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Abstract: Extended-spectrum beta-lactamase (ESBL) producing bacteria of the Enterobacteriaceae
family are a significant threat to public health, posing a challenge for health authorities worldwide.
In the UAE, very little information is available about ESBL producing bacteria from non-clinical
sources. In this study, 206 pure cultures belonging to the Enterobacteriaceae family were isolated from
food and wastewater sources in Dubai, UAE. All the isolates were tested against third-generation
cephalosporin antibiotics by the disc diffusion method and screened on ESBL chromogenic agar.
Among all isolates (n = 86), 41.7% were potential ESBL producers belonging to E. coli, Klebsiella,
Enterobacter, Shigella, and Citrobacter (KESC group), and Proteus. Of all the potential ESBL producing
isolates, 19 (22%) were confirmed as ESBL producers by a double-disc diffusion test with the fourth
generation cephalosporin–Cefpirome. The multiplex polymerase chain reaction was used for the
detection of ESBL bla genes in the screened isolates. Out of a total of 86 isolates, 52.3% possessed
only the blaTEM gene; 39.5% contained both blaTEM and blaSHV genes, while only 3.5% contained
the blaCTX-M gene. The carbapenemase resistance test showed eight isolates resistant to imipenem,
and only one isolate with metallo-beta-lactamase activity. This study highlights the occurrence
of ESBL bla genes among non-clinical isolates from food and wastewater sources in the UAE and
emphasizes the importance of food and wastewater surveillance programs in controlling the spread
of antibiotic resistance.

Keywords: antibiotic resistance genes; cephalosporin; Gram-negative; Escherichia coli; extended-spectrum
beta-lactamase (ESBL); Enterobacteriaceae; food; wastewater; UAE

1. Introduction

Antimicrobial resistance (AMR) has emerged as a significant concern to public health with several
reports alerting of the substantial risk and increasing threat of antibiotic-resistant bacteria (ARB)
causing common infections that could enhance the worldwide mortality rate by 2050 [1,2]. AMR is
defined as the ability of microorganisms to survive and be viable under the influence of antimicrobial
agents [3]. AMR occurs naturally over time, usually through genetic changes; however, the misuse
and overuse of antimicrobials are increasing the prevalence of antibiotic resistance in bacteria [3,4].
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The World Health Organization (WHO) Global Antimicrobial Surveillance System (GLASS) recently
reported higher levels of resistance in bacterial strains, which are known to cause several dangerous
and frequent infections in many countries [5]. A list of bacteria recently identified by the WHO includes
mainly the AMR bacteria divided into three categories: critical, high and medium priority, according to
their impact on human health and the urgency for the development of new antimicrobial drugs to
treat resistant infections [6]. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae
members are included under the critical category associated with severe and, often deadly, infections,
including bloodstream infections and pneumonia [7].

ESBL producing bacteria evolved because of the excessive use of beta-lactam antibiotics, which have
been the most prescribed drugs for the treatment of bacterial infections in humans and animals for
the past six decades [8]. The synthesis of beta-lactamase enzymes is one of several mechanisms
by which different bacteria develop multi-drug resistance. The extended-spectrum beta-lactamase
enzymes in bacteria belonging to Enterobacteriaceae families are regulated by a group of several genes,
prominent among them being blaTEM, blaSHV, and blaCTX-M types [9] In gram-negative bacteria,
blaTEM and blaSHV genes encoded the earliest known beta-lactamases enzymes hydrolyzing penicillin
and first-generation cephalosporin [10,11]. Genes from the blaCTX–M group encode third generation
cephalosporin hydrolyzing enzymes [12]. A high prevalence of ESBL producing bacteria has been
reported extensively in clinical settings worldwide, including in the United Arab Emirates and the Gulf
Cooperation Council (GCC) countries [13,14]. The Enterobacteriaceae family resistance rates to third
generation cephalosporins and carbapenems were found to be highest in clinical settings according to
the 2017 UAE National AMR Surveillance report [15]. A high occurrence of ESBL Enterobacteriaceae
clinical cases suggest potential widespread resistance challenges in the UAE. So far, efforts to tackle
AMR have focused on clinical settings through a dedicated surveillance action plan and several other
initiatives outlined in the UAE AMR action plan, but not much attention has been paid to non-clinical
environments. A recent discussion article indicates that AMR in non-clinical settings in the GCC region
probably has been underestimated [16].

The ESBL producing Enterobacteriaceae are becoming increasingly prevalent not only in hospital
environments but also in water, wastewater, soil, and food such as fresh vegetables and meat [17–19].
Furthermore, meat is considered a reservoir of ESBL producing bacteria, as reported in recent
studies [20–22]. As per the report published by the Glasgow consulting group, UAE meat consumption
per capita rate is very high with poultry contributing 48.9% to per capita meat consumption, followed by
lamb and goat (13.5%), beef (12.1%), and other meats [23]. A high rate of meat consumption patterns
warrants the need for a high level of systematic monitoring and control of antibiotic-resistant bacteria
in meat products. It is well established that the ESBL type gram-negative bacteria are the most
common cause of severe infections globally. The detection and characterization of ESBL types of
bacteria in the UAE is increasingly important. Due to the lack of documented information about
ESBL producing bacterial species in the Gulf region, it is essential to determine the occurrence of
ESBL bacteria in wastewater and meat samples collected from various supermarkets and butcheries in
Dubai, UAE. The city of Dubai is the fourth most visited city in the world receiving over 15 million
international overnight visitors in 2016 [16]. Thus, very strict regulations are in place to monitor,
and control, the spread of microbial agents through the food and wastewater environment by the Dubai
Municipality. We therefore hypothesized that the occurrence of ESBL producing Enterobacteriaceae is
likely to be lower in non-clinical environments such as meat and wastewater than in clinical settings.

