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ABSTRACT Alzheimer’s disease (AD) is a neurodegenerative condition that affects the central nervous
system and represents 60% to 70% of all dementia cases. Due to an increased aging population, the number
of patients diagnosed with AD is expected to exceed 131 million worldwide by 2050. The disease is
characterized by various clinical symptoms and pathological features that define three main sequential
decline stages, namely, early/mild, intermediate/moderate and late/severe stages. Although it is considered
irreversible, early diagnosis of AD is highly desirable to help preserve cognitive function. However, early
diagnosis is difficult due to different factors, including the patient-specific development of AD. The main
contribution of the proposed work is to present a personalized (i.e., local/brain regional) computer-aided
diagnosis (CAD) system for early diagnosis of AD from two perspectives, functional and structural to assist
diagnosis. In other words, the proposed system uniquely yields local/regional diagnosis by combining 11C
PiB positron emission tomography (11C PiB PET), which provides functional diagnosis, with structural
magnetic resonance imaging (sMRI), which provides structural diagnosis. To the best of our knowledge, this
is the first work to combine sMRI and the 11C PiB PET for local/regional early diagnosis of AD. The system
processes the two modalities through a number of steps: pre-processing, brain labeling (parcellation), feature
extraction, and diagnosis. A local/regional diagnosis is presented for each modality separately, followed
by the final global diagnosis obtained by integrating the results from the two modalities. Evaluation of
the proposed system shows average results of 97.5%, 100%, and 96.77% for accuracy, specificity, and
sensitivity, respectively. With further development, it is envisioned that this system could contribute to the
early diagnosis of AD in the clinical setting.

INDEX TERMS Alzheimer’s disease, personalized diagnosis, MCI, 11C PiB PET, sMRI.

I. INTRODUCTION

DEMENTIA is a major problem challenging public
health. Rather than being a single disease, dementia

is defined as a symptom of different conditions that disrupt
brain functionality (e.g., memory, language, and reasoning)
[1]. Statistically, more than 44 million people around the

world have dementia. By 2050, this number is expected
to exceed 131 million [2]. The conditions and disorders
related to dementia include Alzheimer’s disease (AD), which
represents sixty to seventy percent of all dementia cases
in the elderly. AD is considered as one of the most well-
known neurodegenerative disorders that affect the central
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nervous system (CNS) [3]. Relying on the findings of the
World Health Organization (WHO), the estimated increase
of AD by 2050 in Asian, African, American, and European
countries is 226%, 345%, 248%, and 90%, respectively [4].

Throughout its progression, AD evinces various clini-
cal symptoms in addition to different pathological features.
These symptoms classify AD into three sequential decline
stages: early (mild), followed by intermediate (moderate),
and ending with late (severe) [5]. Although the underlying
process of AD is irreversible, early diagnosis in the early
mild cognitive impairment (MCI) stage can provide a number
of benefits [6]: (i) finding new therapeutic strategies to puta-
tively modify the disease’s effects and applying them most ef-
fectively at an early stage; (ii) preserving cognitive functions
by slowing the disease’s symptoms; and (iii) significant cost
savings for both governments and patients in short as well as
long-term care. Early diagnosis in the USA could save $7–
$7.9 trillion in health and long-term care costs). However,
early diagnosis remains a challenge. Reasons include the
variable effect of the disease among its sufferers in addition to
proper detection of pathological features 10–15 years before
the appearance of the clinical symptoms [5].

Various tests are used for the purpose of assisting the diag-
nosis process of AD, including detection of brain biomarkers.
Jack et al. [7] investigated the role of different types of brain
biomarkers during the progression of the disease. The study
showed that positron emission tomography (PET) amyloid
imaging can reveal the earliest pathological features (i.e.,
amyloid beta (Aβ) deposits). Also, structural magnetic res-
onance imaging (sMRI) can uncover structural abnormalities
throughout the stages of the disease. However, clinical imple-
mentation of PET amyloid imaging requires careful clinical
interpretation, due to the possibility of misdiagnosis that
can occur because of the similarity between AD-related Aβ
abnormalities and other elevated Aβ levels in normal elderly
subjects. The carbon-11-labeled Pittsburgh compound B (11C
PiB) tracer has been of considerable assistance in AD studies
[8]. PiB radiotracer is a fluorescent analog of thioflavin T that
aids in visualizing the prominent pathological features of AD
and consequently helps to investigate the deterioration during
the disease’s stages [9]. Analysis via sMRI assists in non-
invasively revealing structural changes during the disease
progression. Also, the analysis shows the relation between
both the growing risks of proceeding to AD and the atrophies
which subsequently serve to predict future decline regarding
healthy adult memory. Finally, volumetric analysis of this
scanning modality can reveal essential changes to the size
of brain regions, which is considered an effective assistance
to diagnosis [9].

II. LITERATURE REVIEW
Instead of employing a single medical imaging modality,
fusing multiple modalities has been explored to produce
more informative results. Among the proposed attempts,
the combined capabilities of sMRI and PET scans were
utilized to help in the diagnosis of AD. Related studies

have employed PET tracers other than 11C PiB, such as a
tracer called 2-18F fluoro-2-deoxy-d-glucose (FDG). FDG is
a metabolic substrate used with FDG-PET scans to measure
glucose metabolism across brain regions and thus aid in the
prediction of conversion from MCI to AD. For instance,
Zhang and Shen [10] worked with a multi-modal data ob-
tained from the sMRI, FDG-PET and cerebrospinal fluid
(CSF) data to propose a Multi-Modal Multi-Task (M3T)
learning. The aim of this presented learning methodology
is to predict multiple variables from the utilized data that
can be used for regression, through clinical variables, and
for classification, through categorical variables. To achieve
this goal, the presented method went through two stages,
the first is multi-task feature selection for multiple variables
from the utilized modalities, and then a multi-modal support
vector machines (SVM) that fuses the selected features for
multiple variables (regression and classification) prediction.
The output of this methodology was in the form of Mini
Mental State Examination (MMSE) as well as Alzheimer’s
Disease Assessment Scale-Cognitive Subscale (ADAS-Cog)
as the clinical variables for regression and class labels as the
categorical variables for classification. The proposed method
was used for the estimation of the scores of the MMSE and
ADAS-Cog as well as the classification labels in the normal
controls (NC) vs. AD and NC vs. MCI groups. Additionally,
it was used for the prediction of the changes in the 2-year
MMSE and ADAS-Cog as well as the classification label
in the classification task of MCI patients who converted to
AD (MCI-C) vs. those who did not (MCI-NC). For the NC
vs. MCI group they achieved an accuracy of 0.832 ± 0.015,
while it was 0.933± 0.022 for NC vs. AD and 0.739± 0.038
for MCI-C vs. MCI-NC task.

