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Abstract

We forecast internal temperature in a home with sensors, modeled as a linear function of recent sensor values. When delivering

forecasts as a service, two desirable properties are that forecasts have stable accuracy over a variety of forecast horizons – so service

levels can be predicted – and that the forecasts rely on a modest amount of sensor history – so forecasting can be restarted soon

after any data outage due to, for example, sensor failure. From a publicly available data set, we show that sensor values over the

past one or two hours are sufficient to meet these demands. A standard machine learning method based on forward stepwise linear

regression with cross validation gives forecasts whose out-of-sample errors increase slowly as the forecast horizon increases, and

that are accurate to within one fifth of a degree C over three hours, and to within about one half degree C over six hours, based on

one or two hours of history. Previous results from this data achieved errors within one degree C over three hours based on five days

of history.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.
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1. Introduction

Machine learning, building on the shoulders of Artificial Intelligence and Statistical Inference, is capable of pro-

ducing forecasts from information gathered from sensor networks. In this paper we consider forecast accuracy in a

domotic or “smart” house, containing sensors. Such a house is described by Zamora-Martinez et al.2 which competed

in the Solar Decathalon 2012 competition3. It uses 88 sensors and 49 actuators, and records every 15 minutes the

data collected from sensors. They also provided some of this data on the publicly available UCI data source1. That

data consists of internal temperartures, lighting, CO2 saturation, and humidity in various rooms, as well as external

readings including temperature, humidity, wind speed, precipitation, atmospheric pressure, and sun on each external

wall. This UCI data reports 21 of the 88 sensors, three of which have no data, leaving 18. The data is separated into

two files, one covering four weeks of readings in March and April 2012 and the other covering two weeks of readings

in April and May 2012.
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The homeowner can use accurate forecasts of internal temperature as part of an energy-management strategy to

reduce energy consumption while maintaining internal temperature within a specified comfort range. For the SML

house, described by Zamora-Martinez et al.2 the Heating, Ventilation and Air Conditioning system (HVAC) system

is responsible for 53.9% of the overall power consumption. As Pan et al.13 state, due to thermal inertia, it is more

efficient to maintain a temperature of a room or building than to heat or cool it. Therefore, considerable savings can

be achieved by consulting future values of temperature and then deciding whether or not to activate the HVAC, rather

than relying only on the present temperature. This was subsequently confirmed by the competition measures in the

SML system prototype.2

Service-oriented architectures are the delivery method of choice for information technology businesses to provide

value to clients. A natural candidate for a viable business model is to provide forecasts as a service from home sensor

data. Like any business model, the client needs a guarantee of value for the cost of the service. In the case of forecasts,

that guarantee is expressed as forecast accuracy. Statistical methods, such as those we describe in this paper, can help

the service provider to establish guarantees with high probability. By monitoring the accuracy of the forecasts in a

transparent way, the service provider and client can ensure the forecast quality meets service level agreements. When

the client and server agree upon a forecast accuracy, a forecast horizon, and a subscription cost, the service can begin.

The client may need the forecasts to be tolerant of gaps in the series of observations due to outages in the sensor

network. If the modelling technology requires an uninterrupted sequence of observations of a given length, say a few

days2, then that gap may result in no reliable forecasts being produced for that many days. If more outages occur

while waiting, the waiting period restarts. Because the client is relying on forecasts to save energy, one important

busniess consideration is whether a gap introduces a waiting period for forecasitng to restart, and for how long.

Using the setting and technology proposed here, once the service is set up, the client regularly provides the most

recent sensor readings and receives forecasts covering the forecast horizon. The client sends readings from 18 sensors

every 15 minutes and receives a forecast of the mean internal temperature in the living and dining room for the next

six hours, i.e. 24 periods. We provide a method to measure forecast accuracy, validated by out-of-sample errors to

within one fifth of a degree C over three hours, and within about one half degree C over six hours, In the case of any

outages, the forecasts can restart after one or two hours, and in the mean time, previously delivered forecasts will be

quite accurate for six hours.

In the remainder of this paper we investigate the use of stepwise forward linear resolution as a forecast methodology

for this setting, which meets our requirements for accuracy and fast restarting, and therefore supports our service-

oriented business model. Note that we do not advocate that this is the best modelling technology for this setting, only

that it meets our minimal reqiuirements and is the only one we are aware of that does. The modelling method and

results are presented and discussed in comparison to previous results with this data. We then summarize our results

and propose future work.