The present study attempted to investigate the occurrence of ESBL producing Gram-negative
bacteria belonging to the Enterobacteriaceae family in retailed meat and in wastewater and to characterize
the distribution of ESBL genes among ESBL types of bacteria.
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2. Materials and Methods

2.1. Isolation, and Characterization of Pure Cultures

Isolation of Gram-negative bacteria from meat samples was carried out as follows: twelve meat
samples were collected from a local butcher’s shop, kept in plastic zip lock bags and stored in the
refrigerator at 4 ◦C before transportation to the laboratory. Of these twelve samples, there were four
each of chicken, lamb, and beef. All samples were processed within 24 h of collection. The following
procedure was used for isolation of bacteria from meat samples: briefly, 1 g of each meat sample (i.e.,
chicken, lamb, and beef) was homogenized in sterile buffered peptone water using a mortar and pestle.
The homogenate was then incubated for 24-h at 37 ◦C for pre-enrichment. Following this, 0.1 mL of
the homogenate was spread onto MacConkey Agar and Hektoen Enteric Agar (HE) plates and was
incubated for an additional 24-h at 37 ◦C [24].

For isolation of Gram-negative bacteria of the Enterobacteriaceae family, six activated sludge samples
were collected from a municipal sewage treatment plant, transported to the laboratory at a temperature
of 4 ◦C and processed on the day of collection. The mixed liquor samples after homogenization were
serially diluted from 10−1 to 10−8, using 0.85% saline (NaCl) [25]. Aliquots of 0.1 mL from the final three
dilutions (i.e., 10−6, 10−7, and 10−8) were spread onto MacConkey Agar and HE Agar plates. All plates
were incubated for 24 h at 37 ◦C. All isolates were purified on nutrient agar by streak plating several
times. After purification, purified colonies were preserved in 10% glycerol stock at −80 ◦C in Eppendorf
tubes and cultivated on nutrient agar medium as described earlier [25]. Biochemical characterization of
bacterial cultures was performed using the standard Indole test, Methyl Red test, Voges-Proskauer test,
and Citrate (IMViC) series of biochemical tests, including E. coli ATCC 25922, as a control culture [26].
The oxidase test for differentiating members of the Enterobacteriaceae family was performed by a drop
of Kovac’s oxidase reagent, consisting of 1% dimethyl-p-phenylenediamine, aseptically placed onto a
smear made of overnight culture [25]. A purple/dark blue or black color reactant, appearing within
30 s or so, is positive for cytochrome oxidase, while no color development indicates a negative test for
cytochrome oxidase. All bacteria isolation experiments were performed in triplicate for each sample.
Molecular identification of all bacterial isolate pure cultures was performed by a fluorescence in situ
hybridization technique (FISH) using oligonucleotide probes specific to the Enterobacteriaceae family
and E. coli species described earlier [27]. The detailed procedure for FISH is described in Appendix A.

2.2. Antimicrobial Susceptibility of Isolated Bacteria

Antimicrobial susceptibility of all 206 isolates to third generation cephalosporin antibiotics
cefpodoxime (10 µg), ceftazidime (30 µg), cefotaxime (30 µg) and ceftizoxime (30 µg) was determined
by the Kirby-Bauer disc diffusion method [24]. The results were interpreted according to the
Clinical and Laboratory Standards Institute guidelines (CLSI) and recorded as susceptible (S),
intermediately susceptible (I), or resistant (R) based on a standard protocol (Table S2 and Figure S1).
E. coli (ATCC 25922) was included as a control culture throughout the antimicrobial susceptibility tests
recommended by CLSI [28]. The susceptibility of E. coli ATCC 25922 to third generation cephalosporins
is shown in supplementary Table S3.

2.3. Screening of ESBL Producers

ESBL activity of isolates and their classification into various groups of bacteria was determined
by streaking onto ESBL chromogenic agar plates (HiMedia, India) incubated at 37 ◦C for 24 h.
The chromogenic media enabled the grouping of isolates into coliform and Proteus groups. A double-disc
diffusion test was performed to further confirm ESBL bacteria using fourth generation cephalosporin
cefpirome (30 µg) discs alone and in combination with clavulanic acid (30/7.5 µg) (Figures S2 and S3)
as recommended by CLSI [28]. E. coli ATCC 25922 was used as a negative control throughout the
tests as a non-ESBL culture. The ESBL positive bacterial isolates were used to inoculate 5 mL of
Tryptone Broth and incubated at 37 ◦C for 24 h. By using a sterile spreader, 0.1 mL of the inoculum
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was spread onto Muller Hinton (MH) agar plates. Cefpirome (CFP) and cefpirome/clavulanic acid
(CPC) discs were placed approximately 25–30 mm apart. The culture plates were then incubated at
37 ◦C for 24 h, after which the diameters of the clear plaques surrounding the discs were measured
to the nearest mm. The zone size interpretation is shown in supplementary Table S4. A more than
or equal to 5 mm increase in cefpirome/clavulanic acid zone versus clear zone, when tested with
cefpirome disc alone, indicated positive confirmation of the ESBL isolate. The ESBL isolates were
further evaluated by the combined disc test for carbapenem resistance based on the inhibition of MBL
(Metallo-Beta-Lactamase) activity by Ethylenediaminetetraacetic acid (EDTA) according to the CLSI
guidelines [28]. Two imipenem discs containing imipenem (IPM 10) alone and the other containing
imipenem-EDTA (IE 10/750), were placed 25–30 mm apart (Figure S4). The ESBL positive bacterial
isolates were inoculated in 5 mL of Tryptone Broth and incubated at 37 ◦C for 24 h. Using a sterile
spreader, 0.1 mL of the inoculum was then spread onto MH agar plates. An isolate producing a zone
diameter of >4 mm around the disc with IE (Imipenem-EDTA), and not around the disc with IPM
(Imipenem) alone, was considered positive for MBL E. coli ATCC 25922 was used as a negative control
throughout the test (Table S5).

