Spread of imipenem-resistant Acinetobacter baumannii co-expressing OXA-23 and GES-11 carbapenemases in Lebanon

D. Hammoudi
Saint Joseph University

C. Ayoub Moubareck
Saint Joseph University

N. Hakime
Saint George Hospital University Medical Center

M. Houmani
Labib Medical Center

A. Barakat
Bellevue Medical Center

See next page for additional authors

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons

Recommended Citation
https://zuscholars.zu.ac.ae/works/3183

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All Works by an authorized administrator of ZU Scholars. For more information, please contact Yrjo.Lappalainen@zu.ac.ae, nikesh.narayanan@zu.ac.ae.
Author First name, Last name, Institution

This article is available at ZU Scholars: https://zuscholars.zu.ac.ae/works/3183
Spread of imipenem-resistant *Acinetobacter baumannii* co-expressing OXA-23 and GES-11 carbapenemases in Lebanon

D. Hammoudi a,b,c,*, C. Ayoub Moubareck a,b, N. Hakime e, M. Houmani f, A. Barakat g, Z. Najjar h, M. Suleiman i, N. Fayad j, R. Sarraf k, D. Karam Sarkis a,b

Microbiology Laboratory, School of Pharmacy, Saint-Joseph University, Campus of Medical Sciences, Damascus Road, PO Box 11-5076 Riad El Solh, Beirut 1107-2180, Lebanon

1 Rodolphe Mériaux Laboratory, Beirut, Lebanon

Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa, Lebanon

Department of Natural Science and Public Health, College of Sustainability Sciences and Humanities, Zayed University, Dubai, United Arab Emirates

Saint George Hospital and University of Balamand, Beirut, Lebanon

Labib Medical Center, Saida, South Lebanon

Bellevue Medical Center, Beirut, Lebanon

Chouara Hospital, Beirut, Lebanon

Farhat Hospital, Bekaa, Lebanon

Secours Populaire Libanais Hospital, Nabatieh, South Lebanon

Mount Lebanon Hospital, Tripoli, North Lebanon

ARTICLE INFO

Article history:
Received 29 January 2015
Received in revised form 15 May 2015
Accepted 18 May 2015

Corresponding Editor: Eskild Petersen, Aarhus, Denmark

Keywords:
Imipenem-resistant *Acinetobacter baumannii*

OXA-23

GES-11

ERIC-PCR

SUMMARY

Objectives: The acquisition of carbapenemases by *Acinetobacter baumannii* is reported increasingly worldwide, but data from Lebanon are limited. The aims of this study were to evaluate the prevalence of imipenem-resistant *A. baumannii* in Lebanon, identify resistance determinants, and detect clonal relatedness.

Methods: Imipenem-resistant *A. baumannii* were collected from nine Lebanese hospitals during 2012. Antimicrobial susceptibility, the cloxacinil effect, and ethylenediaminetetraacetic acid (EDTA) synergy were determined. Genes encoding carbapenemases and insertion sequence ISAba1 were screened via PCR sequencing. ISAba1 position relative to genes encoding Acinetobacter-derived cephalosporinases (ADCs) and OXA-23 was studied by PCR mapping. Clonal linkage was examined by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR).

Results: Out of 724 *A. baumannii* isolated in 2012, 638 (88%) were imipenem-resistant. Of these, 142 were analyzed. Clavulanic acid–imipenem synergy suggested carbapenem-hydrolyzing extended-spectrum β-lactamase. A positive cloxacinil test indicated ADCs, while EDTA detection strips were negative. Genotyping indicated that 90% of isolates co-harbored blaOXA-23 and blaGES-11. The remaining strains had blaOXA-23, blaOXA-24, blaGES-11, or blaOXA-24 with blaGES-11. ISAba1 was located upstream of blaADC and blaOXA-23 in 97% and 100% of isolates, respectively. ERIC-PCR fingerprinting revealed 18 pulsotypes spread via horizontal gene transfer and clonal dissemination.

Conclusion: This survey established baseline evidence of OXA-23 and GES-11-producing *A. baumannii* in Lebanon, indicating the need for further surveillance.

© 2015 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Acinetobacter baumannii is a Gram-negative, non-fermenting opportunistic pathogen that is frequently associated with nosocomial epidemics in intensive care and burn therapy units, where it causes septicemia, pneumonia, and urinary tract infections with high mortality. The treatment of infections due to *A. baumannii* is a challenge because of resistance to the antimicrobial agents of last resort, β-lactams. Resistance to this class of antibiotics in *A. baumannii* results mainly from the production of β-lactamases, and also from other non-enzymatic pathways, like changes in outer membrane proteins or over-expression of efflux pumps.