2. Background: Temperarture Forecasting and Statistical Methods

According to recent studies, energy consumption in buildings represents 40% of the worldwide energy, of which

more than a half is used by HVAC systems.9,10 Accurate temperature forecasts can reduce these costs. Model Predic-

tive Controllers (MPC) are characterized by the explicit use of a process model in order to obtain the control signal

while minimizing a cost function. The cost function takes into account a prediction horizon of a given length and a

control horizon7. Álvareze et al.7 describe a house that is fed only by renewable sources of electricity, and is equipped

with a variety of sensors, including temperature, CO2 saturation and humidity in various rooms, and a fancoil actuator

which is a part of the HVAC system. It employs a Practical Non-Linear Model Predictive Controler (PNMPC) which

includes an optimizer, a model of the fancoil, a model to simulate the thermal conditions of the room, and an index

to evaluate the thermal comfort of the household users. The objective is to control the thermal conditions in order to

maintain the thermal comfort of the users. The systems produces good behavior and has been able to maintain the

thermal comfort.

We analyse data provided by Zamora-Martinez et al.2, which reports 18 sensors, to create forecasts of the internal

temperature. However, they use only two of the sensors: internal temperature and sun irradiance. They also encoded

the hour as 24 Booleans. The data is presented as a time series to an online learning framework. From an initially

uninformed model, each new set of sensor readings is loaded and the model is improved. After 5 days of data, about
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480 observations, the forecasts show good accuracy. The modelling technology uses an artificial neural network,

which is trained using a variety of mechanisms that are variants of gradient descent and Bayesian linear models.

Accuracy for 12 forecasts, i.e. 3 hours, is calculated for each of the methods over a number of experiments. Bayesian

linear performs the best most often, and the forecasts from this technique have MAE below 0.2◦ C about half of the

time, while its error can be up to 1◦C.

In a service-oriented setting, the client provides historical sensor data to a service and receives from the service

a table organized by forecast horizon showing the projected forecast errors and costs to the client. The service

computes this table from the data, by selecting a modelling method with associated hyperparameters. Using statistical

techniques, the service estimates the forecast errors and computing costs. The forecasting method we use is a variant of

linear resolution known as forward stepwise linear resolution, as presented by Hastie et al.4, and provided the leaps

package, using the R method regsubsets. As with any linear regression problem, we are given a set of independent

variables x1, ..., xn and a dependent variable y of interest that we want to forecast as a function of the independent

variables. That is, we seek parameters β0, ..., βn so that β0 + Σ
n
i=1
βi xi is a good approximation of y. When presented

with a set of m instances of each xi, called xi, j and the corresponding instances y j, we select the βi parameters so that

the residual sum of squares Σm
j=1

(β0 + Σ
n
i=1
βi xi, j − y j)

2 is minimized. Stepwise forward regression initially sets β0 to

ȳ, and all other β = 0. Then it repeatedly selects i and a value for βi so that the error function is reduced as much as

possible. Once a value of βi is selected, it is not changed further. After all such βi are selected, stepwise regression

halts with the model.

Minimizing a model’s error is not the only criteria for choosing a model. If it were, then a model could be created

with zero error on the given data, simply by replicating the y for each vector x. But such a model would have one

parameter for each m, i.e. it would be as large as the input data. It would likely perform poorly on out-of-sample data

that were not available when the model was created, i.e. it would be overfit. Even if the model size is n, the number

of independent variables, which is often smaller than m, the model may be overfit. The measure of a model’s error

that we use is the Bayesian Information Criteria (BIC)8, defined as 1/n (RSS + log(n)dσ̂2) where n is the number of

observations, d is the number of dimensions of the model which in our cases is the number of non-zero β’s, and σ̂2

is an estimate of the variance of the variable of interest. BIC penalizes larger models, and thus balances model size

against forecast error.

3. Experiments and Results

We experiment with both one and two hours of historical data, and for each we generate forecasts for each of the

24 periods, i.e. the next six hours. Specifically, we build a model to predict the internal temperature at some time

steps f into the future, based on looking at the current data at each of 18 sensors, and looking into the past b time

steps for each sensor. That is, one row of our data table contains one internal temperature f forward time steps into

the future, and 18 sensor observations taken at 0, ..., b times steps into the past, for a total of 1 + 18(b + 1) variables.