2.4. Molecular Detection of ESBL Genes

Molecular typing of the potential ESBL producers screened earlier by phenotypic characterization
was performed by multiplex Polymerase Chain Reaction (PCR) using previously reported ESBL bla
primers [29,30]. The multiplex PCR was performed for blaTEM, SHV, and CTX-M genes using a
previously reported primer (Table 1). Genomic DNA from bacterial strains was extracted using the
Bacterial Genomic DNA Isolation Kit as per the manufacturer’s instruction (Norgen Biotek Corp.)
The multiplex PCR reaction mixture consisted of 1× Buffer (10 mM Tris-HCl [pH 9.0], 1.5 mM MgCl2,
500 mM KCl), 0.2 mM each dNTP, 1 µM of each of the primers, 1.25 U Taq DNA polymerase and
50–100 ng DNA in a total volume of 25 µL. Initial denaturation was performed for 5 min at 94 ◦C,
followed by 35 cycles, each consisting of denaturation at 94 ◦C for 30 s, annealing at 58 ◦C for
1 min, extension at 72 ◦C for 1 min, followed by a post-extension hold at 72 ◦C for 7 min. The PCR
products were then analyzed by gel electrophoresis using 2.0% agarose gel in a 1× TAE buffer (0.5% of
Tris-acetate-EDTA). The gels were stained with 5 µg/mL Ethidium bromide in a 1× TAE buffer, and the
PCR products were visualized by UV transillumination [30].

Table 1. List of primers used for Extended-spectrum beta-lactamase (ESBL) genes detection.

ESBL Detection Primer Nucleotide Sequence Amplicon Size (bp) Reference

blaTEM
5′-GTG CGG TAT TAT CCC GTG TT-3′

416 [29,30]
5′-AAC TTT ATC CGC CTC CAT CC-3′

blaSHV
5′-GGA AAC GGA ACT GAA TGA GG-3′

301 [29,30]
5′-ATC CCG CAG ATA AAT CAC CA-3′

blaCTX-M
5′-CGC TTT CCA ATG TGC AGT AC-3′

510 [29,30]
5′-TCG CCG CTG CCG GTC TTA TC-3′

2.5. Statistical Analysis

The results were subjected to statistical processing with SPSS 25 software (IBM Corp. Chicago, IL,
USA) applying Fisher’s exact test for comparing ESBL isolates from meat and wastewater with a level
of significance of p < 0.05. The comparison was made for antibiotic resistance patterns between chicken
and combined beef and lamb isolates, and all meat versus wastewater isolates. Statistical correlation
was done between Enterobacteriaceae and E. coli, Klebsiella, Enterobacter, Shigella, and Citrobacter (KESC),
and Proteus isolates (recovery based on ESBL chromogenic agar growth) from wastewater and meat
sources. The statistical analysis was performed for distribution blaTEM and blaSHV/blaCTX-M for
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E. coli versus KESC for the presence of TEM alone; Proteus sp. versus KESC for the presence of TEM
alone, and E. coli versus Proteus sp. for the presence of TEM alone.

3. Results

3.1. Isolation and Biochemical Characterization

A total of 206 pure cultures were isolated from wastewater and meat samples by serial dilution and
spread plating techniques. Among all meat samples, the highest number of isolates were obtained from
chicken meat (n = 95), followed by beef (n = 29) and lamb (n = 21). A total of 61 isolates were recovered
from an activated sludge unit of a municipal sewage treatment plant. All the bacterial isolates were
biochemically characterized by standard IMViC series of biochemical tests, including E. coli ATCC
25922 as quality control test culture. All pure cultures were found to be Gram-negative, with 155 isolates
with bacilli and 51 isolates with coccobacilli morphology. Oxidase test and IMViC Tests were performed
using log-phase cultures of bacteria. The series of biochemical reactions allowed differentiation among
members of the Enterobacteriaceae group. The oxidase test for cytochrome oxidase was performed
on all 206 isolates, and 19 isolates were oxidase positive, while 187 isolates were oxidase negative,
thereby confirming that they belonged to the family Enterobacteriaceae. A positive Indole reaction
in 121 isolates was indicated by forming a red ring at the medium’s surface. A negative reaction
in 85 isolates showed the original yellow color of the Kovacs reagent, which remained unchanged.
The positive MR reaction was shown by 180 isolates for the presence of an acid, as indicated by a
distinct red color, whereas 26 isolates showed negative (yellow) MR reactions after adding the reagent.
A positive VP reaction in 46 isolates was indicated by the development of a cherry red color throughout
the culture medium while a VP negative reaction was shown by 160 isolates where the color of the
culture medium remained unchanged (yellow). A positive citrate reaction in 106 isolates was indicated
by bacterial growth along the streak accompanied by a color change of the medium from its initial green
to deep blue. One hundred isolates were citrate negative as the cultures either did not grow or left the
color of the medium unchanged. The results of morphological and biochemical characterization of
206 pure cultures are shown in supplementary Table S1. FISH assay confirmed all 206 pure cultures that
were isolated from wastewater and meat samples belonged to the Enterobacteriaceae family. All isolates
showed excellent hybridization with both ENTBAC (specific to the family Enterobacteriaceae) and
universal eubacterial (EUB)oligonucleotide probes and displayed strong fluorescent signals without a
false-positive reaction (Appendix A Table A1 and Figures A1 and A2).

3.2. Antibiotic Susceptibility of Isolates

The sensitivity pattern of 206 isolates belonging to the Enterobacteriaceae family against third
generation cephalosporin antibiotics is shown in Table 2. Out of 206 strains, 86 were found resistant to
one or more third generation cephalosporin antibiotics, with high resistance to cefpodoxime (39%)
followed by cefotaxime (33%), ceftizoxime (32.5%), and ceftazidime (29%).

Table 2. Distribution of isolates resistant to third generation cephalosporins.

Resistance to Third Generation Cephalosporins

Cefpodoxime (CPD10) Ceftazidime (CAZ30) Cefotaxime (CTX30) Ceftizoxime (CZX30)

39% (n = 80) * 29% (n= 60) * 33% (n = 68) * 32.5% (n = 67) *

* Out of total number of Gram-negative isolates (n = 206).

