzθ

τzr = µn f uz|z=0 =
µ f rΩ1 f ′′ (0)

h(1−φ)2.5 , τzθ = µn f uz|z=0 =
µ f rΩ1g′(0)

h(1−φ)2.5 , (37)

The total shear stress is
τw =

(
τzr

2 + τzθ
2
)1/2

, (38)

Coefficients of drag force at z = 0, and z = h for the disk are

C f1 = τw |z=0

ρ f (rΩ1)
2 = 1

Rer(1−φ)
2.5

[
( f ′′(0))2 + (g′(0))2

]1/2
,

C f2 =
τw |z=h

ρ f (rΩ2)
2 = 1

Rer(1−φ)
2.5

[
( f ′′(1))2 + (g′(1))2

]1/2
,

(39)

Here, Rer represents local Reynolds number.
The dimensional form of Nu (the local Nusselt number) is

Nu =
kn f (ρcp) f

ρ f k f
, (40)
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By using transformation given in Equations (25), Equation (40) becomes

(1− ct)1/2Nu1 = −
kn f

k f
θ′(0), (1− ct)1/2Nu2 = −

kn f

k f
θ′(1), (41)

4. Numerical Method

In current model, MATLAB built-in-function bvp4c is used to solve coupled ordinary differential
equations (ODE’s) (Equations (26–36)) with mentioned boundary conditions (32). The computational
purpose of the infinite domain is restricted to η = 4 which is enough to indicate the asymptotic
behavior of the solution. The theme numerical scheme needs initial approximation with tolerance 10−6.
The initial taken estimation must meet the boundary conditions without interrupting the solution
technique. We obtain a system comprising three first-order differential equations given below:

f ′ = y2,
f ′′ = y3,
f ′′′ = y4

f ′′′′ = yy1

yy1 = B
A (A1

(
3
2 y3 +

η
2 y4

)
+ Re(2y1y4 − 2y5y6) −

σn f
σ f

MRe(y3−my6)

B(1+m2)
),

g = y5,
g′ = y6,

yy2 = B
A Re

[(
y5 +

1
2 ηy6

)
A1 + 2(y2y5 − y1y6)

]
−

σn f
σ f

MRe(y5+my2)

A(1+m2)
,

θ = y7,
θ′ = y8

yy3 = 1
D
C

1
PrRe−

4
A1

(y1)
2
−2ηy1

(A1
(
s + y7 +

1
2ηy8

)
+ (s + y7)y2 − 2y1y8+

γ[
(
s + y7 +

7
8ηy8

)
+ y2

(
y2 +

1
2ηy3

)
(s + y7) + 2y2

(
s + y7 +

1
2ηy8

)
−

6y1y8 + (y1 + ηy2)θ′ + (y2)
2(s + y7) −

4
A1

y2y8 − 2y1y3(s + y7) −
D

CPr (s + y7)),

(42)

With suitable boundary condition

y1(0) = 0, y2(0) = γ1, y5(0) = 1, y7(0) = 1− s,
y1(1) = 0, y2(1) = γ2, y5(1) = Ω, y7(1) = 0

(43)

5. Outcomes with Discussion

In this section the impact of different parameters on velocity and temperature profile, drag force
coefficient, and Nusselt number is described in the form of graphs and tables. In order to acquire
the required outcome we fix the different flow parameters such as M = 0.7, A1 = 0.5,γ1 = 0.1,
γ2 = 0.5, Sc = 1, Pr = 6.7,γ = 0.5, k1 = 0.1, Ω = 0.1.

5.1. Radial and Axial Velocity Profile

In Figures 2–9, the radial velocity f ′(η) and axial velocity profiles f (η) is depicted for Re,
parameters, scaled Stretching γ1 and γ2 and nanoparticle volume fraction φ. The solid line ( ) and
the dashed line (—-) represent the single wall carbon nanotubes and multiwall carbon nanotubes
respectively. Figures 2 and 3 show that the magnitude of radial f ′(η) and axial velocity f (η) reduces for
incremental value of Re. The fact is that for increasing values of Reynolds number causes the increase
in resistive forces which reduces the motion of fluid. Magnitude of f ′(η) and f (η) for multiwall carbon
nanotubes is higher as compared with single wall carbon nanotubes. f (η) takes on negative values
near the lower disks because upper disks are moving faster than the lower disks. Figure 4 depicts
that f ′(η) escalates in the vicinity of the lower disk and declines in the vicinity of the upper disks by
enhancing the value of γ1, while the behavior of f (η) remain same throughout the system as shown
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in Figure 5. But by the increase in the value of γ2, f ′(η) increases in the vicinity of the lower disks
and decreases in the vicinity of the upper disks, (see Figure 6), and f (η) shows decrease in magnitude
throughout the system, (see Figure 7). Figure 8 shows that f (η) reduces by the increase of nanoparticle
volume fraction and magnitude of f (η) is smaller for MWCNTs. f ′(η) is decreasing near the lower
disk and enhancing near the upper disks by increasing φ, while the amplitude of f ′(η) is higher for
MWCNTs than SWCNTs. This effect is shown in Figure 9.
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5.2. Tangential Velocity Profile