* Corresponding author. Tel.: +961 1 614006; fax: +961 1 421022.
E-mail address: dalal.hammoudi@net.usj.edu.lb (D. Hammoudi).
and D Ambler classes of β-lactamase have been described in A. baumannii: (1) class A extended-spectrum β-lactamases (ESBLs), (2) class B metallo-β-lactamases, (3) class C Acinetobacter-derived cephalosporinases (ADCs), and (4) carbapenem-hydrolyzing class D β-lactamases (CHDLs).

Resistance to extended-spectrum cephalosporins is primarily attributed to the over-production of chromosomal ADCs or, less frequently, to the acquisition of an ESBL (PER, VEB, GES).²⁻⁶ Resistance to carbapenems is mainly due to transferable class D oxacillinases of subfamilies OXA-23, OXA-24/33/40, OXA-58, and OXA-143, or to over-production of the intrinsic OXA-51-like enzymes.⁷ Some carbapenem-resistant A. baumannii expressing class B enzymes (IMP, VIM, SIM, SPM, GIM, and NDM) and, more recently, acquired GES and KPC carbapenemases of class A have been reported.⁸⁻¹⁵ Among the GES carbapenemases, GES-11 was the first described conferring reduced susceptibility to carbapenems and initially detected in A. baumannii.⁶ The presence of insertion sequence ISAbA1 upstream from bla₉₀X₅₈, bla₉₀X₅₈, and blaADC provides an efficient promoter for the expression of these genes, leading to higher β-lactam hydrolysis rates.¹¹⁻¹⁴

While carbapenem resistance due to the production of CHDLs is the most widespread in A. baumannii, Ambler class B enzymes have been associated with carbapenem resistance in A. baumannii in several countries, including Italy, Portugal, Japan, and Brazil.¹²⁻¹⁵ In addition, A. baumannii acquiring GES carbapenemases has been described in France,⁸ Belgium,¹⁶ and Turkey.⁴ In Lebanon, in 2008, Zarrilli et al. reported a plasmid-borne bla₀X₅₈ gene in A. baumannii strains selected in a Lebanese hospital.¹⁷ Later, in 2012, NDM-1-harboring A. baumannii strains were isolated in another Lebanese hospital from Syrian patients injured during the civil war.¹⁸ However, no countrywide epidemiological survey has addressed the prevalence of carbapenem-resistant A. baumannii in Lebanon until now.

The aims of the current study were to evaluate the occurrence of carbapenem-resistant A. baumannii in nine Lebanese medical centers, and to describe the types of β-lactamases involved in such resistance, as well as to investigate clonal relatedness of incriminated strains.

2. Materials and methods

2.1. Bacterial strains

From January 1 to December 31, 2012, imipenem-resistant isolates of A. baumannii were collected from nine Lebanese hospitals located in diverse geographic areas: Beirut (Hotel Dieu de France, Saint-George Hospital), Mount Lebanon (Bellevue Medical Center), North Lebanon (Moula Hospital), South Lebanon (Secours Populaire Libanais Hospital, Labib Medical Center), and Bekaa (Bekaa Hospital, Farhat Hospital, Chtaura Hospital). Selection criteria for strains were based upon the recommendations of the Clinical and Laboratory and Standards Institute (CLSI);¹³ strains with an inhibition zone diameter of imipenem ≤13 mm were included and these were delivered to the central microbiology laboratory at the Faculty of Pharmacy, Saint-Joseph University, Beirut. The isolates were re-identified using the API 20 NE system (BioMérieux, Marcy l’Etoile, France) and confirmed using PCR to detect the intrinsic bla₉₀X₅₈-like gene.²⁰

2.2. In vitro susceptibility testing

Antimicrobial susceptibility testing was performed by disk diffusion on Mueller–Hinton agar using amoxicillin/clavulanic acid (AUG), ceftazidime (CAZ), cefotaxime (CTX), cefepime (CPM), and imipenem (IMI) disks (Mast Diagnostics, Merseyside, UK), in accordance with the recommendations of the CLSI.¹⁹

2.3. Cloxacinil test and metallo-β-lactamase detection

Antibiotic susceptibility testing was also performed using Mueller–Hinton agar with cloxicillin (200 mg/l) to inhibit intrinsic ADCs. An increase in inhibition zone diameters of cephalosporins in the presence of cloxicillin was a qualitative indicator of ADC hyper-production. Also, the cloxicillin test was used to allow better detection of synergy between clavulanic acid and imipenem, indicating the production of an ESBL with carbapenem-hydrolyzing activity. Metallo-β-lactamases were screened for using the combined imipenem/imipenem+EDTA test (Liofilchem, Roseto degli Abruzzi, Italy). A ratio of the minimum inhibitory concentration of imipenem compared to that of imipenem in the presence of EDTA (MICimipenem/MICimipenem+EDTA) of ≥2 was considered a presumptive diagnosis of metallo-β-lactamase.³¹