Gray et al. [11] presented a framework for multi-modality
classification using the random forest (RF) algorithm to de-
rive pairwise similarity measures for manifolds construction.
For this purpose, sMRI, FDG-PET, CSF biomarker measures,
as well as categorical genetic information are used. A combi-
nation of the obtained similarities from the multiple modal-
ities is then performed to generate an embedding for feature
based information encoding. Finally, this joint embedding is
used to perform a multi-modality classification. Evaluating
the proposed framework between the healthy controls and
MCI subjects showed an accuracy of 75% while it achieved
89% for the comparison between the healthy controls and AD
patients.

Kim et al. [12] presented a classification method that uti-
lized the integration of metabolism in FDG-PET scans along
with the volume/thickness in sMRI. To achieve this multi-
modal data integration, the proposed classification method
used an automatic technique for the whole-brain analysis in
addition to a graph-based semi-supervised learning (SSL)
method. The comparison against a SVM classifier revealed
superior results, especially with the volume/thickness mea-
sures. Additionally, values of the regions of interest (ROIs)
that were extracted from the temporal lobe, hippocampus,
and amygdala revealed that regional atrophy of the brain ini-

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3038723, IEEE Access

tially and extensively occurred in both the entorhinal cortex
and hippocampus before spreading throughout the neocortex.

Jie et al. [13] utilized the multi-modality concept to im-
prove the classification accuracy by presenting a manifold
regularized Multi-Task Feature Selection (M2TFS) model
based on MRI as well as PET data. For this purpose, the
group lasso and Laplacian regularizers were applied. The
group lasso regularizer was used for selecting a small number
of features among the joint modalities, while the Laplacian
regularizer was employed for the preservation of all the data,
obtained from each modality, related to geometric distribu-
tion information. The proposed model was evaluated under
supervised and semi-supervised learning methods. After su-
pervised learning, the model had an accuracy of 95.03% for
classification of AD vs. unimpaired NC, 79.27% for MCI
vs. NC, and 68.94% for MCI-C vs. MCI-NC. In the semi-
supervised run, the geometric distribution of the data yielded
better discriminant feature selection. This observation was
verified through the consistent improvement in the classi-
fication accuracy with the unlabeled samples in all three
classification tasks.

Suk et al. [14] proposed a feature representation and sys-
tem combining sMRI and FDG-PET scans to enhance the
performance of AD/MCI diagnosis. Self-taught deep learn-
ing was used for this purpose, leading to efficient integration
of complementary information obtained from MRI and PET
scans during representation of the feature. Quantitatively,
better results have been presented through the proposed sys-
tem than the related method [15], [16]. The system showed
the ability to visually reveal complex latent patterns, hidden
in both modalities, in a hierarchical manner.

Lazli et al. [17] proposed a CAD system that consisted of a
clustering stage followed by a classification stage. The aim of
the clustering stage was to assess the white and gray matter
as well as the cerebrospinal fluid volumes from noisy MRI
and PET scans. For this purpose, fuzzy c-means was used
followed by possibilistic c-means algorithm and ending up
with the segmentation to delimit the tissue volumes of the
brain. After the clustering process, the classification process
took place using SVM. Comparing the proposed system with
the related approaches showed better results of the proposed
work.

Mattsson et al. [18], addressed the diagnosis prediction
task of AD through constructing least absolute shrinkage
as well as selection operator with the 18F-AV-1451 (tau)
PET and the regional cortical thickness in addition to the
subcortical volumes from the MRIs of the utilized scans. The
evaluation of the proposed work implied that utilizing both
modalities helped in partly capturing unique information that
are relevant for clinical AD’s reorientation.

Hao et al. [19] assisted in AD analysis through proposing
a multi-modal method for feature selection with consistent
metric constraint. First, the random forest strategy was uti-
lized for each modality individually, VBM-MRI or FDG-
PET, to calculate the similarity. Then, both regularization
terms of the group sparsity and sample similarity constraint

were utilized for objective function constraining from multi-
ple modalities. Finally, the selected features obtained from
different modalities were fused using multi-kernel SVM
for final classification task. Evaluating the proposed system
showed promising results.

Deep learning was employed by Li et al. [20] for predic-
tion of missing patterns in PET scans by utilizing sMRIs.
Three aspects were used to evaluate this system: (a) the
prediction ability of the PET scans, (b) the accuracy of the
classification against other methods, and (c) the effect on the
accuracy of the combined features obtained from sMRI and
PET scans. The system could achieve the prediction goals
and attain better comparison results when testing sMRI, true
and predicted PET, and MRI + PET scans. In particular,
the feature combination of sMRI and PET scans showed
improved classification accuracy. Liu et al. [21] also relied on
deep learning to construct a computer-aided diagnosis (CAD)
system composed of sparse stacked autoencoder (SAE) for
input data representation and softmax regression layer for
classification. The system was evaluated relative to the SVM
classifier in two applications: binary classification (e.g., AD
vs. NC or MCI vs. NC) and multiclass classification (i.e.,
NC, MCI-C, MCI-NC, and AD). In binary classification, the
system achieved higher sensitivity in both cases and better
overall classification accuracy of AD vs. NC. In multiclass
classification, the system outperformed SVM in all classes
except MCI-NC, where SVM mislabeled fewer cases.