Tangential velocity g(η) decreases by escalating the value of M because increasing magnetic field
exerts a retarding force which slows the motion of the particles within the fluid. Figure 10 depicts that
the tangential velocity has smaller magnitude for MWCNTs as compared to SWCNTs. Figure 11 depicts
that tangential velocity decreases for increasing value of A1 and its value is smaller for MWCNTs.
Figure 12 shows that as stretching rate increases at the upper disk it causes a decrease of tangential
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velocity. g(η) increases for incremental values of hall current parameter m and magnitude of tangential
velocity profile is more increasing for MWCNTs as compared with SWCNTs as shown in Figure 13.
Figure 14 depicts the relationship between Ω and g(η). It represents that the tangential velocity is an
escalating function of rotation parameter. Figures 15 and 16 depict that for increasing φ the amplitude
of g(η) increases and it decreases for increasing Reynolds number.
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5.3. Dimensionless Temperature Distribution

The dimensionless temperature distribution for different values of relaxation parameter is depicted
for both MWCNTs and SWCNTs in Figure 17. The figure shows that higher rate of thermal relaxation
parameter causes the increase in temperature profile. Results shows that temperature profile is more
increasing for MWCNTs than SWCNTs. Figure 18 shows that temperature decreases by increasing
nanoparticle volume fraction and temperature profile shows more decreasing behavior for MWCNTS
as compared to SWCNTs. Effect of Reynolds number, Prandtl number, stratification parameter,
unsteadiness parameter A1, stretching parameter γ1 at lower disk on temperature profile is shown
in Figures 19–23. Results are plotted both for MWCNTs and MWCNTs. Figure 19 shows that for
positive values of Re there is an increase in temperature profile, and it shows that multi-walled carbon
nanotubes have higher temperature distribution for increasing Reynolds number as compared to
single-walled carbon nanotubes. Similarly, graph is plotted for negative values of Reynolds number. It
is revealed that on decreasing the value of Reynolds number, temperature profile also decreases and
shows more decreasing behavior for MWCNTs than SWCNTs. Figures 20–22 portray the variation of
temperature profile which decreases for incremental values of s, A1, and γ1 this decreasing behavior
is observed more for SWCNTs as compared with MWCNTs. Figure 23 depicts for increasing value
of Prandtl number temperature profile decreases. The decrease in temperature by augmentation of
Prandtl number is consistent with the physical expectation, as by increasing Prandtl number fluid
possesses lower thermal diffusivity which causes the thickness of thermal boundary layer to decrease.
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5.4. Concentration Profile

Figure 24 demonstrate the analysis of concentration profile. For various estimates of homogeneous
reaction parameter k1 there is decay in concentration profile. Similar results are obtained for
heterogeneous reaction parameter k2 in Figure 25. Concentration field is observed for Schmidt
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number in Figure 26. As it is momentum to mass diffusivity ratio, so smaller the value of mass
diffusivity, stronger the value of Schmidt number, which causes the reduction of the concentration of
the fluid.Coatings 2020, 10, 48 18 of 23 
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Comparison of f ′′ (0) and g′(0) with Stewartson [42] for several estimates of Ω by considering all
extra terms as zero is depicted in Table 3. An excellent synchronization is achieved in this case. This
substantiates our mathematical model and presented results.

Table 3. Comparison of f ′′ (0) and g′(0) for numerous estimates of Ω with Stewartson [42].

Ω f ′′ (0) Present −g′(0) Present

−1.0 0.06666 0.06665 2.00095 2.00096
−0.8 0.08394 0.08394 1.80259 1.80259
−0.3 0.10395 0.10396 1.30442 1.30443
0.0 0.09997 0.09998 1.00428 1.00429
0.5 0.06663 0.06664 0.50261 0.50262

5.5. Drag Force Coefficient and Heat Transfer Rate

Influence of Hartmann number M, Hall current parameter m, stretching parameter γ1 and γ2, and
Reynolds number on Skin friction coefficients for MWCNTs and SWCNTs at both disks is portrayed
in Table 4. Skin coefficient friction decrease by increasing the value of Hall current parameter m and
Hartmann number M at lower and upper disk for both MWCNTs and SWCNTs, while increasing
behavior for Re and scaled stretching parameter γ1 for disk at z = 0 and stretching parameter γ2 for
the disk at z = h(t) for both MWCNTs and SWCNTs.