The antibiotic susceptibility test results of 86 potential ESBL producing isolates against third
generation cephalosporins are shown in Table 3. All potential 86 ESBL isolates found to be resistant to one
or more third-generation cephalosporins, with 93% of the isolates, have shown resistance to cefpodoxime
followed by cefotaxime (79%), ceftizoxime (78%), and ceftazidime (70%). The phenotypic confirmation
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of potential ESBL producing isolates was conducted by testing both cefotaxime and ceftazidime,
alone and in combination with clavulanic acid, as recommended by CLSI [28]. Out of 86 potential ESBL
isolates, only 22% (n = 19) were confirmed as ESBL producers by phenotypic characterization using
double disc diffusion assay, including cefpirome (the fourth generation cephalosporin). These 19 isolates
showed a zone of enhancement >5 mm in diameter between the cefpirome discs and clavulanic acid
(Figure 1).
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Table 3. Antibiotic resistance pattern of ESBL-Enterobacteriaceae isolates (n = 86).

Antibiotic Class Antibiotic
Meat Types (%) *

p ** Wastewater
(n = 35)

p *** All Isolates
(n = 86) (%)Chicken

(n = 29)
Beef

(n = 17)
Lamb
(n = 5)

Cephalosporins (3rd generation) Cefpodoxime (CPD10) 86.2 (n = 25) 94 (n = 16) 100 (n = 5) NS 97.1 (n = 34) NS 93 (n = 80)
Cefotaxime (CTX30) 65.5 (n = 19) 88.2(n = 15) 80 (n = 4) NS 86 (n = 30) NS 79 (n = 68)
Ceftizoxime (CZX30) 52 (n = 15) 82.3 (n = 14) 60 (n = 3) NS 100 (n = 35) 0.0001 78 (n = 67)
Ceftazidime (CAZ30) 62 (n = 18) 65 (n = 11) 80(n = 4) NS 77.1 (n = 27) NS 70 (n = 60)

Cephalosporin (4th generation) Cefpirome+ Clavulanic acid 17.2 (n = 5) 23.5 (n = 4) 20 (n = 1) NS 26 (n = 9) NS 22 (n = 19)
Carbapenems Imipenem (IMP) 6.9 (n = 2) 5.9 (n = 1) 0 NS 14.3 (n = 5) NS 9.3 (n = 8)

Imipenem-EDTA 0 (n = 1) 0 NS 0 NS 1.1 (n = 1)
Multi drug resistance (MDR) 79.3 (n = 23) 100 (n = 17) 100 (n = 5) 0.0305 100(n = 35) NS 93 (n = 80)

* Isolates with susceptibility (S) and intermediate (I) resistance to antibiotics are excluded; ** Fisher’s exact test: Chicken versus beef plus lamb isolates; *** Fisher’s exact test: All meat
versus wastewater isolates; NS: Statistically nonsignificant at significance level p > 0.05.
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3.3. Presumptive Identification of Potential ESBL Producing Isolates

All bacterial isolates were screened for ESBL production using ESBL chromogenic agar. A total
of 206 pure cultures streaked on ESBL chromogenic agar formed various types of colorful growth.
Based on the developed color, bacterial isolates were categorized into potential E. coli, Klebsiella,
Enterobacter, Shigella, and Citrobacter (KSEC), and proteus groups. A total of 41.7% (n = 86) out of
206 strains showed growth on ESBL chromogenic agar. ESBL producing E. coli showed pink or purple
colony growth. The KESC group produced bluish-green colonies; Proteus, Morganella, and Providencia
that do not utilize any chromogen resulted in colorless to light brown colonies on ESBL chromogenic
agar (Figure 2).
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Figure 2. Presumptive identification of Gram-negative bacterial isolates on ESBL chromogenic agar.

The grouping of isolates based on their growth characteristics on ESBL chromogenic agar are
shown in Table 4. Out of a total of 86 potential ESBL isolates, 38 were grouped as possible E. coli,
25 (KESC), and 23 (Proteus). The highest percentages of ESBL positive isolates found among meat
samples were from beef (n = 29, 58.6%) followed by chicken (n = 95, 31.6%) and lamb (n = 21, 24%).
In contrast, total ESBL positive isolates (n = 61) from a wastewater source were found to be 56% (Table 4).
The combined disc test for carbapenemase resistance based on the inhibition of Metallo-Beta-Lactamase
activity by EDTA was conducted for potential 86 ESBL isolates. The carbapenemase resistance assay
showed only eight (9.3%) isolates resistant to imipenem, and one (1%) isolate from beef meat source
was confirmed as MBL positive, as it showed a zone of enhancement >4 mm in diameter between the
imipenem and imipenem-EDTA discs.

Table 4. Screening of Enterobacteriaceae isolates based on ESBL chromogenic agar growth pattern.

Sample Source No. of Isolates
Analyzed KESC * p E. coli * p Proteus * p

Number of
ESBL Producing

Enterobacteriaceae
p

Wastewater (n = 6) 61 17

0.0001

11

NS

7

NS

35 (57.3%)

0.0001
Beef (n = 4) 29 3 10 4 17 (58.6%)

Lamb meat (n = 4) 21 1 3 1 5 (24%)
Chicken meat (n= 4) 95 4 14 11 29 (30.5%)

Total 206 25 38 23 86 (41.7%)

* Groups of Enterobacteriaceae based on growth on ESBL chromogenic agar; All p values for Fisher’s exact test:
Wastewater versus meat isolates at the level of significance p < 0.05; NS: Statistically not significant at significance
level p > 0.05.

3.4. Molecular Typing of Potential ESBL Isolates

The presence of ESBL genes in all 86 isolates was determined by multiplex PCR. The PCR results
provided an expected band size of 510, 416, and 301 bp for ESBL blaCTX-M, TEM, and SHV genes,
respectively (Figure 3).
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Figure 3. Detection of ESBL bla genes of the CTX-M, TEM, and SHV families by multiplex Polymerase
Chan Reaction (PCR).

All the 86 pure culture isolates were found to contain blaTEM, blaSHV, and blaCTX-M ESBL genes
by molecular typing (Table 5). Of these 86 isolates, 52.3% of isolates were found to possess only TEM
genes, 39.5% contained both TEM + SHV genes, while only a small number (5.8%) of isolates contained
the blaCTX-M gene along with blaTEM or blaTEM/blaSHV. Among all ESBL genes containing isolates,
44% were E. coli, 29% KESC (Klebsiella, Enterobacter, Shigella, and Citrobacter species) and 26.7% Proteus
group. The percentages of extended-spectrum beta-lactamase genes among ESBL Enterobacteriaceae
isolates from meat and wastewater samples are shown in Figure 4.

