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Abstract

Forecasts of temperature in a “smart” building, i.e. one that is outfitted with sensors, are computed from data gathered by these
sensors. Model predictive controllers can use accurate temperature forecasts to save energy by optimally using Heating, Ventilation
and Air Conditioners while achieving comfort. We report on experiments from such a house, in which we select different sets of
sensors, build a temperature model from each set, and then compare the accuracy of these models. While a primary goal of this
research area is to reduce costs by reducing energy consumption, in this paper, besides the cost of energy, we consider the cost of
data collection and management. Each sensor employed in the forecast calculation incurs costs for installation and maintenance
and an incremental cost for computation. Some sensors, however, may contribute little or no improvement to the forecast accuracy.
We incrementally construct sets of sensors until we arrive at a set for which no superset produces a better forecast. Then we
construct a successive series of subsets, such that forecast accuracy degrades slowly. As each sensor is removed, on the one hand,
the forecast error increases, so the energy costs may increase for a given controller. On the other hand, the costs for installing
sensors and for computing models are reduced. By considering this tradeoff over the the series of sets, an optimal set of sensors
can be found to be used with that controller.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Home Sensor Network, Temperature Forecasting, Internet of Things, Feature Selection, Energy Efficiency, Model Predictive Control

1. Introduction

According to recent studies, about 40% of energy produced worldwide is consumed by buildings, and more than
half of this is used by Heating, Ventilation and Air Conditioning (HVAC) systems1,2. Pan et al.3 point out that, due to
thermal inertia, it is more efficient to maintain temperature in a room or building than to raise or lower the temperature.
Accurate temperature forecasts can help reduce energy usage in buildings by using future values of temperature when
deciding whether or not to activate the HVAC4. Moreno et al.5 achieve estimated energy savings of 20% in a realistic
situation based on the presence of persons in a room. Yuan et al.6 achieve 20% savings while exploiting thermal
inertia when assigning rooms for meetings by scheduling contiguous meetings in the same room.
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Model Predictive Controllers (MPC), which produce a control signal for HVAC systems, minimize a cost function
based on energy consumption. The cost function takes into account a prediction horizon and a control horizon7. The
prediction horizon used in practice depends on how much data is needed by the HVAC controller to achieve acceptable
comfort while reducing energy consumption.

While the costs savings may be significant, the overhead and operational costs associated with MPC may discour-
age adoption. These costs include the installation and maintenance of the sensing devices, a wireless sensor network,
and the computational cost of modelling temperature as a function of the data generated by the sensors. To encourage
wider adoption of MPC, in this paper we seek to reduce these associated costs. Specifically, we identify sensor data
with little influence on forecast accuracy.

In the remainder of the paper we review the sensor data related to temperature forecasting reported for the house
we study, we discuss the nature of the search, provide a best-first search procedure to select sensors, and compare the
outcomes as we varying the history horizon, forecast horizon and the error metric. We report on related work from
this data, and conclude with recommendations for using our results in both new and existing installations.

2. Background

2.1. Data from a Smart Home

The SML House4 competed in the Solar Decathalon 2012 competition8, using 88 sensors and 49 actuators. In this
paper and in our previous work9,10, we use a publicly available subset of this data11, reporting values during March
and April 2012 from 18 sensors every quarter-hour.

The sensors reported are as follows:
1. Wi – wind speed
2. Tw – twilight indictator
3. TP – predicted temperature
4. TL – living room temperature
5. TD – dining room temperature
6. T – external temperature
7. SW – sun on the west wall
8. SS – sun on the south wall
9. SE – sun on the east wall

10. Pcp – precipitation
11. P – sun irradiance measured by a pyranometer
12. LL – lights in the living room
13. LD – lights in the dining room
14. HL – humidity in the living room
15. HD – humidity in the dining room
16. H – external humidity
17. CL – carbon dioxide sensor in the living room
18. CD – carbon dioxide sensor in the dining room