Table 4. Numerical values of drag force coefficient at lower and upper disk for SWCNTs and MWCNTs
when A1 = 0.5, Pr = 6.7, Ω = 0.5, S = 0.4, k1 = 0.1, k2 = 0.1, m = 0.5, Sc = 1.

m M Re γ1 γ2
SWCNTs

C1

MWCNTs
C1

SWCNTs
C2

MWCNTs
C2

0 0 – – – 5.03411 5.03457 6.04242 6.04063
– 0.5 – – – 5.02568 5.02466 6.04163 6.0397
– 1 – – – 5.01732 5.01486 6.04091 6.03888

0.5 0 – – – 5.03411 5.03457 6.04242 6.04063
– 0.5 – – – 5.02896 5.02852 6.04023 6.03805
– 1 – – – 5.02385 5.02253 6.03808 6.03553

0.5 0.5 0.5 – – 4.13561 4.14261 5.58341 5.59479
– – 1 – – 4.2427 4.48904 5.984181 6.19988
– – 1.5 – – 5.15702 6.33493 7.14381 8.20049
– – 0.1 0.1 – 2.94098 2.94399 4.87809 4.86666
– – – 0.2 – 3.60549 3.60836 5.22787 5.21623
– – – 0.1 0.6 2.94098 2.94399 4.87809 4.86666
– – – – 0.8 3.553583 3.56223 6.32921 6.31152

Table 5 is erected to depict the impact of numerous parameters on heat transfer rate. It is gathered
that rate of heat transfer is a decreasing function of unsteadiness parameter and Prandtl number at
lower disk for both MWCNTS and SWCNTs, while it is a decreasing function of Reynolds number at
lower disk and increasing function of Reynolds number at upper disk for both MWCNTs and SWCNTs.
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Table 5. Numerical values of heat transfer rate at lower and upper disk for SWCNTs and MWCNTs
when Ω = 0.5, γ1 = 0.1, γ2 = 0.4, k1 = 0.1, k2 = 0.1, m = 0.5, Sc = 1.

S Pr Re A1
SWCNTs
−

knf

kf
θ
′

(0)
MWCNTs
−

knf

kf
θ
′

(0)
SWCNTs
−

knf

kf
θ
′

(1)
MWCNTs
−

knf

kf
θ
′

(1)

0.2 – – – 4.14135 3.83131 4.49696 4.16193
0.4 – – – 3.10577 2.87324 3.37182 3.12053
0.6 – – – 2.01701 1.91516 2.24668 2.07914
0.7 – – – 1.5524 1.43613 1.68411 1.55844
0.2 3.9 – – 4.12824 3.81806 4.51945 4.18466
– 5.2 – – 4.12164 3.81139 4.530861 4.19621
– 1.3 0.2 – 4.13503 3.82486 4.50794 4.17309
– – 0.5 – 4.11594 3.81839 4.54154 4.18437
– – 0.1 0.6 4.10289 3.79571 4.593021 4.25082
– – – 0.7 4.05746 3.75367 4.705941 4.35533
– – – 0.8 4.00509 3.7052 4.83659 4.47624

6. Conclusions

Unsteady axisymmetric MHD flow and transfer of heat with water-based carbon nanotubes amid
two stretchable rotating disks is explored in the present study. Results for arising parameters for both
SWCNTs and MWCNTs are illustrated. Main findings of our observations are as follows.

• Radial velocity increases and declines in the vicinity of the lower and the upper disks respectively.
• Radial and axial velocity profile is increasing for stretching parameter γ1 and decreasing behavior

γ2 near the lower disks for both types of walls.
• Tangential velocity increases with increasing Hall current parameter and decreases with increasing

Hartmann number in case of SWCNTs and MWCNTs.
• Temperature increases for thermal relaxation parameter, and decreases for nanoparticle

volume fraction.
• In H-H reactions the concentration profile decreases for both types of CNTs.
• For incremental value of thermal stratification parameters temperature profile decreases.
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Nomenclature

Symbols Description
→

V =
→

V(u, v, w) Velocity of the fluid (m/s)

M Hartmann number
T Temperature (K)
T0 Reference temperature (K)
A, B The dimensional constant K.m−1

γ1 Scale stretching parameters at lower disk
γ2 Scale stretching parameters at upper disk
Ω1 Angular velocity of the lower disk (sec−1)

Ω2 Angular velocity of the upper disk (sec−1)
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Symbols Description

Cp Specific heat ( J
kg k)

A1 Unsteadiness parameter
ε1 Thermal relaxation time (sec)
B0 Applied magnetic field (Tesla)
σn f Thermal conductivity of nanofluid (S/m)

σ f Thermal conductivity of the fluid (S/m)

k1 Measure of strength of homogeneous reaction
Ω Rotation parameter
Sc Schmidt number
DA Diffusion coefficient of chemical species A∗ (cm2/s)
s Thermal stratification parameter
k2 Measure of strength of heterogeneous reaction
Re Reynolds number
µ f Dynamic viscosity of fluid (Pa.s)
µn f Dynamic viscosity of nanofluid (Pa.s)
ρ f Density of the fluid (kgm−3)

kn f Thermal conductivity of the nanofluid (W/mk)
ρn f Density of the nanofluid (kgm−3)

kCNT Thermal conductivity of carbon nanotubes (W/mk)
k f Thermal conductivity of the fluid (W/mk)
δ Ratio of diffusion coefficients
DB Diffusion coefficient of chemical species B∗ (cm2/s)
Pr Prandtl number
ε Pressure parameter
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