Also, Suk and Shen [22] employed deep learning to
propose their classification system that uses techniques of
the automatic whole-brain ROI as well as Graph-based SSL
method for multimodal integration of imaging data. For this
purpose, the FDG and Florbetapir based PET scans where
utilized along with the voxel-based morphometry (VBM) and
FreeSurfer V5 data from sMRI. Evaluating the data showed
best performance when integrating FDG and FreeSurfer data.
Regarding the classification results, comparing the proposed
graph-based SSL method and the SVM classifier showed, in
general, better results of the proposed method except with
Florbetapir data.

Despite the existence of various researches to serve the
early diagnosis of AD, these studies yield a global diagnosis
of AD and do not utilize 11C PiB tracer when working with
both sMRI and PET scans. Although the utilized PET based
tracers in the previous work showed good results, 11C PiB
tracer has been found to help in revealing the earliest signs of
the disease. This supports this tracer’s role as an identifier in
the early diagnosis stage of the disease [7]. Also, although
the global diagnosis is an essential result in this context,
proposing local/regional diagnosis could be more helpful to
address the variability of the disease among patients which is
a vital obstacle in front of the researchers in this field. This
paper proposes a personalized based functional/structural
CAD system to help diagnose AD at the early MCI stage. The
novelty of this work is to present a local/regional diagnosis
of AD from two different perspectives, a functional view
using 11C PiB-PET as well as a structural view using sMRI.
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These modalities are chosen due to their respective roles in
early identification of the disease and related structural brain
atrophy. Additionally, the proposed CAD system in this pilot
study presents the capability for a final global diagnosis to
provide an additional level of information.

III. MATERIALS, METHODS AND VALIDATION
STRATEGY
A. MATERIALS
To evaluate the proposed system, we utilized a dataset from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu) of subjects with both sMRI and
11C PiB-PET scans. The initial launch of ADNI was in
2003 in the form of a public-private partnership under the
leadership of Principal Investigator Michael W. Weiner, MD.
The main goal of ADNI was to examine whether the se-
rial sMRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of MCI and early AD. For more information
about the protocols as well as the methods, the reader is
referred to [23]. Data were obtained in accordance with
the ADNI Data Use Agreement and with approval from
the University of Louisville IRB (IRB protocol 19.0910).
Additionally, ADNI data collection protocols were reviewed
through the IRB at the Health System of Duke University and
at each site. Prior to the collection of the data, all the subjects,
as well as their legal representatives when appropriate, gave
written informed consent [24].

In this study, a total of 81 sMRI and 11C PiB-PET scans
of 19 NC and 62 MCI subjects were utilized. It is noted that
the utilized dataset was chosen since we intended to include
only the subjects with both the sMRI and 11C PiB-PET scans.
Besides, it is noted that the scans that were initially pre-
processed through ADNI were utilized in the proposed work.
Despite the ADNI based initial pre-processing operations and
to serve the targeted, personalized diagnosis goal, additional
pre-processing steps were performed on these scans. The
main aim of these extra pre-processing steps is to standardize
the scans to a labeling atlas template to serve the brain
regions’ labeling task.

For the 11C PiB-PET scans, the scans were co-registered,
averaged, spatially oriented, intensity normalized, as well
as smoothed through ADNI [25]. The ADNI based pre-
processing operations on sMRI scans were in the form of
multiplanar reconstruction (MPR) and a number of cor-
rection steps. These corrections start with gradwarping,
an image-based system-specific correction of the geom-
etry distortion that occurs because of the gradient non-
linearity. Then, B1 calibration scans are utilized in a B1
non-uniformity to correct the intensity non-uniformity of the
images. In this procedure of correction, a uniform sensitivity
of the body coil is assumed. However, a poor signal-to-noise-
ratio is showed when scanning the images by a body coil.
Therefore, obtaining a head coil-based intensity inhomo-
geneity profile can be performed by dividing the smoothed
version of the body coil image by the surface coil’s smoothed

TABLE 1. Demographic data of the NC and MCI groups based scans that
were used to evaluate the proposed framework.

(N = 81) Average Age ± SD Gender N (%) WMS Logical Memory II results
(based on years of education)

Male Female ≥16 years 8-15 years 0-7 years

NC (19) 78.3 ± 5.01 11 (57.89) 8 (42.1) ≥ 9 ≥ 5 ≥ 3
MCI (62) 75.64 ± 7.89 42 (67.74) 20 (32.25) ≥ 8 ≥ 4 ≥ 2

one. The B1-corrected version of the head coil image can
be attained via the multiplication of the uncorrected image
and the estimated intensity profile [26]. Finally, the N3
histogram peak algorithm of sharpening is applied to reduce
the images’ intensity non-uniformity [27]. On anatomy, for
the dependence elimination of the field estimate, an iterative
approach is utilized for the estimation of the multiplicative
bias field as well as the distribution of the true intensities of
the tissue. Applying N3 on the MR data showed substantial
improvement in the accuracy of the techniques used for
the anatomical analysis such as tissue classification, cortical
surface extraction, and registration [26].

Regarding the gold standard of diagnosis, the ground
truth from ADNI, based on ADNI’s classification criteria of
AD related groups, was utilized. According to ADNI, the
NC group was composed of subjects without any indica-
tions of having depression, cognition related impairments,
or dementia. Patients in the MCI group were reported, by
themselves, through an informant, or by a clinician, to suffer
from memory concerns. These subjects did not show sig-
nificant levels of impairment in other cognition domains or
any signs of dementia. In order to determine the normal-
ity/abnormality of the participants’ memory function, a part
of the Wechsler Memory Scale (WMS) neuropsychological
test was performed with respect to the participants’ level
of education as presented in Table 1. We focused on the
MCI group with the goal to diagnose NC and MCI subjects
regardless of whether the MCI subjects proceed to the AD
stage, progressive MCI (pMCI), or remain as stable MCI
(sMCI). Also, despite the ability of the 11C PiB-PET scans to
diagnose the MCI subjects, here we utilized the sMRI along
with PET scans in order to present the personalized diagnosis
from two viewpoints for clinical evaluation.