2.2. Linear and Lasso Regression

Our forecasting methods are based on linear regression defined as follows. Given a set of independent variables
x1, ..., xn and a dependent variable y of interest that we want to forecast, we seek parameters β0, ..., βn so that β0 +

Σn
i=1 βi xi is a good approximation of y. When presented with a set of m instances of each xi, called xi, j and the

corresponding instances y j, we select the βi parameters to minimize the residual sum of squares (RSS):

Σm
j=1(β0 + Σ

n
i=1 βi xi, j − y j)2
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Lasso regression12 minimizes RSS + λ Σm
j=1| β j| where λ is a tuning parameter that balances the emphasis between

reducing error and using small β coefficients, Some β may reduce to zero, which deselects that variable x, thus
endowing lasso regression with feature selection. For lasso regression, we use the R library glmnet13,14,15.

2.3. Feature Selection

It may occur that too many independent variables, or features, confounds a forecast model. Irrelevant details
overwhelm the modelling technique, which prevents it from computing an accurate forecast. Feature selection, the
process of selecting specific features from which to build a model, is roughly divided into wrapper techniques, filter
methods, and embedded methods. Wrapper techniques enumerate various combinations of features, and measure the
accuracy of the resulting models, selecting that combination that exhibits the best error. Filter techniques measure the
usefulness of features using computationally fast metrics. Embedded techniques identify useful features during the
modelling process as a by-product. Lasso regression is an example.

In this paper we focus on wrapper technques that are guided by best-first provided by the R library FSelector16

and embedded techniques, using lasso regression.

3. Models Using Lagged Sensor Readings

When creating a model from which to forecast temperatures, we provide multiple historical readings from each
sensor. Given a history of b time periods, where readings are taken every quarter-hour, we provide b + 1 lagged
readings from each of s sensors, which includes the current period at lag 0. Let xk,t be the tth observation for sensor k
counting from the first observation at time t = 1, as it appears in the training data. Let yt be the internal temperature
the house at time t. We are given observations over the m time periods in the training data. We create a linear a model
for each future period f . We define the RSS as

RSS( f ) = Σm
t=b+1(β f ,0 + Σ

b
g=0 Σ

s
k=1 β f ,k,gxk,t−g − y f+t)2

In this equation, t starts at b+1 because there are no observations for the lagged readings for the first b data points.
Using lasso regression, we choose values for the coefficients β f = {β f ,0} ∪ {β f ,k,g | g = 0, . . . , b, k = 1, . . . , s} where g
identifies the lag and k identifies the sensor. The coefficients in β f specify a model for each future interval f . We use
two different forecast horizons; h is either 12 or 48 future time periods, i.e. 3 or 12 hours.

The coefficients are computed on the training data which is the first 2/3 of the data. Once they are computed, we
switch over to using test data, which is the final 1/3 of the data. Thus x and y below refer to observations in the test
data and m to the number of observations in the test data. We report the RMSE for each future interval f . In our
experiments f = 1, . . . , 12 for forecasts three hours into the future, and f = 1, . . . , 48 for forecasts to 12 hours.

RMSE( f ) =
√

1/(m − b)Σm
t=b+1(β f ,0 + Σ

b
g=0 Σ

s
k=1 β f ,k,gxk,t−g − y f+t)2

We report error metrics on all forecasts f over the forecast horizon h, including Mean RMSE = 1/hΣh
f=1RMSE( f )

and Maximal RMSE = maxf RMSE( f ).

4. Useful and Confounding Sensors

In our experiments we consider various sets of sensors and, from each, we measure the error from a forecast model
based on the data from those sensors. To measure error, with the exception of the selected set of sensors, we hold all
other factors fixed, including the training and test data, the size h of the forecast horizon and the number b of back
observations. Thus the error from the model is a function only of the set of sensors.

It will often occur that one sensor in a set of sensors is useful in that it provides predictive power. Let S be a set
of sensors and let a and b be individual sensors. We say a is useful in S when the error from S \ {a} is greater than
the error from S . If a is useful in S then a ∈ S . It may also occur that two sensors each provide that same predictive
power, for instance when they report similar information. In this case we can use either one. More precisely, we say
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a and b are interchangeable in S when a and b are useful in S and the error from S \ {a} is the same as the error from
S \ {b}.