2.4. Identification of carbapenem resistance genes

PCR sequencing experiments were used to detect carbapenemase genes blaoXA-23, blaoXA-58, blapra, blages, blapim-1, blapim-2, blanmd, and blavim-3. Isolates were also screened for insertion sequence ISAba1.²² PCR mapping using ISAba1 forward and OXA-23 reverse primers was done on blaoXA-23 positive isolates. Also, ISAba1 forward and bladec reverse primers were used to locate the position of ISAba1 relative to bladec.

2.5. ERIC-PCR

The genetic relationship between the isolates was determined using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR), as described by Ferreira et al.²³ The amplification conditions were as follows: an initial denaturation cycle at 95 °C for 7 min, 35 cycles at 95 °C for 1 min, 51 °C for 1 min, and 72 °C for 1 min and 30 s, and a final extension at 72 °C for 15 min. The amplified products were visualized on 1.5% agar gel stained with 0.5 µg/ml of ethidium bromide. The banding patterns were converted by GelQuest/Seqventix software (Klein Raden, Germany) into a binary matrix, calculated using the Dice coefficient. A dendrogram was constructed via the unweighted pair-group method using arithmetic averages (UPGMA). Only visible bands in the ERIC-PCR fingerprinting were used to construct the similarity matrix and the dendrogram. Isolates with more than 85% similarity were considered to be clonally related.

3. Results

Out of 723 A. baumannii isolated in 2012, 638 (88%) were imipenem-resistant. Of these, 142 non-duplicate imipenem-resistant A. baumannii isolates were received by the laboratory for analysis. These isolates were distributed as follows: 63 were from Saint-Georges Hospital, 36 from Labib Medical Center, 22 from Hotel Dieu de France, five from Bellevue Medical Center, five from Bekaa Hospital, five from Chtaura Hospital, four from Farhat Hospital, one from Moula Hospital, and one from Secours Populaire Libanais Hospital.

3.1. Antimicrobial resistance pattern, cloxicillin effect, and EDTA synergy

All 142 isolates showed high resistance to the tested β-lactams (Table 1). Sixty-eight isolates yielded a positive cloxicillin test, indicating ADC hyper-production. Sixty-one showed synergy between clavulanic acid and imipenem, indicating the production
of a class A ESBL with carbapenemase activity. Metallo-β-
lactamase detection strips were negative for all isolates.

3.2. Molecular analysis

Genotyping allowed the detection of blaADC and blaOXA-51
genes. GES-type carbapenemase concomitant with OXA-23 en-
zyme was observed in the majority of the isolates (128 isolates, 90%), indicating that these two carbapenemases are the most
prevalent mechanisms of resistance among our strains. Sequencing of the blaGES variant revealed GES-11. Eleven strains harbored
either OXA-23 or OXA-24 alone, or OXA-24 with GES-11. In one
strain, GES-11 was the only detected enzyme with carbapene-
mase-hydrolyzing capacity. Tested metallo-β-lactamase-encoding
genes were not detectable in any of the isolates.

Insertion sequence ISaba1 was identified in all isolates
regardless of the type of carbapenem-hydrolyzing enzyme. Mapping of this element in OXA-23-producers revealed a band
of size 1371 bp, indicating that ISaba1 lay upstream and adjacent to
blaOXA-23 in all strains. Mapping of ISaba1 to blaADC revealed a
band with size of 693 bp, showing that ISaba1 existed upstream
and adjacent to ADC in 97% of the isolates.

Phenotypic results combined with detected carbapenemases
were used to classify isolates into seven groups, shown in Table 1
in decreasing frequency of detection.

3.3. Results of ERIC-PCR

Fingerprinting by ERIC-PCR showed the existence of 18 pulso-
types of imipenem-resistant A. baumannii (Figure 1). Eighty-seven
strains belonged to pulstype 17 and originated from seven out of
nine hospitals. A smaller portion of 25 isolates belonged to
pulstype 16 and were disseminated among seven hospitals. The
remaining strains showed various fingerprinting patterns, with
fewer than 10 strains in each pulstype, indicating different clones.