B. METHODS
This paper builds a local/regional structural/functional com-
puter based diagnostic system that aids in the personalized
diagnosis process at the MCI stage of AD, the early stage of
the disease. Thus, the proposed framework is mainly parti-
tioned into two analysis stages, as presented in Fig. 1. First,
the 11C PiB-PET and sMRI scans are analyzed separately,
and a local/regional diagnosis of the disease is obtained from
each imaging modality for each anatomical brain region.
Second, a final global diagnosis is produced by integrating
the results from the two modalities. The proposed CAD
system is described in detail in the following subsections.
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FIGURE 1. Proposed personalized based functional/structural CAD system for early diagnosis of Alzheimer’s Disease.

1) 11C PiB-PET and sMRI Scans Preprocessing

In addition to the ADNI’s preprocessing operation on the
utilized scans and in order to assess local/regional diagno-
sis, the scans need to be standardized first to the labeling
atlas template’s space, the Montreal Neurological Institute
(MNI) space. This standardization yields anatomical brain
labeling of the scans that serves the local/regional diagnosis.
Therefore, the scans are processed in a number of steps: data
re-orientation, co-registration, spatial normalization, and re-
slicing (Algorithm 1).

Starting with the sMRI scans, before performing the stan-
dardization step, the scans undergo a skull stripping oper-
ation. To achieve this task, the scans are convolved with
their binary brain masks obtained from the ADNI. After
performing this step, the sMRI scans, as well as the 11C
PiB-PET scans, are ready to be standardized. Starting with
re-orienting the scans (i.e., sMRI and 11C PiB-PET based
scans), this operation is done with respect to the imaginary
line between the anterior and posterior commissures (AC-PC
line), and matching the orientation of the scan to that of the
atlas template. Please note that re-orientation here to AC-PC
line is differ than that of ADNI that re-orients the scans to a
standard image grid that subsequently reorients the AC of the
scan to be parallel to the AC-PC line.

Then, a least squares approach is used to calculate the six-
degree-of-freedom, rigid body spatial transformation [28] to
align the brain as closely as possible with the atlas. For this
purpose: first, pick an sMRI scan (reference) and re-orient it
to the line of AC-PC, and second, re-orient as well as re-align
the target scans (i.e., the corresponding 11C PiB-PET scan,

and consequently the remaining 11C PiB-PET scans, in addi-
tion to all the remaining sMRI scans) to the reference scan.
Note that the second step is achieved through the composition
of the re-orientation and rigid-body transformations. Mis-
alignment is gauged with the mutual information based cost
function and 7th degree B-spline interpolation method [29].
Note that the idea behind the cost function is to compare the
registered image in order to measure their similarity. Among
the cost function’s methods there is the mutual information
that addresses the structural similarity measurement between
gray-scale images pairs in addition to perform cross-modality
based registration between the images [30]. Also note that
any of the sMRI scans can be used as a reference scan as all
the scans in ADNI database have broadly the same spatial
orientation. Finally, note that one of the sMRI scans was
used as a reference due to the high resolution of the sMRI
as compared with the 11C PiB-PET scans.

Then, spatial normalization of the scans to the atlas tem-
plate, using the algorithm of Ashburner and Friston [31], are
applied to the resulting re-oriented/re-aligned scans using full
affine transformation to translate, shear, rotate, and scale the
scans, in addition to apply the nonlinear deformations in or-
der to achieve a precise outcome. After data standardization,
the 11C PiB-PET scans went through a de-noising operation
to retain the details of the image while removing any artifact
that could result during the image acquisition process or/and
transmission [32]. For this purpose, the wavelet de-noising
was used due to its good localization characteristic [33]. The
wavelet de-noising steps applied in the proposed work are
presented in Algorithm 2. Using symlet8 mother wavelet was
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due to its role as a compact support mother wavelet of least
asymmetry and the highest number of the support width’s
vanishing moments. These aspects can consequently help in
locally preserving the spatial aspects of the image [34].

Algorithm 1 The standardization steps of both 11C PiB-PET
and sMRI scans.

Input: Original 11C PiB-PET, and sMRI scans with their
corresponding masks.
Output: Standardized/atlas-matched scans.
Steps:

1) Strip the skull of the sMRI scans through convolving
them with their masks obtained from ADNI database.

2) Re-orient both modalities to the AC-PC line through:
a) Pick and re-orient one of the sMRI scans (refer-

ence scan) to the AC-PC line.
b) Use the resulting re-oriented scan to re-orient the

equivalent 11C PiB-PET scan (and consequently
the remaining sMRI scans).

c) Apply the resulting re-orientation matrix of the
PET scan to the remaining 11C PiB-PET scans.

d) Apply the rigid body transformation (i.e., transla-
tion, rotation, and mutual information cost func-
tion) to co-register both the sMRI and the 11C
PiB-PET modalities.

3) Spatially normalize as well as re-slice the scans to
match the space of the atlas template (MNI space).

4) De-noise the 11C PiB-PET scans using Algorithm 2.

Algorithm 2 The steps of the wavelet de-noising method.
Input: Standardized/atlas-matched 11C PiB-PET scans.
Output: De-noised standardized/atlas-matched 11C PiB-
PET scans.
Steps:

1) Select the mother wavelet, number of levels, and
compute the forward wavelet transform of the in-
putted scans. In our work, the ‘symlet8’ mother
wavelet has been selected with a single level of
decomposition due to the low resolution of the 11C
PiB-PET scans.

2) Estimate the threshold and choose the shrinkage rule
of how to apply the threshold in the detail coefficients
using soft thresholding, where the coefficients under
the threshold are deleted and the left are scaled,
or hard thresholding, where the coefficients under
the threshold are deleted and the left are remained
unchanged. In our work, the soft thresholding was
selected where the Stein’s unbiased risk estimate rule
was applied for selecting the threshold according to
[35].

3) Use the modified coefficients to apply the inverse
wavelet transform.