The definitions in this paper are relative to some tolerance, below which forecast error is insignificant. We do
not define this tolerance here, but note that it will be determined by the model predictive controller as follows: If
an increase in the forecast error does not affect the controller’s ability to save energy, then that increase is below the
tolerance. In this paper we speak informally and understand an error to be greater than another when the difference
exceeds this tolerance, and likewise say that two errors are the same when their difference falls below this tolerance.
In these experiments, since we are not measuring the performance of a controller, we take the tolerance to be 0.

Note that useful and interchangeable are defined with respect to a set of sensors. We may find that while a is useful
in S \ {b}, a is not useful in S ∪ {b}. For instance this will happen when a and b are interchangeable in S .

We may also observe that including a sensor in a model gives rise to a higher error. This can happen when the
sensor leads us “down the garden path”, for instance, when it appears to be correlated to the observed temperature in
the training data, but oppositely correlated in the test data. We say that a confounds S when the error from S \ {a} is
lower than the error from S ∪ {a}.

We may also observe sensors that together increase accuracy but individually do not. This can happen when the
model uses an interaction between the sensors. Suppose the laundry is always done on Saturday and no other day, and
starts when someone enters the laundry room on Saturday. Suppose one of the sensors reports the day of the week
and another reports motion in the laundry room. Then the modeller may recognize a heating event – for the room
heats up when the laundry is done – occurs when both sensors are activated. In this case, if the modeller associated
a heating event just based on motion in the laundry room, regardless of the day of the week, it would be misled on
the non-Saturdays, and the model’s error would increase. Likewise it would be misled by associating a heating event
with Saturday for those weeks where no laundry was done. Thus the laundry room motion sensor and the day of week
sensor each individually confounds the model. However, together they improve the model. We say that two sensors a
and b are co-dependent in S if individually each of a and b confound S \ {a, b}, but the error of S ∪ {a, b} is smaller
than the error of S \ {a, b}.

We seek a set S ∗ of sensors that has minimal error among the power set of sensors. This implies all sensors in
S ∗ are useful, and that all sensors not in S ∗ confound S ∗. We say that a set of sensors gracefully degrades if we can
remove one sensor at a time in some ordering, such that the error always increases. To guide the cost-benefit analysis,
our goal is to create a gracefully degrading set of sensors. Given the tolerance for some controller, we advocate finding
S ∗ and then removing any sensors while the reduction in error is below this tolerance.

5. Ordering Sensors by Influence

Our goal is to identify sensors that should be included in the model. Because we use lagged data in our model,
each sensor provides many predictors in the regression, one for each quarter-hour of historical observations. For a
given sensor, we may consider whether to include all of the predictors arising from this sensor, some of them, or none
of them. This leads to a large search space. For instance, given one hour of lagged observations (plus the current
observation) for each of 18 sensors, gives 5×18 = 90 predictors in the model. This gives rise to 290 sets of predictors,
which is clearly infeasible to search entirely. We also want to consider two hours hours of readings per sensor, but to
avoid searching a space of 2162 sets of sensors, which would take us almost 1042 years to search if we could consider
one set each second.

We rely on lasso regression, which selects features among the predictors in the regression. Since lasso feature
selection is in place, we need only consider sensor selection so the search space is reduced from 290 to 218, and is
independent of the number of lagged readings per sensor. A complete search would take about 3 days if we could
consider one set per second. We simplify it further by employing best-first search, which is a variant of bottom-up
search that limits non-deterministic choices and is guided by a heuristic. Our heuristic prefers lower forecast error.

Algorithm 1 Best-first search: Initially the empty set of sensors is made available. The model for this set simply
predicts the mean temperature. The search proceeds by non-deterministically selecting one of the available sets S
with relatively low error. Non-deterministically, a new sensor a is selected. If a is useful in S ∪ {a}, then S ∪ {a} is
made available for future consideration. The non-deterministic choices considered at each of these two choice points
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are guided by the heuristic, and limited by FSelector to about five choices. After all such selections are made, the
search concludes. Among the sets that were considered, the set with minimal error, S ′, is taken as an estimate of S ∗.