Table 5. Distribution of blaTEM, blaSHV and blaCTX-M ESBL types among the 86 isolates.

ESBL Type E. coli * p KESC * ** p Proteus sp. *** p Total Isolates

TEM 16

NS

13

NS

16

NS

45
TEM + SHV 17 10 7 34

TEM + CTX-M 3 0 0 3
SHV 1 1 0 2

SHV + CTX-M 0 0 0 0
CTX-M 0 0 0 0

CTX-M + TEM-SHV 1 1 0 2

Total 38 25 23 86

KESC *: Klebsiella, Enterobacter, Shigella, and Citrobacter; * Fisher’s exact test E. coli vs. KESC for the presence of TEM
alone; ** Fisher’s exact test: Proteus spp; versus. KESC for the presence of TEM alone; *** Fisher’s exact test: E. coli
versus Proteus spp. For the presence of TEM alone; NS-Statistically nonsignificant at significance level p > 0.05.
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4. Discussion

Antimicrobial resistance (AMR) represents a critical public health problem worldwide [2,3],
and in GCC countries [13,14]. Antibiotic resistance in bacteria, including extended-spectrum
beta-lactamase-producing Enterobacteriaceae (ESBL-E), has been reported in the UAE in clinical
settings [15]. However, information about ESBL-E in non-clinical environments, especially in food
and wastewater environments, has so far been limited in the UAE. To our knowledge, this is the first
study to document data on the occurrence of ESBL bacteria from non-clinical (meat and wastewater)
sources in Dubai, UAE. Among all meat samples, the highest number of Gram-negative isolates
were recovered from chicken (n = 95) followed by beef (n = 29) and lamb (n = 21). As reported in
earlier studies, the high degree of bacterial contamination in meat samples (100% recovery rate) from
butcheries could be due to unhygienic meat handling, improper processing practice of raw meat,
and cross-contamination [31,32]. Several reports indicate that the high prevalence of ESBL E. coli has
resulted from growing reservoirs in food animals such as chickens due to the use of antimicrobials in
poultry animals [33,34]. A recent study in China found ESBL producing Enterobacteriaceae in 23.8%
and 13.3% of raw retailed chicken and beef meat samples, respectively [22]. However, in our study,
we found a higher proportion of ESBL producing Enterobacteriaceae in chicken (31.6%) and beef meat
(58.6%) samples. The ESBL-Enterobacteriaceae in retailed chicken in this study is, however, lower than
50%, as reported in closely related studies in other countries [21,24,35,36]. In this study, we found a
higher number of ESBL-Enterobacteriaceae isolates in retailed minced beef as compared to chicken and
lamb meat samples. Our results are dissimilar to other studies where ESBL-Enterobacteriaceae were
found to be in lower percentages in beef than chicken meat [24,36,37]. In another study in Southwest
Ethiopia, the proportion of ESBL-producing isolates in minced meat retailer shops was only 23.8% [17],
which is lower than observed in this study.

In our study, 56% of Gram-negative isolates from wastewater sources belonged to
ESBL-Enterobacteriaceae, less than in other studies conducted in Spain [38]. Several recent studies
reported a high prevalence of ESBL-Enterobacteriaceae from hospital wastewater [18]. In another
study, only 28.3% of the beta-lactamase-producing-Enterobacteriaceae isolates were detected in a
wastewater treatment plant, with the most common microorganisms included Escherichia coli (83%),
Citrobacter freundii (11%), and Enterobacter cloacae complex (4%) [39]. However, the lower recovery of
ESBL-Enterobacteriaceae might be due to the type of wastewater sample used. For example, in this study,
wastewater samples were obtained from a domestic municipal wastewater treatment plant rather than
hospital wastewater. In our study, recovery of all ESBL producing Enterobacteriaceae and KESC isolates
was statistically higher from wastewater than meat sources (p = 0.0001). However, recovery of E. coli
and Proteus species from wastewater and meat sources was statistically insignificant at level p > 0.05
(Table 4).

Overall, all ESBL positive isolates (n = 86) have shown very high levels of resistance to cefpodoxime
(93%), followed by cefotaxime (79%), ceftizoxime (78%) and ceftazidime (70%). Among meat
isolates, the highest resistance to cefpodoxime was found in lamb (100%) followed by beef (94%) and
chicken (86.2%). A recent study reported resistance of extended-spectrum beta-lactamase-producing
Enterobacteriaceae isolates from chicken samples to third generation cephalosporins in the following
pattern: cefpodoxime, CPD (100%); cefotaxime, CTX (97.1%); ceftazidime, CAZ (70.6%), with the lowest
resistance to imipenem, IMP (5.9%) [21]. However, in our study, the resistance to third generation
cephalosporins was lower (CPD; 86.2%; CTX 65.5%, CAZ; 62%) but slightly higher for imipenem,
IMP (6.9%) than observed in that study. The resistance to cephalosporins found in ESBL isolates
from retailed chicken meat in this study was higher than reported in a study in China where only
16.0% of Enterobacteriaceae isolates from retail foods showed cefotaxime (CTX) and/or ceftazidime
(CAZ) cephalosporin resistance [22]. Furthermore, only 79.3% of ESBL isolates from chicken meat
were found to be multi-drug resistant, which is lower than reported (97%) by a study in Spain [21].
An increase in cefotaxime resistant Enterobacteriaceae family bacteria such as E. coli has also been
reported in poultry meat in the Netherlands since 2005 [34]. This study reported a rapid increase
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in third generation cephalosporin-resistant E. coli, particularly in poultry, not only in Europe but
worldwide. To estimate more accurately the associated increased deaths among persons resulting from
third-generation cephalosporin use in poultry, detailed data from more countries is essential [40].