2) Brain Labeling
After scan standardization, the next step is to label the brain
regions using a detailed brain parcellation atlas as performed
in [36]–[38]. The Automated Anatomical Labeling (AAL)
atlas was selected for its fine level of detail. It parcellates
the brain into 116 anatomical regions defined in part by the
pattern of sulci in the MNI standard single subject’s brain,
including 90 cerebral regions in both hemispheres and 26
cerebellar regions (nine in each cerebellar hemisphere and
eight in the vermis) [39].

3) Feature Extraction
At this stage, the discriminant features were extracted from
the labeled regions taking into account the nature of both
the disease and the utilized modalities. In the case of sMRI,
the aim is to reveal characteristics of brain structure indica-
tive of AD [40], that might not be directly detected at the
MCI stage. Therefore, a number of geometric (i.e., bounding
box, perimeter, and volume) and shape (Gaussian curvature,
mean curvature, sharpness, and curvedness) features were
calculated. The bounding box aims to determine the smallest
rectangle that encloses the brain region producing a vector
that contains the coordinates of the upper-left corner and
the width of the obtained bounding box. The perimeter aims
to produce a scalar that determines the distance around
the region’s boundary by finding the distance between the
adjacent pair of pixels that surrounds the region’s border.
Here, the bounding box and perimeter were calculated for
each slice of each region, and then the mean was calculated
for the entire region’s 3D volume. After extracting these
features, to obtain the volume as well as the shape features,
a reconstruction process of each region is performed. The
marching cubes (MC) algorithm was applied because it is
known to be the best method for isosurface extraction due
to its ability to produce high-resolution results. More details
about the reconstruction using MC algorithm can be found
in [41] whereas [42], [43] provide utilization examples of
isosurface in neuroimaging context. Algorithm 3 presents
the steps of extracting the shape features utilizing the MC
algorithm [44]. Beside these shape features, the volume was
calculated for each reconstructed region as well since it is
considered as a well-known, cross-sectional quantitative met-
ric of AD [45]. Thus, rather than relying the sMRI features
on the volume alone, the volume was utilized in conjunction
with the other aforementioned shape and geometric features
to avoid bias and to obtain more precise results through
revealing as much as possible information from the scans.

To maximize the representative information, a feature fu-
sion procedure, relying on the canonical correlation analysis
(CCA) technique, was applied to the extracted features [46].
CCA was chosen due to its role in addressing the relationship
between two variable sets by finding the linear combinations
that maximize the pair-wise correlations between the sets. In
this study, the CCA was utilized sequentially by fusing two
features at a time until arriving at the final vector of the fused
features.
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Algorithm 3 Extraction of the shape based features from the
sMRI scans.

Input: Each labeled sMRI based anatomical brain region.
Output: shape based features (curvatures, sharpness, and curvedness).
Procedures:

1) Use the volume lattice to define cubes (Cl) where the cubes vertices of the
corner Vl are defined through the points (P (xi, yj , sk)) of the lattice for
column xi(∀i), yi(∀j) and slice Sk(∀n):n is the number of slices.

2) In a sequential vertex by vertex manner and throughout the rows of the dataset,
build a fecetized isosurface. During this, mark each Vi when it has a greater
than or equal value compared to the isovalue α and keep the remaining
vertices unmarked.

3) Define the “active" cube that is the cube where the isosurface intersects with
its edge Ej that terminated by a marked vertex Vjm and an unmarked
vertex Vju. There are different scenarios, specifically speaking 256 scenario
(28), to mark the cube since each of the cube’s eight vertices can be either
marked or unmarked. Each of these scenarios encodes a pattern for the
cube-isosurface intersection. The facetization information of the intersecting
isosurface can be obtained through a prior built look-up table that contains the
intersection topologies. To estimate the isosurface-edge intersection location
I = (Ix, Iy, Is), the linear interpolation is applied as:

I(x, y, s) = Vm(x,y,s) + ρ(Vu(x,y,s) − Vm(x,y,s))

where: ρ = α−Lm
Lu−Lm , Lm and Lu are the scalar values Vm as well as Vu,

respectively.
4) Utilize the extracted isosurface, triangulated mesh, to calculate the curvature

based features through the following equations:

CGaussian = λ1λ2 (1)

Cmean =
1

2
(λ1 + λ2) (2)

Sharpness = (λ1 − λ2)
2 (3)

Curvedness =
√

(λ2
1 + λ2

2)/2 (4)

where λ1 and λ2 are the principal curvatures, or eigenvalues of the shape
operator, estimated at each node of the mesh.

For 11C PiB-PET scans, each region was analyzed with the
scale-invariant blob detection method, employing laplacian
of Gaussian (LoG) filters with automatic scale selection
[47]. Blob detection aims to highlight primarily spherical
structures (i.e., blobs) from the images and present them as
a feature where the blob is a local minimum or maximum
intensity with a radially symmetric distribution [48]. De-
pending on the blob characteristics, the extracted blobs could
be used to detect AD-related abnormalities, since AD has a
high significant retention of PiB in brain regions that have
increased Aβ plaques [49]. Relying on this fact and for each
region, a vector of blobs that correspond to the local maxima
will be targeted through the LoG detector with automatic
scale selection.

4) Diagnosis

After extracting regional features from the sMRI and 11C
PiB-PET scans, the features were used to construct two
levels of diagnosis, 1) local/regional diagnosis followed by
2) a final global diagnosis. To achieve the target of the
first level, for each of the utilized modalities, separate 116
probabilistic SVM (pSVM) were constructed for each of
the labeled brain regions. The aim of these separate pSVM
was to produce a probabilistic brain regional based diagnosis
from each modality point of view. These probabilistic results
reflect the severity of AD in each brain region separately.
Then, the second diagnosis level was constructed to classify

each subject as belonging to the NC or MCI group. For
this purpose, the maximum of the probabilistic results from
the two modalities, for all the brain regions, were obtained
and input to a standard SVM to produce the final diagnosis
of the subject. Note that the first diagnosis level is brain
regional based diagnosis where the 116 labeled regions ob-
tained through AAL atlas were used to construct the separate
116 pSVM. On the other hand, the second diagnosis level
is subject based diagnosis, where the labels of AD related
stages (i.e., NC and MCI) were used to construct the standard
SVM. The idea of the proposed diagnosis levels is presented
in Figure 2.