Because the heuristic guides the search toward the most promising parts of the search space, good estimates of S ∗

are expected. S ′ is confounded by all sensors not in S ′, so it is a local minimimum. However, the non-determinism is
controlled, so the search space is not entirely explored, and S ′ is not guaranteed to be a global minimum.

Given the sets that were considered by best-first search, we use a second algorithm to generate a sequence of these
sets with gradually increasing error.

Algorithm 2 Construct the sensor sequence: Let S 1 = S ′, which is the set with lowest error. Let i = 1 and define
S i+1 as the set with lowest error that is both a subset of S i and a considered set. Proceed to increment i and compute
the next set S until S i is empty. Report the sequence of S ’s and the sequence of set differences between them. In most
cases the set differences will be individual sensors.

In the next section we consider the effectiveness of this best-first search using the data of the SML house. There is
no guarantee that Algorithm 1 will deliver the overall best set S ∗, there is no guarantee that Algorithm 2 will generate
the best sequence. However, Algorithm 2 delivers sequences that degrades gracefully, and therefore can be used to
guide the cost-benefit analysis.

6. Experimental Results

We ran experiments using four readings per sensor, shown in Table 1, and again using eight readings per sensor,
in Table 2. In each we varied the forecasting horizon to three and twelve hours into the future. We measured both
maximal and mean RMSE over the forecast horizon.

Consider the example from Table 1(a), where we used four historical observations per sensor, generated three-hour
forecasts, and measured maximal RMSE. Starting from the empty set, the search in Algorithm 1 consider sets up to
about 10 sensors. Overall it considered 135 sets of sensors, which is a sharp reduction from the possible 218 = 262, 144
sets. The minimal error occurs with nine sensors: Wi, Tw, TL, TD, T, SW, SE, CL, and CD, so this is our estimate of
S ∗. The other nine sensors: TP, SS. Pcp, P, LL, LD, HL, HD, and H, confounded this modeller. Using Algorithm 2,
we progressively remove sensors from the set to increase the error gradually. The error increases only by 0.0021 ◦C if
we ignore CL, the carbon dioxide sensor in the living room. Another small increase, 0.0028◦ C, occurs if we ignore
the carbon dioxide sensor in the dining room.

We observe some trends in the results. All of our tabular results degrade gracefully. The errors in Table 2 are
slightly smaller than those in Table 1. The better accuracy in Table 2 arises from the four additional historical values
from each sensor. Longer forecast horizons lead to larger errors. Forecasts twelve hours into the future gives rise to
errors about 4× to 5× larger than forecasts for the next three hours. The selected best sets of sensors is smaller when
considering forecasts for the longer period, which suggests some factors have influence over the temperature for a
brief period. Maximal RMSE is larger than mean RMSE, but within a factor of about two. The choice of error metric
sometimes led to larger sets S ∗ of sensors and sometimes smaller.

No best model made use of H, HD, HL or LL, which are, respectively, the humidity externally, in the dining room
and in the living room, and the lighting in the living room. Based on this analysis, we would not recommend installing
these sensors in this house for the purpose of forecasting temperature.

7. Related Work

The SML team reports17 accuracy when forecasting temperature differences over future quarter-hour intervals, us-
ing data from two of their 88 sensors: internal temperature and sun irradiance, as well as a time categorical variable.
Using these sensors, forecasts for each quarter-hour over three hours were generated using a combination of forecast
models based on ANNs. They used this selection of sensors in future work4, which also forecasts temperature differ-
ences with a forecast horizon of 48 hours. They modeled temperature differences, while we modeled temperatures, so
accuracy measures are not comparable.