In this study, we observed, the highest resistance to all third generation cephalosporin for ESBL
Enterobacteriaceae isolates in lamb meat (100%) followed by beef (94%) and chicken (86.2%). The results
are higher than a study conducted in Egypt that showed that the antimicrobial resistance of E. coli
isolated from poultry was more than from beef to most tested antibiotics [41]. Another recent study in
Germany reported a lower prevalence of cefotaxime-resistant E. coli in the range of 4.2%–11.9% in beef
meat [20]. However, in the current study, all ESBL E. coli isolates from beef and lamb meat were found
resistant to cefotaxime. In contrast, only 71.4% of E. coli from retailed chicken samples were resistant to
cefotaxime. Besides, all ESBL Enterobacteriaceae isolates (100%) from beef and lamb meat were found to
be multi-drug resistant as compared to 79.3% isolates from chicken meat. The resistance pattern of
chicken and beef/lamb isolates to different antibiotics (third and fourth generation cephalosporins and
carbapenems) was not statistically significant. However, the multi-drug resistance pattern of beef/lamb
isolates was found to be statistically higher than chicken isolates (p value = 0.0305, Table 3).

ESBL Enterobacteriaceae isolates from wastewater showed a very high level of resistance to third
generation cephalosporins in the following order: CZX (100%), CPD (97%), CTX (86%), CAZ (77%).
All wastewater isolates (10%) were found to be multi-drug resistant with higher statistically significance
than the meat isolates’ MDR pattern (p = 0.0001). While comparing meat isolates with wastewater,
the resistance pattern to all antibiotics except ceftizoxime (CZX30) was statistically insignificant at
p > 0.05. The resistance profile of wastewater isolates to ceftizoxime was higher with more statistical
significance than all meat isolates (p = 0.0001, Table 3). Our resistance rates of ESBL-E isolates
from activated sludge samples are higher for CAZ (65%) and CPD (58%) but similar to CTX (85%)
measures observed in a study from Poland [25]. A study in Portugal revealed, the highest incidence of
ESBL-E in hospital sewage, and the lowest in urban wastewater with 51.9% of the isolates potentially
extended-spectrum beta-lactamase positive. Frequency of resistance to the beta-lactam group antibiotics
was as follows: cefotaxime (22.7%), cefpirome (19.2%), and ceftazidime (16.2%) with none of the isolates
resistant to imipenem (IPM) [42]. When comparing our results to a study performed in Portugal,
the resistance rate of ESBL-E isolates to cefotaxime (80%), cefpirome (26%), and ceftazidime (77.1%)
was much higher, and 14.3% isolates were found resistant to Imipenem (IPM). In another study, out of
310 ESBL-producing Enterobacteriaceae strains isolated from hospital sewage effluents, 295 (95.2%),
253 (81.6%), and 228 (73.5%) isolates were resistant to cefotaxime, ceftazidime, and cefpodoxime,
respectively [43]. However, in comparison, the resistance patterns of ESBL-E isolates from this study is
slightly lower for cefotaxime (86%) and ceftazidime (77.1%) but much higher for cefpodoxime (97.1%).

In the current study, the most common beta-lactamase bla gene type in all meat and wastewater
sample ESBL-E isolates was TEM-type (97.6%), followed by SHV-type (44.2%) and CTX-M (5.8%).
Furthermore, 39 out of 86 isolated ESBL strains (45.3%) expressed two or more beta-lactamases.
The distribution of the blaTEM gene alone as compared to the other two bla genes (blaSHV and
blaCTX-M) was found to be statistically insignificant (at significance level p > 0.05) by comparing
isolates of E. coli vs. KESC, Proteus vs. KESC and E. coli vs. Proteus (Table 5). Our findings are
dissimilar to other studies in China, which showed that blaTEM (81.9%) was the most common gene,
followed by blaCTX-M (68.1%) and blaSHV (38.9%) among retailed chicken and beef ESBL isolates [22].
Another study in Germany found ESBL resistant genes of the CTX-M-group (10.1% of all samples) were
most frequently detected [20]. A study in Spain reported predominant that the beta-lactamase type
producing Enterobacteriaceae in food products was SHV-12 (50.1%), followed by TEM-type (24.5%) and
CTX-M (20.8%), and 30% of isolated strains expressed two or more beta-lactamases [21]. However, in our
study, 45.3% of ESBL strains had two or more beta-lactamases. Also, CTX-M type was only detected in
five ESBL-E isolates from chicken (n = 3) and beef (n = 2) meat products. A better understanding of
the diversity of CTX-M enzymes’ encoding gene is a key component of any comprehensive plan to
mitigate the further spread of CTX-M ESBLs among clinically relevant bacteria [10]. A high prevalence
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of ESBL drug-resistant genes was found in chicken in a study in Turkey but was lower in other meat
types, including beef [34]. However, in our study, beef and lamb meat isolates were found to contain a
higher percentage of blaTEM-type (100%) and blaSHV (40% and 60% respectively). The blaCTX-M gene
type was detected in 10.3% of chicken ESBL isolates and 11.7% of beef isolates. Lamb isolates were
found negative for the blaCTX-M gene.

In this study, 35 (57.3%) out of a total of 61 isolates from municipal sewage treatment plant were
phenotypically ESBL-positive, and the most detected bla gene was blaTEM (97.1%) followed by blaSHV
(42.8%). The blaCTX-M gene was not found in any of the wastewater isolates. The blaTEM and blaSHV
detected in this study was higher than in the research conducted in Portugal, where the most common
genes among the potential ESBL producers found were blaTEM (24.1%) and blaCTX-M (5.6%) [42].
In another study, in wastewater samples collected during biological treatment, the most prevalent gene
was blaTEM, which occurred in all samples, including the treated wastewater, whereas the blaSHV
gene was least prevalent in the tested samples [44]. This finding compares with the results of our study,
where the blaTEM gene was found in 97% of ESBL isolates obtained from the secondary treatment stage,
whereas only 42.8% isolates had the blaSHV gene. A recent study found very low percentages of the
ESBL genes in 11.84% of isolates obtained from wastewater effluent samples, and of these, only 9.2% of
isolates carried blaTEM, 1.4% blaSHV-12, 0.2% blaCTX-M-1 and 1% blaCTX-M-15 [45].