Those predictor variables recalled from previous times are called lagged observations. We will build one model for

each f time steps into the future, so f will range from 1 to 24. Let the lag l vary across the time steps 0 through b
into the past, and let k vary across the 18 sensors. Let xk,t be the tth observation for the sensor k counting from the first

observation at t = 1. Let yt be the mean internal temperature of the house at time t. For each f we seek to choose the

1 + 18(b + 1) values for the intercept β f ,0 and each coefficient β f ,k,t for the value of the kth sensor at time t. We want

to minimize the error function

Σm
t=b+1(β f ,0 + Σ

b
l=0 Σ

18
k=1 β f ,k,t−l xk,t−l − y f+t)

2 (1)

In this equation, t starts at b+1 because there are not enough observations to provide values for the lagged readings

for the first b data points. We perform two tests, selecting b as either 4 and 8, to use either one or two hours of

observations, so there are either 5 × 18 or 9 × 18 predictor variables. The model for a given f and b consists of the

1 + 18(b + 1) values for β. It is built using 2/3 of the data available, and then validated using the remaining1/3 of

the data. Because we use stepwise forward regression, initially β f ,0 is the mean of the observed internal temperatures

1/(m − b)Σm
j=b+1

y f+ j. All other β are initially zero, and they are estimated one by one until all are estimated, as

described in Section 2. While each step of the foreward regression improves the error over the previous step, the

amount of improvement decreases. Many of these computed β could just as well be left at zero, since the model will

become affected by less and less significant phenomena and not perform well in different circumstances; i.e. it will
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have a large number d of dimentions and will be overfit. For each regression step, we measure the model using the

BIC, which considers the complexity of the model as well as its error. We record the BIC for the model of each size,

where size is number of steps that the foreward regression has made. Since we are using 10-fold cross validation,

we run the stepwise regression once for each fold. This gives us 10 estimates of the BIC for each model size. We

consider the mean of these estimates as a good predictor of the BIC for a given model size. Since BIC reduces and

then increases, we can identify the model with minimal BIC. But since the BIC decreases slowly as it approaches the

minimal, we are interested the model size whose mean BIC is within one standard error of smallest of this minimal

model. See Figure 1, where the estimated BIC for each model size is shown, and marked with a confidence interval

spanning one standard error, based on the BIC’s of the models of that size over the 10 folds. The model size with

the smallest mean BIC is shown labeled green, and the model whose BIC is larger by at most one standard error is

labelled red. The size of this red model is recorded as the appropriate size for a regression model for this data. We

show the model’s BIC measures for f = 1, ..., 6 hours forward and b = 8 for two hours back. Other diagrams for

various b and f are similar. The model sizes vary from 10 to 24 for the first 20 intervals, which is a good reduction

since the maximal model size is 163. For the later forecasts, Specifically for Data Set 1 the model sizes for each of

the 24 forecasts are 10, 14, 16, 16, 16, 20, 18, 19, 18, 20, 20, 19, 21, 23, 20, 20, 22, 20, 20, 19, 24, 23, 23, 24.

Fig. 1: Selecting the number of predictors based on BIC for first 6 models using Data Set 1. Others figures are similar for both Data Sets. These

figures show that the model sizes are 10, 14, 16, 16, 16 and 20 predictors, reduced from a maximally possible 163.

Shown in Table 1 is the set of predictor variables for which β is non-zero. Ignoring the β for the intercept, in the

first row, there are 10 predictor variables selected to forecast the internal temperature one period ahead. Here TD is

the temperature of the dining room, TL is the temperatire of the living room, TW is the weather temperature, possibly

from the weather forecast (the data description is not explicit about its meaning), CD is the CO2 staturation of the

dining room, CL is the CO2 staturation of the living room room, HD is the humidty of the dining room, HL is the

humidity of the living room, LD is the lighting of the dining room, LL is the lighting of the living room, Pcp is the
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Table 1: Models for DataSet 1 with Lag 4