While no research yet has been done to determine whether the same sensors will help with temperature forecasts
and temperature difference forecasts, one might the same sensors to be useful for both. Therefore it is interesting
to see if the same sensors helped in both cases. The SML team explored subsets of sensors, from among this set:
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Table 1: Sensors selected by Best-First Search computing 3 hour and 12 hour forecasts, using Mean and Maximal RMSE, and based on 4 historical
readings per sensor.

(a) Best-First Search for the next 3 hours

Maximal
RMSE

Sensors Remove
Next

0.4589 Wi+Tw+TL+TD+T+SW+SE+CL+CD CL
0.461 Wi+Tw+TL+TD+T+SW+SE+CD CD
0.4638 Wi+Tw+TL+TD+T+SW+SE Wi
0.4662 Tw+TL+TD+T+SW+SE TD
0.4951 Tw+TL+T+SW+SE Tw
0.5219 TL+T+SW+SE SW
0.5403 TL+T+SE T
0.5886 TL+SE SE
0.68 TL

(b) Best-First Search for the next 12 hours

Maximal
RMSE

Sensors Remove
Next

1.8598 Tw+TP+T+SW+LD TP
1.9032 Tw+T+SW+LD SW
1.975 Tw+T+LD Tw
2.1399 T+LD LD
2.3384 T

(c) Best-First Search for the next 3 hours

Mean
RMSE

Sensors Remove
Next

0.2404 Tw+TP+TL+TD+T+SW+SE+CL+CD CL
0.2429 Tw+TP+TL+TD+T+SW+SE+CD CD
0.2434 Tw+TP+TL+TD+T+SW+SE Tw
0.2488 TP+TL+TD+T+SW+SE T
0.2672 TP+TL+TD+SW+SE SW
0.2827 TP+TL+TD+SE TD
0.284 TP+TL+SE TP
0.299 TL+SE SE
0.3407 TL

(d) Best-First Search for the next 12 hours

Mean
RMSE

Sensors Remove
Next

1.1539 Tw+TP+TL+T+SW+LD+CL TP
1.1566 Tw+TL+T+SW+LD+CL CL
1.1598 Tw+TL+T+SW+LD SW
1.1876 Tw+TL+T+LD LD
1.2552 Tw+TL+T T
1.3545 Tw+TL Tw
1.4215 TL

internal temperature (TD and TL), irradiance (P), internal humidity (HD and HL), and precipitation (PCP). Based on
their results, a selection of three sensors gave the lowest errors: internal temperature, solar irradiance, and a time-
categorical variable. Our results show some agreement: temperature was the most important, and humidity was not
of any help. We found that PCP was of minor help. Unlike their result, we found that the pyranometer was not of any
help. They seem not to have considered sensors that we found were helpful, including the sun on each wall, the CO2
in the living and dining room, and twilight.

We found variability in the selections for different history and forecast lengths, and for different error metrics. We
found that more sensors were helpful for short term forecasts, than for long term. Since the selections differed for
forecasts of temperature over various horizons, perhaps the selections should also differ for forecasts of temperature
differences over various horizons.

Feature extraction shares some similarities with feature selection. Feature extraction is the process of defining new
features from existing ones, by selecting those features with good predictive accuracy, and repackaging them into
linear combinations that are considered new features. Partial least squares and principal component analysis are two
feature extraction techniques18,19.

We used the same SML data for partial least squares and principle components10. Using four historinal readings
per sensor, we found the RMSE forecast error for both methods to be about 0.7 for three-hour forecasts whereas the
comparable mean RMSE values in this paper range from 0.24 to 0.34. Likewise for twelve-hour forecasts, the RMSE
for the feature extraction methods was about 1.7 for twelve-hour forecasts, and ranged from 1.15 to 1.42 in this paper.
The results were similar for eight historical readings per sensor. Thus, lasso regression and best-first search exhibit
better forecast accuracy than these feature extraction methods for temperature forecasting.
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Table 2: Sensors selected by Best-First Search computing 3 hour and 12 hour forecasts, using Mean and Maximal RMSE, and based on 8 historical
readings per sensor.