C. VALIDATION STRATEGY
The proposed CAD system was implemented using MAT-
LAB. The preprocessing operations of data re-orientation,
co-registration, spatial normalization, and re-slicing were
performed using the SPM 12 toolbox of MATLAB [28],
whereas the brain labeling task was accomplished through
the xjView toolbox [50]. Then, the region-based feature
extraction was performed. Regarding sMRI, the result of
feature extraction process produced a fused feature vector of
the geometric and shape features. While for the 11C PiB-PET
scans, the result produced a vector of the extracted blobs.
Later, two diagnosis levels were constructed to present a
local/regional based diagnosis followed by a final global (i.e.,
subject based) diagnosis. In the first level, for each of the 116
AAL atlas based brain regions in each modality individually,
a separate pSVM was utilized to produce a probabilistic
result that reflects the severity of the disease in the region.
Then, the maximum of the obtained probabilistic results for
all the regions from the both modalities were obtained for
each subject and inputted to a standard SVM in the second
level to determine the final global diagnosis of belonging to
the NC or MCI groups.

Two types of experiments were used to validate the
proposed work, the classification analyses, as well as the
regional diagnosis and putative neurocircuits. In the first
type, the performance comparison between the proposed
SVM-based system and state-of-the-art classifiers was per-
formed. Therefore, two validation methods (i.e., leave-one-
subject-out (LOSO) and K-fold cross-validation, with K ∈
{2, 4, 10}) were utilized. In general, for this purpose and
after dividing the dataset into the validation method required
groups (e.g., 10 groups for K = 10), each unique group
of subjects will be used, in a loop manner of the groups’
number, for testing. In contrast, the remaining groups will be
used to train and fit the model on them before evaluating it on
the testing group. Then, before going to the next iteration of
the loop, the evaluation score will be retained, and the model
will be discarded. After ending the loop, the iterations’ scores
will be used to evaluate the model. Note that the utilization
of several different K was in order to check for overfitting
that might occur because of the imbalanced dataset due to
the restriction to subjects with both sMRI and 11C PiB-PET
scans.
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FIGURE 2. Proposed two diagnosis levels (i.e., local followed by global diagnosis) and their relation with the inputted extracted features from the both modalities.

In this paper, the process goes into two main steps. First,
for each modality, the training data will be used to train
each of the brain regions’ separate SVM models that will
be applied then on the testing data. This step is probabilistic
results for each of the 116 regions for the training groups
and testing group from both modalities perspectives. Second,
the maximum of obtained regions’ probabilistic results, from
both modalities, will be used to train the standard SVM
model that will consequently be tested on the testing group’s
maximum probabilistic results regions obtained from both
modalities. The result of this step reflects the final subject-
based result. To evaluate the classification’s performance
according to these methods, three evaluation metrics are
utilized: accuracy, specificity, and sensitivity. On the sec-
ond type, the regional diagnosis, and putative neurocircuits,
the Pearson correlation coefficient was used that presents a
statistical measure of the relationship strength relationship
between the two tested groups.

IV. EXPERIMENTAL RESULTS
A. CLASSIFICATION ANALYSES

Starting with the analysis of the classification results and
before going through the comparison of the proposed work
with the state-of-the-art methods, the classification perfor-
mance, using LOSO, of each of the utilized modalities is
calculated as shown in Table 2. In addition to these results,
the table shows the results obtained after fusing the two

TABLE 2. The classification performance of 11C PiB-PET scans, sMR
images, and their fusion using LOSO validation method.

Accuracy Specificity Sensitivity
11C PiB-PET scans 100 100 100

SMR images 83.95 42.11 96.77

Integration of both modalities 100 100 100

modalities. Please note here that the linear kernel was used
to construct each modality subsystem and accordingly the
integrated system due to its superior performance compared
to other SVM kernels.

Then, as mentioned above, to evaluate the diagnos-
tic performance, the performance of the proposed func-
tional/structural SVM-based CAD system was compared to
state-of-the-art classifiers, namely naïve Bayes (NB), random
forest (RF), deep learning (DL), and decision tree (DT).
The LOSO and K-fold cross-validation methods were used
to perform the comparison task as shown in Table 3. The
architecture of the DL comparison classifier was a multi-
layer feed-forward artificial neural network (ANN), which
was trained with stochastic gradient descent using back-
propagation. It is important to note that when constructing the
applied classifiers, the parameters were optimized to produce
final performance results as follow: (i) for DT, the maximum
depth of a tree was 2; (ii) for RF the optimal number of
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TABLE 3. Comparison of the classification performance between the
proposed linear-SVM and representative state-of-the-art classifiers using
LOSO and K-fold methods.

LOSO K = 2 K = 4 K = 10

NB ACC 93.83 98.78 100 98.75

Spec. 84.21 94.74 100 94.74

Sens. 96.77 100 100 100

DL ACC 93.83 85.21 92.5 91.39

Spec. 73.68 57.89 73.68 73.68

Sens. 100 93.55 98.39 96.77

DT ACC 92.59 100 100 100

Spec. 68.42 100 100 100

Sens. 100 100 100 100

RF ACC 100 96.31 98.75 98.75

Spec. 100 89.47 94.74 94.74

Sens. 100 98.39 100 100

Proposed system ACC 100 97.5 100 100

Spec. 100 100 100 100

Sens. 100 96.77 100 100

trees was found to be 60 while their maximum depth was
4; (iii) for SVM, the kernel gamma was 0.01 and the optimal
complexity constant, the misclassification tolerance, was 10.