Int TD TL TW CD CL HD HL LD LL Pcp Tw Wi SW SE SS P T H RMSE MAE

1 0, 1, 2 0, 1, 3 0 2 0, 1 0.048 0.019

2 0, 1, 3 0, 1, 4 0, 1 0 4 0, 4 0, 1 0.053 0.038

3 0, 1, 2 0, 1, 4 0 0 0 1 0, 3 0 0, 4 0.186 0.059

4 0, 1 0, 1, 4 0, 1 0, 2 4 0, 4 0 0 0, 4 0 0, 4 0.776 0.085

5 0, 1 0, 1, 4 0, 1 0 0 4 0 0 0, 4 0 0 0, 4 1 1.812 0.108

6 0, 1 0, 1, 4 0, 2 4 4 0 0 0 4 0 0 0, 4 4 2.108 0.134

7 0, 1 0, 3, 4 0 0 4 0 0 1, 4 0, 2 0 0, 1, 4 2 2.887 0.168

8 0, 1 0, 4 0, 1 0, 3 3 4 2 0 0 3 0, 1 0 0, 4 3 3.665 0.2

9 0, 1 0, 3, 4 0 0 4 2 0 0 1, 4 0 0, 2 0, 4 0 4.73 0.24

10 0, 1 0, 4 0 0 0 0 0, 2 2, 4 0 0, 1, 4 0 3.904 0.275

11 0, 1 0, 4 0 0 0 0, 2 2, 4 0 0, 1 5.208 0.338

12 0, 1 0, 4 0 0 0 0 0, 4 0 0, 1 6.291 0.392

13 0, 1 0, 4 0 0 0 0, 1 4 0 0, 1 7.466 0.446

14 0, 1 0, 2, 4 0 0 0 0, 1 4 0 0, 1 1 8.505 0.494

15 0, 1 0, 2, 4 0 0 0, 1 0, 4 0, 1 0, 2 9.979 0.558

16 0 0, 1, 4 0 0 0, 2 0, 4 0 0, 2 11.803 0.631

17 0, 1 0, 1, 4 0 0 0, 3 0, 4 0 0, 2 12.057 0.657

18 0, 4 0, 4 4 0 0 0, 2 4 0 4 0, 2 13.64 0.743

19 0, 4 0, 2 4 3 3 0 0, 3 4 0 0, 2, 4 2 15.239 0.821

20 0, 1 0, 4 4 3 2 0 0, 3 4 0 0, 2 2 17.058 0.894

21 0, 4 0, 4 4 4 0 0, 1, 3 2, 4 0 0 0 22.298 1.038

22 0, 4 0, 4 4 0 4 0 0, 1, 4 2, 4 0 0 4 0 23.036 1.094

23 0, 4 0, 4 4 0 0, 3 4 0 0 0 25.242 1.18

24 0, 4 0, 4 4 4 0 0, 3 4 0 0 0 27.082 1.256

Table 2: Models for DataSet 1 with Lag 8

Int TD TL TW CD CL HD HL LD LL Pcp Tw Wi SW SE SS P T H RMSE MAE

1 0, 1, 3 0, 1, 6 0 2 0 0.056 0.019

2 0, 1, 2 0, 1, 8 0 0 6 1 0, 4 0 0.153 0.042

3 0, 1, 2 0, 1, 8 0 0 6 1 0, 3 0 0, 5 0.028 0.061

4 0, 1, 2 0, 1, 8 0 0 0 0, 4 0, 6 0, 6 0.277 0.077

5 0, 1 0, 1, 6, 8 0 4 0 0 0 0 6 0, 6 1.009 0.096

6 0, 1 0, 1, 6, 8 0 2 4 0 0 1 0 0 7 0, 2, 8 0 2.338 0.135

7 0, 1 0, 3, 8 3 4 0 0 1 0, 2 0 6 0, 8 1 3.244 0.172

8 0, 1 0, 1, 4, 7 5 5 0 0 3 0, 1 0 8 0, 4 2 3.07 0.195

9 0, 1, 7 0, 3, 8 0 3 0 0 1 0 0 7 0, 1 0 3.669 0.234

10 0, 1, 8 0, 4, 8 0 3 0 0 0 0 2 0 0 6, 8 0, 1 4.246 0.275