(a) Best-First Search for the next 3 hours

Maximal
RMSE

Sensors Remove
Next

0.4559 Wi+Tw+TP+TL+TD+T+SW+SS+SE+Pcp+P+LD+CD Pcp
0.4572 Wi+Tw+TP+TL+TD+T+SW+SS+SE+P+LD+CD TP
0.4592 Wi+Tw+TL+TD+T+SW+SS+SE+P+LD+CD CD
0.4643 Wi+Tw+TL+TD+T+SW+SS+SE+P+LD P
0.4752 Wi+Tw+TL+TD+T+SW+SS+SE+LD SW
0.4788 Wi+Tw+TL+TD+T+SS+SE+LD Wi
0.4864 Tw+TL+TD+T+SS+SE+LD SE
0.5076 Tw+TL+TD+T+SS+LD SS
0.5326 Tw+TL+TD+T+LD TD
0.545 Tw+TL+T+LD LD
0.5731 Tw+TL+T T
0.6207 Tw+TL Tw
0.6681 TL

(b) Best-First Search for the next 12 hours

Maximal
RMSE

Sensors Remove
Next

1.8348 Tw+TL+TD+SW+CL CL
1.8465 Tw+TL+TD+SW TL
1.8637 Tw+TD+SW SW
1.9678 Tw+TD Tw
2.2423 TD

(c) Best-First Search for the next 3 hours

Mean
RMSE

Sensors Remove
Next

0.2499 Tw+TP+TL+TD+T+SW+SE+Pcp+CL+CD CD
0.2509 Tw+TP+TL+TD+T+SW+SE+Pcp+CL CL
0.2517 Tw+TP+TL+TD+T+SW+SE+Pcp Pcp
0.254 Tw+TP+TL+TD+T+SW+SE SE
0.2738 Tw+TP+TL+TD+T+SW T
0.2867 Tw+TP+TL+TD+SW Tw
0.3027 TP+TL+TD+SW SW
0.3142 TP+TL+TD TD
0.322 TP+TL TP
0.3486 TL

(d) Best-First Search for the next 12 hours

Mean
RMSE

Sensors Remove
Next

1.1303 Tw+TL+TD+SW+CL+CD CD
1.1367 Tw+TL+TD+SW+CL CL
1.1477 Tw+TL+TD+SW TD
1.169 Tw+TL+SW SW
1.2395 Tw+TL Tw
1.3838 TL

8. Conclusion

A model predictive controller can achieve significant savings by using an accurate temperature forecast when
determining whether or not to engage HVAC systems. Temperature forecasts are informed by sensor data. We propose
a cost-benefit analysis that balances the cost arising from installation, operating and computation against the benefit
of saving energy. A sensor’s cost exceeds its benefit if it does not improve forecast accuracy by an amount sufficient
to be useful to the controller.

The method we describe generates accurate temperature forecasts using lasso regression. It uses a best-first search
technique to incrementally consider larger sets of sensors until no additional sensor improves the forecast accuracy. It
then reduces this set by removing sensors incrementally and reporting the resulting sequence of forecast errors. If we
assume that energy savings increase with forecast accuracy, this sequence of sets of sensors should help finding the
optimal set of sensors.

Our system computes a gracefully degrading set of sensors for different situations, depending on the length of the
forecast horizon, the number of historical observations, and whether the controller performs better with a lower mean
error or a lower maximal error. Our findings indicate that the selection of sensors will be affected by these factors. In
a new installation, we propose to temporarily install a large set of sensors, and to collect readings from these sensors
over several weeks. Then it should be possible to determine which sensors to permanently install. Alternately, in
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an existing installation, the maintenance and computation costs may be reduced by removing sensors that are not
providing benefit. The same ordering can guide this selection.

Our experiments show accuracy increases as more data is available for forecasting. Shorter term forecasts are more
accurate than longer term forecasts, and derive benefit from more sensors than longer term forecasts.

While we have used lasso regression over lagged data as the underlying modelling technology, our technique based
on best-first search can be applied to any underlying modelling technology.
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