Strains from Saint-George Hospital showed the widest genotypic
variation, with 13 out of the 18 pulatypes. Interestingly, the single
strain obtained from Secours Populaire Libanais Hospital was a
unique pulotype (pulstype 7). In pulatypes 1, 16, and 17, different
 carbapenemase content was noticeable among the related
isolates. For instance, strains harboring blaOXA-23 or
blaGES-11 alone belonged to pulstype 17 together with those co-
harboring blaOXA-23 and blaGES-11.

4. Discussion

Resistance to carbapenems makes A. baumannii a challenging
pathogen to cure due to significant compromise of treatment
options. In Lebanon, imipenem-resistant A. baumannii has been
described in two reports related to isolated Lebanese healthcare
centers,8,17 however no epidemiological countywide evaluation has
investigated the current status of carbapenem resistance in this
species. This study was conducted in nine Lebanese centers all
over the country in order to gain a wide overview of the status
of imipenem-resistant A. baumannii over a 1-year period. The
prevalence of imipenem resistance among A. baumannii in 2012
was 88%. This number is close to reported rates of 70% in Egypt,24
72% in Turkey,25 75% in Spain,26 and up to 100% in Italy.27

The accumulation of diverse intrinsic and acquired antimicro-
bial resistance mechanisms to carbapenems accounts for these high
rates of imipenem resistance in A. baumannii worldwide. The
most prevalent mechanism of carbapenem resistance in A. baumannii
is the enzymatic degradation by carbapenemases. In this study, we
showed the presence of blaOXA-23 and blaGES-11 in the majority
(90%) of A. baumannii, confirming the predominance of these genes
among Lebanese isolates. The dissemination of OXA-23 in Lebanon
is consistent with the worldwide epidemiology of OXA-23,15 and
with reports from neighboring countries including Egypt,24 Iraq,28
Iran,29 and the United Arab Emirates.30 However, the co-existence
of both OXA-type and GES-type carbapenemases in A. baumannii
is not frequent, although previously reported in Kuwait31 and recently
in Tunisia.32 In addition, another OXA family, OXA-24 (groups 5 and
6), was found in Lebanon, a carbapenemase that has been described in
A. baumannii from close countries like Turkey, where it was respon-
sible for a hospital outbreak in an intensive care ward.33 The
OXA-58 oxacillinase, previously reported in a Lebanese hospital,17
was not detected among our isolates. This agrees with reports of a
progressive change from blaOXA-58 to blaOXA-23 carriage wide.
34
In addition, a recent rise in metallo-β-lactamases in A. baumannii
has been observed in some European countries.34,35 However, even
though NDM-1 has been detected recently in A. baumannii isolated
from Syrian patients hospitalized in Lebanon,18 this metallo-β-
lactamase has apparently not spread to Lebanese patients according
to the present findings.

Phenotypically, the presence of GES-11 independently from
OXA-type carbapenemases did confer cephalosporin resistance
as well as imipenem hydrolysis, like in the single isolate of group 7. In
the absence of GES-11, as in groups 4 and 6, the inhibition zone
diameters of cephalosporins were relatively higher than in group 7,
while hydrolysis of imipenem was maintained. This corresponds to
the properties of OXA-23, which exhibits mostly imipenem-
hydrolyzing activity and does not act on extended-spectrum
cephalosporins. Of note, only 62 out of the 130 GES-11-positive
isolates did yield a positive synergy test between imipenem and
clavulanic acid, indicating the pivotal role of molecular methods
for the detection of GES-producing isolates.

In addition to the acquired carbapenemases, intrinsic ADCs play
a major role in resistance of A. baumannii to β-lactams. In this

<table>
<thead>
<tr>
<th>Group</th>
<th>Isolate characteristics</th>
<th>Number (%) of strains</th>
<th>Number of strains showing IMI–AUG synergy<sup>a</sup></th>
<th>Inhibition zone diameters (mm)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OXA-23 + GES-11+ hyper-produced ADC</td>
<td>124 (87)</td>
<td>57</td>
<td>AUG: 6 6 6–9 (10–14) 6–10 (6–15) 6–12</td>
</tr>
<tr>
<td>2</td>
<td>OXA-23</td>
<td>7 (5)</td>
<td>0</td>
<td>AUG: 6 6 6–9 (10–14) 6–10 (6–15) 6–12</td>
</tr>
<tr>
<td>3</td>
<td>OXA-23 + GES-11</td>
<td>4 (3)</td>
<td>2</td>
<td>AUG: 6 6 6–9 (10–14) 6–10 (6–15) 6–12</td>
</tr>
<tr>
<td>4</td>
<td>OXA-23+ hyper-produced ADC</td>
<td>4 (3)</td>
<td>0</td>
<td>AUG: 14 8 (15) 20 (30) 23 (30) 6–12</td>
</tr>
<tr>
<td>5</td>
<td>OXA-24 + GES-11</td>
<td>1 (0.7)</td>
<td>1</td>
<td>AUG: 6 6 6–9 (10–14) 6–10 (6–15) 6–12</td>
</tr>
<tr>
<td>6</td>
<td>OXA-24+ hyper-produced ADC</td>
<td>1 (0.7)</td>
<td>0</td>
<td>AUG: 6 6 6–9 (10–14) 6–10 (6–15) 6–12</td>
</tr>
<tr>
<td>7</td>
<td>GES-11+ hyper-produced ADC</td>
<td>1 (0.7)</td>
<td>1</td>
<td>AUG: 6 6 6–9 (10–14) 6–10 (6–15) 6–12</td>
</tr>
</tbody>
</table>