B. REGIONAL DIAGNOSIS AND PUTATIVE
NEUROCIRCUITS
The proposed system helps to determine the disease progres-
sion in the brain regions from structural and functional views.
As shown in Fig. 4, the colormap reflects the severity of
the disease in each region separately starting from the white
color that means unaffected region to dark red which is a
fully indicative of MCI in the region and the colors’ range
between these two colors to indicate the probability between
these ranges. According to these informative colors, the two
illustrated examples shows how the disease influence starts to
appear in the 11C PiB-PET scans while it is not yet appears
in the sMRI (i.e., the orange, red and dark red colors in PET
scans vs. white or light yellow colors in MRI). These results
support the findings of Jack et al. [7] that mentioned that
the 11C PiB-PET scans represent an indicator of the early
signs of AD while the affect of the disease can be shown later
in the sMRI. This conclusion can also be seen in Fig. 3. As
shown in Fig. 3, comparison of the number of normal regions
in the sMRI and 11C PiB-PET scans indicates that most of the
regions in the NC subjects in the sMRI scans are normal. In
contrast, more regions for the same subjects in the 11C PiB-
PET scans showed impairment effects. In this case, the 11C
PiB-PET scans of these MCI subjects were more sensitive for
detection of impairment than the corresponding sMRI scans.

The results of the local diagnosis and fusion further vali-
date the proposed approach. Pearson correlations identify 17
significant regions in structural MRI data which have modest

FIGURE 3. Comparison between 11C PiB-PET and sMRI scans where: (a)
compares the number of normal regions (x-axis) in the both modalities with
respect to the NC subjects (y-axis), and (b) compares the number of affected
regions (x-axis) in the two modalities with respect to the MCI subjects (y-axis).

to high negative or positive correlates with 4–7 connected
brain regions only in MCI subjects (Table 4). Similarly, 11C
PiB-PET scans identify 5 regions with moderate to very
strong correlates with 4-8 connected brain regions, again only
in MCI subjects (Table 5). Finally, at the global diagnosis
stage, fusion data reveals 5 regions previously implicated
in MCI and AD with moderate to high positive correlated
with 4–5 connected brain regions (Table 6). As shown in
Fig. 4, the examples illustrate the variable influence of the
disease in particular brains. This approach could be used
to identify the individual neurocircuits in the personalized
diagnosis/treatment of the disease as well as in analysis
studies that seek to uncover the ambiguity that surrounds AD.

V. DISCUSSION
The shape, composition, and function of the brain, including
neocortex, subcortical structures, and cerebellum, as mea-
sured by imaging modalities plays a crucial role in the diag-
nosis of neurodegenerative diseases. Depending on imaging
variability and variable neuropathology during the progres-
sion of AD, a CAD system should be able to detect this vari-
ability and discriminate between NC and MCI groups. Addi-
tionally, a CAD system should be able to identify impaired
neurocircuits in the imaged brain which may need further
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TABLE 4. Significant regions identification in MCI Subjects using Pearson correlations on the sMRI Data.

Brain Region* CBN** Range of Pearson r values Range of p values
Left Amygdala 4 -0.69 to +0.43 0.0004 to 4.67 x 10−10

Right Angular Gyrus 4 -0.52 to +0.41 0.001 to 1.53 x 10−5

Right Caudate 4 -0.48 to +0.68 0.0005 to 1.43 x 10−9

Left Cerebellum 6 Lobule 5 -0.44 to +0.44 0.001 to 2.76 x 10−4

Left Cerebellum Crus 1 Lobule 5 -0.52 to +0.64 0.0005 to 1.89 x 10−8

Right Cerebellum Crus 2 Lobule 5 -0.56 to +0.50 0.0005 to 1.40 x 10−6

Left Mid Cingulum 7 -0.45 to +0.52 0.001 to 1.31 x 10−5

Left Cuneus 5 -0.84 to +0.69 0.001 to infinity (0)
Left Inferior Frontal Triangularis Gyrus 5 -0.55 to +0.41 0.0008 to 2.51 x 10−6

Left Mid Orbital Frontal Gyrus 5 -0.45 to +0.75 0.0002 to 2.21 x 10−12

Right Mid Frontal Gyrus 5 +0.41 to +0.47 0.001 to 1.06 x 10−4

Left Medial Superior Frontal Gyrus 4 -0.44 to +0.67 0.001 to 1.40 x 10−9

Right Superior Frontal Gyrus 7 -0.43 to +0.55 0.0004 to 9.11 x 10−7

Right Hippocampus 4 -0.72 to +0.41 0.0006 to 2.67 x 10−11

Right Lingual Gyrus 5 +0.40 to +0.80 0.001 to 5.77 x 10−15

Right Paracentral Lobule 4 -0.52 to 0.55 0.0002 to 3.89 x 10−6

* Brain region with > 3 potentially connected other areas with a Pearson r value at < or = 0.001.
** CBN: Number of Connected Brain Regions.

TABLE 5. Significant regions identification in MCI Subjects using Pearson correlations on the 11C PiB-PET Data.

Brain Region* CBN** Range of Pearson r values Range of p values
Left Calcarine Gyrus 4 +0.42 to +0.49 0.0006 to 4.96 x 10−5

Right Cerebellum 10 Lobule 4 +0.42 to +0.69 0.0006 to 2.54 x 10−10

Left Cerebellum 10 Lobule 6 +0.46 to +0.62 0.0001 to 5.85 x 10−8

Left Cerebellum 3 Lobule 8 +0.44 to +0.67 0.0003 to 1.93 x 10−9

Right Olfactory Gyrus 6 +0.53 to +0.98 1.13 x 10−5 to Infinity(0)
* Brain region with > 3 potentially connected other areas with a Pearson r value at < or = 0.001.
** CBN: Number of Connected Brain Regions.

TABLE 6. Significant regions identification in MCI Subjects using Pearson correlations on the fusion of 11C PiB-PET and sMRI Data.