11 0, 1 0, 5, 8 0 0 0 0, 3 1, 5, 8 0 8 0, 8 0, 1 6.253 0.351

12 0, 1, 8 0, 5 3 0 0 0, 3 1, 4, 7 0 7 7 0, 1 7.36 0.409

13 0, 1, 8 0, 6 0 5 0 0 0, 3 1, 4, 7 0 0 7 0, 1, 8 7.587 0.438

14 0, 8 0, 2, 8 3 0 0, 8 0, 8 0, 3 4, 8 0 6, 8 0, 1, 8 1 7.141 0.489

15 0, 8 0, 1, 6 8 0 8 0, 8 0, 3 4, 8 0 8 8 0, 2 12.148 0.619

16 0, 8 0, 1, 8 8 0 7 0, 8 0, 3 4, 7 0 7 0, 2, 8 10.905 0.637

17 0, 8 0, 1, 8 8 1 0 6 0, 8 0, 1 4, 6 0, 1 6 0, 2, 8 10.866 0.666

18 0, 8 0, 8 8 0 8 0, 8 0, 1 4, 6 0, 1 6 0, 2, 8 13.762 0.755

19 0, 8 0, 8 8 7 7 0 0, 1, 8 4, 8 0 5, 7 0, 8 8 15.241 0.826

20 0, 8 0, 8 8 7 0 0, 1, 8 4, 6 0, 1 6 0, 8 7 15.059 0.878

21 0, 8 0, 3 8 0 5 6, 8 0, 8 0, 3 4, 8 0, 4 0 6, 8 0, 8 0 17.787 0.979

22 0, 8 0, 3 8 0 5 6 0, 8 0, 3 0 4, 8 0, 4 0 6 0, 8 0 18.963 1.034

23 0, 8 0, 3 8 8 0 7 5 7 0, 8 0, 3, 8 0 5, 7 0 0 7 0 24.485 1.18

24 0, 6 0, 3 8 0 7 1 0, 8 0, 3, 8 5, 8 0 0 4, 8 0, 8 0, 8 23.619 1.179

amount of precipitation, Tw is the twilight indicator, Wi is the external wind speed, SW is the amount of sun on the

west external wall, SE is the sun on the east external wall, SS is the sun on the south external wall, P is the sun’s

irradiance measured on a pyranometer, T is the external temperature and H is the external humidity. In the first line,

we can see that current dining room temperature and the dining room temperature 15 minutes ago, the current living

room temperature, the living room temperature 15 minutes ago and 30 minutes ago and other sensors at other lags, are

all selected as contributing to what the temperature will be in 15 minutes from now. The recent sun on the east wall,

the recent lighting in the living room and the recent dining and living room CO2 saturations are also deemed useful.

In fact the regression formula with the variables ordered by error reduction is

Int1 ∼ (Intercept), TL0, TD0, TD1, TL1, SE2, LL0, TL6, TD3, T0.
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Table 3: Forecast Errors for each Data Set and each Lag