The role of environmental reservoirs in antibiotic-resistant bacteria and the dissemination and
penetration of their resistance genes remains unclear [10]. Identifying ESBL genes in non-clinical
isolates and their pattern of resistant bacteria provides useful scientific data and may help to create
a clear strategy for controlling infections. It may also aid in mitigating the spread of multi-drug
resistance. One of the limitations of this study was the smaller sampling size for both meat and
wastewater sources; therefore, this study’s results may not truly represent the prevalence of ESBL-E
in non-clinical environments in Dubai, UAE. Nevertheless, we observed a high rate of resistance
of ESBL-E isolates to multi-drug and third generation cephalosporins in the range of 80–100%.
Furthermore, we detected carbapenemase resistance phenotypically with eight (9.3%) isolates showing
resistance to imipenem, and only one (1%) of the isolates from a beef meat source confirmed with
metallo-beta-lactamase activity (MBL). Given reports on high carbapenem resistance in clinical
isolates of Enterobacteriaceae in the UAE and other GCC countries [46,47], the inclusion of New Delhi
metallo-beta-lactamase 1(NDM-1) monitoring is highly recommended in the surveillance program
for non-clinical environments. Overall, we demonstrated the occurrence of ESBL Enterobacteriaceae
members, predominantly E. coli, suggesting possible introduction into the environment and thus
emphasizing the importance of regular review of surveillance programs in controlling the spread of
antibiotic resistance. However, a relative enrichment of ESBL E. coli, particularly during the wastewater
and sludge treatment process, and a comparative study with clinical isolates within the region and
their loads in sludge fertilizer after the end of a treatment cycle need to be further evaluated for a
broader perspective.

5. Conclusions

The present study attempted to investigate the occurrence of Gram-negative Enterobacteriaceae
that are resistant to the extended-spectrum beta-lactam class of antibiotics in wastewater and meat
samples. The following are the main conclusions drawn from this study:

1. Extended spectrum beta-lactamase (ESBL) based antibiotic resistance was observed in non-clinical
isolates of wastewater and meat origin. A total of 86 isolates (41.7%; n = 206) have shown
resistance towards third generation cephalosporins such as cefpodoxime (93%), ceftazidime (70%),
cefotaxime (79%) and ceftizoxime (78%). Hence, they may be classified as potential ESBL strains
of bacteria.

2. A total of only 19 (22%) out of 86 isolates were phenotypically confirmed as ESBL by the double
disc diffusion method.
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3. Only 9.3% (n = 8) of strains have shown resistance towards imipenem, which means that they
could be potentially producing carbapenemases. However, only one isolate was found to be
MBL (metallo-beta-lactamase) positive by combined disc test assay. Hence, we conclude that the
occurrence of metallo-beta-lactamase based resistance is insignificant among non-clinical isolates
obtained in this study.

4. Through molecular characterization by PCR, all the 86 ESBL isolates were found to harbor one or
the other bla ESBL genes tested of TEM, SHV, and CTX-M type. Most ESBL genes are found to be
TEM and SHV types. The CTX-M gene was the least detected gene among all isolates.

5. The occurrence of ESBL producing Enterobacteriaceae in meat samples from farmed animals
represents an obvious risk of contamination. Nevertheless, due to the high incidence of ESBL
Enterobacteriaceae, prudent use of antibiotics in veterinary medicine and strict hygiene measures
during slaughtering and retailing are essential. In addition, ESBL producing Enterobacteriaceae
in wastewater also calls for the implementation of stringent decontamination procedures during
the treatment or disposal process.
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Appendix A. Materials and Methods

Appendix A.1. Fluorescence In Situ Hybridization (FISH)

The pure culture of 206 bacterial isolates were analyzed by FISH for identification of
Enterobacteriaceae and E. coli isolates using three oligonucleotide probes fluorescently labeled at
5′end by Tetramethyl rhodamine (TRITC): Domain specific universal eubacterial oligonucleotide
probe, Enterobacteriaceae family specific ENTBAC probe and E. coli specific EC probes described
earlier (Jensen et al., 2000). For stringency of hybridization, a few isolates were analyzed with each
probe by varying the concentration of formamide as 30, 35 and 40% in the hybridization buffer.
The following is a brief description of the steps. (i) Fixation and dehydration: The isolates were
fixed in 4% paraformaldehyde, 10 µL of the fixed sample was applied on a poly-L lysine coated
slide and air dried. The samples were dehydrated with varying concentrations (50, 80 & 95%) of
ethanol for 3 min each. (ii) Hybridization: Once the stringency of the hybridization probe was fixed
to 35% for all the three probes, all the isolates were analyzed using a hybridization buffer with 35 %
formamide concentration. On the dehydrated sample, 9 µL of hybridization buffer mixed with 1 µL of
the probe was added. The slide was placed into a hybridization chamber and filled with hybridization
buffer, sealed and hybridized at 46 ◦C for 1.5–3 h. (iii) Washing and observation: The washing buffer
was pre-warmed at 48 ◦C for half an hour before the washing step was performed. The slides were

http://www.mdpi.com/2073-4441/12/9/2562/s1
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removed from the hybridization chamber and replaced the hybridization buffer with pre warmed
washing buffer. The slides were incubated with the washing buffer at 48 ◦C for 10–15 min. Slides were
rinsed with distilled water at room temperature. Slides were air dried and viewed under Olympus
BX51 fluorescence microscope equipped with TRITC filter.

Appendix A.2. Results

Two hundred and six isolates were screened by FISH assay using three probes, one being
the universal eubacterial oligonucleotide probe (EUB), probe specific to Enterobacteriaceae family
(ENTBAC) for the identification of strains up to the family level. The hybridization stringency was
obtained at a 35% formamide concentration for both oligonucleotide probe. Thus, the hybridization
buffer and washing buffer were prepared for 35% formamide concentration. All 206 isolates showed
excellent hybridization to both universal eubacterial oligonucleotide probe (EUB), and ENTBAC
(Enterobacteriaceae) probe and displayed strong fluorescent signals without false positive reaction.
The results of hybridization of potential ESBL 86 strains with eubacterial oligonucleotide probe (EUB),
and ENTBAC (Enterobacteriaceae) probe is shown in Table A1. The FISH analysis images of an isolate
Escherichia coli with TRITC–labeled with EUB, and ENTBAC at the magnification of 1000X under
epifluorescent and phase contrast microscopy are shown in Figures A1 and A2.