ADC, Acinetobacter-derived cephalosporinases; AUG, amoxicillin/clavulanic acid; CAZ, ceftazidime; CPM, cefepime; CTX, cefotaxime; IMI, imipenem.
^a IMI–AUG synergy = synergy between amoxicillin/clavulanic acid disk and imipenem disk.
^b Inhibition zone diameters between brackets are those increased in the presence of claxonillin 200mg/l.
Figure 1. Dendrogram showing the genetic relationship of Acinetobacter baumannii by ERIC-PCR fingerprinting, with corresponding number of strains, genotypes, and hospital sources for each pulsotype.

A = Bellevue Medical Center, B = Bekaa Hospital, C = Chtaura Hospital, F = Farhat Hospital, HDF = Hotel Dieu de France, L = Labib Medical Center, M = Mounla Hospital, N = number of strains, P = pulsotype, SG = Saint-George Hospital, SPL = Secours Populaire Libanais.
study, the hyper-production of ADCs together with carbapenemase production reflected the multifactorial aspects of β-lactam resistance in A. baumannii. Groups 1, 4, 6, and 7 of the studied isolates (92%) showed phenotypic evidence of hyper-produced ADCs. In genotypic screening, 97% of the isolates revealed the presence of IsaAba1 upstream from blaOADC. A comparison of groups 1 and 3, which differ only in the extent of blaOADC expression, showed that A. baumannii resistance to extended-spectrum cephalosporins can be due to over-expression of the resident ADCs, possibly with concomitant production of ESBLs.36

Insertion sequence IsaAba1 was also adjacent to blaOXA-23. The importance of this genetic element for carbapenem resistance in A. baumannii has been reported, where IsaAba1 exists most commonly in association with blaOXA-23, blaOXA-58, blaOXA-51-like, and blaOADC and constitutes a strong promoter for increased expression of the downstream gene.34 In a previous study, intrinsic OXA-51 expression was reported to be increased by eight times following insertion of IsaAba1.34

ERIC-PCR, a method for rapid genetic fingerprinting, was applied to study clonal relationships between our isolates. Eighteen different clones of A. baumannii were identified that could not be correlated according to their phenotype or hospital source. Pulsotype 17 was predominant in various hospitals, indicating clonal diffusion, which may be dependent on the permanence of A. baumannii for long periods in the hospital environment and the transfer of patients among hospitals, which is a common practice in Lebanon. Nevertheless, the variability in pulsotypes also indicated probable horizontal transmission of resistance determinants among isolates from different sources. The results of our fingerprinting analysis revealed that strains with blaOXA-23 alone or blaOXA-51 alone exhibited clonal relatedness to those co-harboring the two genes, as in pulsotypes 1 and 17. This may raise the possibility that these genes may be part of different mobile elements. It was not possible in this study to perform multilocus sequence typing (MLST). It would have been interesting to determine if the OXA-23 and GES-11 international clones are present in Lebanon.

In conclusion, we report the status of imipenem-resistant A. baumannii in Lebanon with the preponderance of OXA-23 and GES-11. Not only does this study represent the first nationwide assessment of carbapenem resistance in this organism, but it is also the first report of OXA-23, OXA-24, and GES-11 carbapenemases in Lebanon. These resistance traits appear to spread successfully via both bacterial epidemics and horizontal transfer. Given the versatile and adaptable genetic background of A. baumannii and the current population displacement and patient transfer due to civil wars in the region, carbapenem-resistant A. baumannii strains are expected to escalate. Continuous surveillance involving Lebanon and neighboring countries is, therefore, crucial to limit their propagation.

Funding: This work was supported by the Saint-Joseph University Research Council (project number FHBP37) and by the Lebanese National Council for Research and Development (project number 02-09-12).

Ethical approval: Not required.

Conflict of interest: None declared.

References