(a) Data Set 1 Lag 4

Horizon RMSE MAE

1 0.0476 0.0189

2 0.0502 0.0285

3 0.1147 0.0387

4 0.4002 0.0503

5 0.8856 0.0619

6 1.1803 0.0738

7 1.5438 0.0873

8 1.9399 0.1014

9 2.4139 0.1167

10 2.6013 0.1326

11 2.935 0.1513

12 3.345 0.1713

13 3.8221 0.1924

14 4.3271 0.2138

15 4.909 0.2367

16 5.5928 0.2613

17 6.1622 0.2845

18 6.795 0.3098

19 7.4788 0.3366

20 8.2248 0.3644

21 9.3819 0.3963

22 10.3954 0.4279

23 11.4448 0.4605

24 12.4888 0.4935

(b) Data Set 1 Lag 8

RMSE MAE

0.0562 0.0192

0.1151 0.0306

0.0954 0.0407

0.1614 0.0499

0.4737 0.059

1.0475 0.0716

1.5631 0.086

1.8206 0.0996

2.1072 0.1145

2.4078 0.1305

2.9695 0.1505

3.5482 0.172

4.0054 0.1924

4.305 0.2135

5.2072 0.2405

5.7305 0.2652

6.151 0.2887

6.7992 0.3145

7.4829 0.3414

8.0312 0.3681

8.7436 0.3971

9.4486 0.426

10.5529 0.4586

11.3969 0.4885

(c) Data Set 2 Lag 4

RMSE MAE

0.1437 0.0134

0.2382 0.0201

0.347 0.0275

0.5169 0.0365

0.737 0.0465

0.9969 0.0579

1.6984 0.078

2.0472 0.0934

2.9757 0.1204

3.6273 0.1442

4.2809 0.1689

4.9121 0.1943

5.3788 0.2169

5.8794 0.2401

6.486 0.2653

7.1227 0.2923

8.1132 0.3258

8.9972 0.3589

9.7231 0.3909

10.541 0.4246

11.0574 0.4541

12.1884 0.4945

13.4012 0.5381

14.9303 0.587

(d) Data Set 2 Lag 8

RMSE MAE

0.061 0.0119

0.2699 0.0201

0.398 0.0281

0.6432 0.0384

0.7405 0.0467

0.9275 0.0573

1.1677 0.0686

1.5273 0.0837

1.901 0.0988

2.3641 0.116

2.952 0.1362

3.2723 0.154

3.8039 0.1749

4.4258 0.1983

4.9528 0.2211

5.5761 0.247

6.3116 0.2752

7.0736 0.3046

8.1295 0.3408

9.1282 0.3768

9.9817 0.4124

10.9673 0.45

11.8862 0.4878

13.1502 0.5316

Regressing on these 9 variables over the 2/3 training data generates a formula with a mean absolute error of 0.019◦ C,

and a mean squared error of 0.056. These are errors in the training set.

Looking over Tables 1 and 2, we can see patterns emerging. Certainly the temperatures of the living and dining

rooms are useful predictors of the mean internal temperature, which is in fact just the mean of the living and dining

room temperatures. The humidity of the dining room is more important than the humidity of the living room. The

external wind is not important but the precipitation is, especially the precipitation about one hour ago. The sun on

each wall is important. It is interesting to note how little benefit for both MAE and RMSE arises when considering

the sensor values more than one hour ago. The MSE and MAE are not significantly lower in the Table 2 than they are

in Table 1.

Table 3, shows the forecast errors over the validation set for the remaining 1/3 of the data, and a forecast from the

first period up to the given horizon, both as MAE and RMSE. In the forecast as a sevice setting, we use these observed

forecast error to predict what service the client could expect to achieve, and this table can be used to predict expected

forecast error. For instance, if the client had given us Data Set 1, and needs the MAE to be below 0.15◦ C, he would

not be able to use a forecast horizon longer than 2.5 hours, according to this table. We also show the results for the

second data set, which are similar.
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4. Discussion

Our intuition led us to surmise there would be advantages to using many sensors to capture the effects of people’s

activities in the house. A comparison with previous results on this data bears some evidence that this intuition is

correct, but let us consider it further. We can classify the influencers on internal temperature as time-dependent,

such as solar irradiance, and time-independent such as lighting and CO2 stauration which are associated with random

human activities such as people occupying rooms and performing activities such as cooking. To forecast properly

requires taking both into account.

There are a variety of ways to include both time-dependent and time-independent data in one model, including

multivatiate time series analysis5 which analyses the regular (seasonal) patterns in the time series and correlations

between the variables. Another is by using lagged variables, i.e. replicating any historical sequence of values which

has been offset or lagged by a number of time periods, and including this offset sequence as a new predictor variable

in the model. (Although commonly used, it appears to have been first done with regression by Durbin6.) This paper

offers an initial investigation of this second option where we choose all 18 predictor variables for replication and we

make either 4 or 8 replications of each. Since we introduce 4 × 18 or 8 × 18 new predictor variables in the model,

we need to eliminate those predictor varuables that do not contribute very much to the forecast, in order to avoid

over-fitting, and this paper proposes a simple way to identify those variables that are not time dependent. However,

there may be more reliable ways.

Our intuition also led us to surmise that the effect of time-dependent activities on internal temperature might be

modelled accurately by looking back only one or two hours, rather than a large number of periods. Since temperature

is governed by the second law of thermodynamics operating in a small space, influencers on temperature will quickly

have an effect, and these effects will have a short duration as more recent influencers will replace them. If we were to

know all of the temperatures of all of the objects in a room in one instant, in theory we could compute a near exact

room temperature in the next instant, removing the need for any historical values of variables. Even though we are

not given this much data, we use this principle and choose a small amount of historical data. Relying on immediate

or almost immediate observations alone is not enough. We can and should exploit time dependent factors, i.e. factors

that occur according a schedule. For instance, the effect of sunrise can be predicted and is dependent on the hour