Table A1. Fluorescence in situ hybridization of strains with universal eubacterial (EUB), and Enterobacteriaceae
(ENTBAC) family specific oligonucleotide probe.

S.N. Strain Source Chromogenic Agar ID EUB 1 ENTBAC 2

1 MUD15-01 Wastewater E. coli (+) (+)
2 MUD15-03 Wastewater Proteus (+) (+)
3 MUD15-06 Wastewater E. coli (+) (+)
4 MUD15-07 Wastewater E. coli (+) (+)
5 MUD15-08 Wastewater Proteus (+) (+)
6 MUD15-10 Wastewater E. coli (+) (+)
7 MUD15-11 Wastewater E. coli (+) (+)
8 MUD15-13 Wastewater KESC (+) (+)
9 MUD15-14 Wastewater E. coli (+) (+)

10 MUD15-17 Wastewater KESC (+) (+)
11 MUD15-18 Wastewater KESC (+) (+)
12 MUD15-22 Wastewater KESC (+) (+)
13 MUD15-23 Wastewater KESC (+) (+)
14 MUD15-24 Wastewater KESC (+) (+)
15 MUD15-25 Wastewater KESC (+) (+)
16 MUD15-27 Wastewater KESC (+) (+)
17 MUD15-28 Beef E. coli (+) (+)
18 MUD15-32 Beef KESC (+) (+)
19 MUD15-33 Beef KESC (+) (+)
20 MUD15-34 Beef E. coli (+) (+)
21 MUD15-35 Beef E. coli (+) (+)
22 MUD15-36 Beef KESC (+) (+)
23 MUD15-37 Beef E. coli (+) (+)
24 MUD15-38 Beef E. coli (+) (+)
25 MUD15-39 Beef E. coli (+) (+)
26 MUD15-40 Lamb KESC (+) (+)
27 MUD15-43 Lamb Proteus (+) (+)
28 MUD15-46 Chicken KESC (+) (+)
29 MUD15-47 Chicken Proteus (+) (+)
30 MUD15-48 Chicken Proteus (+) (+)
31 MUD15-49 Chicken KESC (+) (+)
32 MUD15-50 Chicken E. coli (+) (+)
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Table A1. Cont.

S.N. Strain Source Chromogenic Agar ID EUB 1 ENTBAC 2

33 MUD15-51 Chicken Proteus (+) (+)
34 MUD15-52 Chicken KESC (+) (+)
35 MUD15-53 Chicken Proteus (+) (+)
36 MUD15-54 Chicken E. coli (+) (+)
37 MUD15-55 Chicken Proteus (+) (+)
38 MUD15-56 Chicken Proteus (+) (+)
39 MUD15-58 Chicken E. coli (+) (+)
40 MUD15-59 Chicken E. coli (+) (+)
41 MUD15-60 Chicken KESC (+) (+)
42 MUD15-61 Chicken Proteus (+) (+)
43 MUD15-62 Chicken Proteus (+) (+)
44 MUD15-63 Chicken Proteus (+) (+)
45 MUD15-64 Chicken E. coli (+) (+)
46 MUD15-65 Chicken E. coli (+) (+)
47 MUD15-74 Chicken E. coli (+) (+)
48 MUD15-82 Chicken E. coli (+) (+)
49 MUD15-84 Chicken E. coli (+) (+)
50 MUD15-89 Chicken E. coli (+) (+)
51 MUD15-109 Chicken E. coli (+) (+)
52 MUD15-110 Chicken E. coli (+) (+)
53 MUD15-115 Chicken E. coli (+) (+)
54 MUD15-133 Lamb E. coli (+) (+)
55 MUD15-137 Beef Proteus (+) (+)
56 MUD15-138 Beef Proteus (+) (+)
57 MUD15-139 Beef Proteus (+) (+)
58 MUD15-140 Beef Proteus (+) (+)
59 MUD15-154 Lamb E. coli (+) (+)
60 MUD15-156 Lamb E. coli (+) (+)
61 MUD15-157 Beef E. coli (+) (+)
62 MUD15-162 Beef E. coli (+) (+)
63 MUD15-165 Beef E. coli (+) (+)
64 MUD15-166 Beef E. coli (+) (+)
65 ZU-04 Wastewater Proteus (+) (+)
66 ZU-11 Wastewater KESC (+) (+)
67 ZU-12 Wastewater KESC (+) (+)
68 ZU-13 Wastewater KESC (+) (+)
69 ZU-15 Wastewater Proteus (+) (+)
70 ZU-16 Wastewater E. coli (+) (+)
71 ZU-18 Wastewater E. coli (+) (+)
72 ZU-19 Wastewater KESC (+) (+)
73 ZU-21 Wastewater E. coli (+) (+)
74 ZU-22 Wastewater E. coli (+) (+)
75 ZU-24 Wastewater E. coli (+) (+)
76 ZU-26 Wastewater KESC (+) (+)
77 ZU-27 Wastewater KESC (+) (+)
78 ZU-28 Wastewater Proteus (+) (+)
79 ZU-29 Wastewater KESC (+) (+)
80 ZU-30 Wastewater KESC (+) (+)
81 ZU-31 Wastewater Proteus (+) (+)
82 ZU-32 Wastewater KESC (+) (+)
83 ZU-33 Wastewater Proteus (+) (+)
84 ST-04 Chicken Proteus (+) (+)
85 ST-05 Chicken Proteus (+) (+)
86 ST-06 Chicken E. coli (+) (+)

1 Universal eubacterial probe, 2 Enterobacteriaceae family specific oligonucleotide probe. (+) = positive hybridization
with the oligonucleotide probe.
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