Brain Region* CBN** Range of Pearson r values Range of p values
Left Calcarine Gyrus 5 +0.42 to +0.48 0.0007 to 6.90 x 10−5

Left Caudate 5 +0.41 to +0.54 0.0009 to 5.60 x 10−6

Left Cerebellum 3 Lobule 4 +0.44 to +0.65 0.0003 to 1.12 x 10−8

Right Medial Superior Frontal Gyrus 4 +0.42 to +0.55 0.0007 to 3.36 x 10−6

Right Parahippocampal Gyrus 4 +0.45 to +0.70 0.0002 to 1.64 x 10−10

* Brain region with > 3 potentially connected other areas with a Pearson r value at < or = 0.001.
** CBN: Number of Connected Brain Regions.

treatment even if those circuits are just mildly affected.
Starting with each of the utilized modalities subsystems

results, Table 2 highlights the superior performance of 11C
PiB-PET scans in addressing the early signs of disease as
mentioned in Jack et al. [7]. Further, the results illustrate the
utility of sMRI, as validated with related work that achieved
an accuracy of 85% [51] or 70.19% [52]. Although the per-
formance results of the 11C PiB-PET scan and the integration
of both modalities were similar, the proposed system is still
able to present the diagnosis of the disease from both struc-
tural and functional perspectives. This capability represents
the main contribution of the proposed CAD system.

Then, a comparison of the proposed functional/structural
SVM-based CAD system was performed where the compari-
son results are presented in Table 3. As shown in the table, the
LOSO and K-fold, with K = 2, 4, and 10, validation methods
were utilized. Besides using these validation methods for the
comparison purpose, these methods helped in assuring that

there is no overfitting in the obtained results. According to
the table results, the presented functional/structural SVM-
based CAD system yields better results than the compared
classifiers. These results can be explained through the power
of the features to provide a linear separation between the
NC and MCI groups. This allowed the proposed linear-
SVM CAD system to succeed in providing the discrimination
power between the studied groups. Accordingly, the pro-
posed system showed superior results than the DL that faces
under-performance due to the small size of the dataset. Due to
the same dataset size, the DT was prone to overfitting since it
is considered as a high bias classifier. This fact regarding DT
can consequently explain the RF results that could overcome
the overfitting problem through constructing a multitude of
DTs [53]. Finally, the NB could provide high performance
results since it shows good performance with small datasets
and it is less influenced by overfitting.

Regarding the prior work, to the best of our knowledge, the
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FIGURE 4. Visualization examples of the local/regional diagnosis for an NC subject and an MCI with two rendering volumes for each subject, one for the functional
view (through the 11C PiB-PET scan) and the other for the structural view (through the sMRI scan). The severity of the disease is represented via the colormap
where these colors are reflected in each of the 116 region of the subjects’ volumes to indicate the severity of the disease in every region from each of the utilized
modalities’ point of view.

presented CAD system described here is the first to present
the local/regional diagnosis of AD from different perspec-
tives. Additionally, to the best of our knowledge, it’s the
first to combine 11C PiB-PET with sMRI scans to meet the
contributed goal. Previous studies have utilized other PET-
based data in their combined system but not 11C PiB-PET.
Kohannim et al. [54] achieved an accuracy of 75.76% when
combining sMRI data, FDG-PET, CSF biomarker, ApoE
genotype, as well as age. Zhang et al. [55] combined sMRI,
FDG-PET, and CSF biomarkers to achieve an accuracy of
76.4%. Yu et al. [56] also combined sMRI, FDG-PET, and
CSF biomarkers to evaluate the same classification problem
and achieved an accuracy of 80%.

The proposed system with the fusion data helps to de-
termine the diagnosis specific (MCI) brain regions from
structural and functional views which fit into the early in-
volved neurocircuits in MCI/AD. Further the localized diag-
noses validates our approach. These brain regions, including
the calcarine gyrus (visuospatial skills), left caudate (learn-
ing, memory, motor, language), cerebellum (language, mo-
tor), superior frontal gyrus (cognition, executive function),
and parahippocampal gyrus (learning, memory, visuospatial,
adaptive) have at least modest correlates with connectivity
(Tables 4–6) and behaviors affected in MCI subjects. Further
the sMRI correlates suggest a widespread early involve-
ment from a structural standpoint and linked to deficits in
language, emotions, learning/memory, visual spatial skills,
executive function, and adaptive behaviors (Table 4). Besides
traditional MCI/AD regions, neuropathological findings of
Aβ plaques and neurofibrillary tangles in the cerebellum
explains the high retention of 11C PiB-PET in these re-
gions during the early stages of AD/MCI [57]. Clinically,

olfactory dysfunction is considered one of the earliest signs
of AD [58]. Finally the cingulum is considered one of the
earliest imaging abnormality in AD and thus could be an
early neurocircuit involved in MCI [59]. Though at an early
stage of development, clinicians could use a CAD system to
identify early diagnosis of involved MCI neurocircuits and
thus consider early personalized treatments, facilitate clinical
trials among similar affected subjects, and thereby provide a
better infrastructure to discover curative treatments among
subgroups of AD/MCI patients.

VI. CONCLUSION
Diagnosing AD at its early stage is a difficult task due to
number of reasons, including the variable manifestation of
the disease among particular subjects. The proposed study
presents a personalized functional/structural based CAD sys-
tem to help in the early diagnosis of AD, using data from two
modalities: 11C PiB-PET, to present a functional diagnosis
view, and sMRI, to present a structural perspective. Through
a number of analysis steps, the proposed system produced
two diagnosis levels. The first level was on the brain regions
basis, local/regional diagnosis, to present disease severity in
each region from each modality’s perspective. Then, integrat-
ing the maximum regional results from the two modalities,
the second diagnosis level is presented, global diagnosis, that
determines whether the subject belongs to the NC or MCI
group.

Evaluating the proposed system showed promising results
in this pilot study and establishes a proof-of-concept for the
proposed framework to address the classification problem
of NC vs. MCI. Future work will include evaluating the
system on other AD related classification problems (e.g.,
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sMCI vs. pMCI, and NC vs. AD groups), as well as validation
with a bigger dataset, which could help refine the early
neurocircuits involved in MCI subjects. Additionally, other
modalities could be evaluated to complement the ones chosen
for this study, thereby refining the accuracy, sensitivity, and
specificity of localized diagnosis.
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