of the day, with a seasonal variation. In this particular case, we actually do not need to rely on the scheduled time

of day that dawn will occur. We instead have access to a light sensor on the external east wall that will herald an

increase in temperature due to sunrise before its effect occurs inside the house. In other words, a light event in the

east will preceed a heating event, so we can forecast a heating effect of the post-dawn sunlight without needing to

know the time that dawn occurs, as long as we are made aware of it by the pre-dawn light. So we use the lagged light

signal, i.e. the light from the east from several time steps ago to get the same effect as the solar pattern. While one

cannot be guaranteed that all time-dependent events will be associated with both a schedule and a precursor, in this

investigation we limited ourselves to looking at the current values and the lagged values of sensor data for all sensors

in the network. We therefore use no time-dependent factor. This essentially prevents us from noticing time-dependent

patterns. Where this simple technique will fail is predicting something that occurs on a schedule with no sensor that

heralds that event. For instance, if a timer is set to turn on a heater in the home every day at a fixed time and if no

sensor captures this trigger, then our method would miss the infliuence of this heater on the internal temperature. Thus

in future modelling scenarios, it may be important to include the time signal.

Our forecast errors validate our two intuitions. Our model uses all 18 available sensors and replicates them 4 or 8

times, in separate experiments. In both experiments our errors are within about 0.17◦ C for a three hour horizon, and

within about 0.5◦ for a six hour horizon for Data Set 1. On the other hand, Zamora-Martinez et al.2 provide not 18 but

instead two sensors, internal temperature and sun irradiance, and about 5 days of history. There forecasts are within

about 1◦ C over a three hour horizon.

Linear regression is not very much affected by missing observations. In a real-world setting, it is quite likely that a

sensor will malfunction and its readings will be unavailable quite regularly. Given the most recent reliable regression

model based on recent data, where the regression equation uses lagged observations over, say, two hours, our system

would be able to resume producing forecasts two hours after the sensor was repaired, and meanwhile could rely on

previous forecasts for 6 hours. On-line learning systems require a long training period, and when faced with a long gap

in the data from a sensor it relies upon, it would have to start again from an initial state of zero knowledge. Thererfore
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it would require a long delay to start producing reliable forecasts, which could be up to 5 days, or longer if another

outage were to occur, and during most of this time, no forecast would be available from this source.

To calculate Table 1 on a 2.5 GHz Mac running OSX 10.11.3 with 16 GB of memory takes about 12 CPU seconds,

while Table 2 takes about 100 CPU seconds.

5. Conclusion and Future Work

Our goal is to generate forecasts of the internal temperature in a home with access to data from a variety of sensors.

Our main success criterion are forecast accuracy, and the ability to restart forecasts quickly after a sensor failure so

that energy savings are not delayed. A sequence of regression steps is guided by a greedy algorithm: forward stepwise

linear regression. Model size is limited by estimating its BIC over 10-fold cross validation. The BIC metric balances

smallness against accuracy. We conservatively choose the minimal sized model with BIC within one standard error

of the minimal BIC estimate. High out-of-sample accuracy over a holdout set of 1/3 of the data indicates we meet our

main criterion. Forecast accuracy is also affected by the number of historical readings used in each forecast, although 8

historical readings are not much better than 4. Therefore, forecasting can restart 75 minutes after an outage, achieving

our second criterion. Accuracy is observed to reduce gradually as the forecast horizon increases, so one can tradeoff

better accuracy against a longer horizon. This supports service contract negotiation between the forecast server and

the forecast consumer.

Our simple modelling approach demonstrates that the sensor data can support a valuable service for the customer.

In future work, we will consider increasing this value. When adding more historical data, the accuracy increases only

marginally, which suggests that this problem is not a good candidate for time series analysis. However this theory

needs to be tested. Using a time series may might offer some benefit by modelling all future temperatures with one

model, whereas now we forecast each future temperature separately. We will investigate variations of multivariate

time series, ARIMA models, other types of artificial neural networks12, autoregressive modelling with exogenous

variables (ARX)11 on this same data. We will also investigate of how time-dependent and time-independent variables

can be distinguished and how each should be treated. We currently select features by balancing model size against

accuracy gains in a greedy algorithm. We will experiment with other methods to extract features and to selectively

define new features.
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