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Abstract: Domain adaptation is a sub-field of transfer learning that aims at bridging the dissimilarity
gap between different domains by transferring and re-using the knowledge obtained in the
source domain to the target domain. Many methods have been proposed to resolve this problem,
using techniques such as generative adversarial networks (GAN), but the complexity of such
methods makes it hard to use them in different problems, as fine-tuning such networks is usually
a time-consuming task. In this paper, we propose a method for unsupervised domain adaptation that
is both simple and effective. Our model (referred to as TripNet) harnesses the idea of a discriminator
and Linear Discriminant Analysis (LDA) to push the encoder to generate domain-invariant features
that are category-informative. At the same time, pseudo-labelling is used for the target data to train
the classifier and to bring the same classes from both domains together. We evaluate TripNet against
several existing, state-of-the-art methods on three image classification tasks: Digit classification
(MNIST, SVHN, and USPC datasets), object recognition (Office31 dataset), and traffic sign recognition
(GTSRB and Synthetic Signs datasets). Our experimental results demonstrate that (i) TripNet beats
almost all existing methods (having a similar simple model like it) on all of these tasks; and (ii) for
models that are significantly more complex (or hard to train) than TripNet, it even beats their
performance in some cases. Hence, the results confirm the effectiveness of using TripNet for
unsupervised domain adaptation in image classification.

Keywords: deep learning; computer vision; domain adaptation; transfer learning; adversarial loss;
linear discriminant analysis; representation learning

1. Introduction

Computer vision (CV) applications have recently witnessed a revolution, thanks to deep learning
techniques which leverage hierarchical pattern learning techniques and vast amounts of data to solve
several challenging tasks with high accuracy. Despite their high recognition performance, as a natural
result of using a specific dataset, even the deep models are biased to the domain from which the data
are collected; which causes the performance of these models to decrease dramatically when tested
against datasets from different domains.

The primitive solution to this problem is to adapt the model to the new (or target) domain by
re-training the model on the data from the target domain. However, the collection of new data and
the re-training of the whole model can be difficult, expensive, and even impossible. Hence, a better
approach is to store the knowledge learned in the primary domain and later transfer that knowledge
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to a target domain sharing the same tasks but potentially following a different distribution. This can
help in reducing the cost of data re-collection and its labelling.

More formally, let Ds and Dt be the source and target domains, respectively. Domain adaptation
(DA), which is a sub-field of transductive transfer learning (TTL), aims to solve a problem in Dt, where
data are hard to collect, using data from Ds. Both domains, usually, share the same tasks (i.e., Tt = Ts)
but the marginal distributions of the inputs differ (i.e., P(Xs) 6= P(Xt)), as shown in Figure 1. DA is
usually achieved by learning a shared feature space (i.e., Zs = Zt) [1].

Figure 1. Both SVHN and MNIST datasets contain images of digits; however, there are many differences
between them. SVHN images are real-world RGB images of digits (in different orientations) taken
from street house numbers, whereas MNIST is a handwritten-digit dataset, where all images are in
greyscale and have digits in a fixed orientation. The domain gap results from such differences in style,
brightness, and contrast, among others. Domain adaptation aims at closing the above-mentioned gap
between different datasets, such that an image classification model trained on SVHN would perform
well on MNIST images, too.

There is a sizeable literature on DA. It can be categorized as either closed-set [2] or open-set [3,4].
Closed-set DA is the case where the classes of Dt are the same as that of Ds. Our work belongs to
closed-set DA. On the other hand, open-set DA handles the case where only a few classes are shared
between the two domains, and the source or the target domain might contain more classes.

Similar to other machine learning tasks, DA can be split into supervised, unsupervised,
and semi-supervised, depending on how much labeled data are available from Dt. For supervised
domain adaptation (SDA) [5] and semi-supervised domain adaptation (SSDA) [6], the data are
completely or partially labeled, but are not sufficient enough to train an accurate model for the target
domain from scratch. In unsupervised domain adaptation (UDA) [7,8] the target domain samples are
completely unlabeled, which is useful in situations where the data collection process is easy but the
data labeling process is time consuming.

The extreme case of DA is when we don’t have any access to the target data, which is called
domain generalization (DG). In DG, researchers have mainly used easy-to-collect datasets from
different domains to make a model that can generalize well to unseen domains [9].

The focus of this work is on UDA, which typically needs large amounts of target data, especially
in the case of deep unsupervised domain adaptation (DUDA). Although the focus is on DUDA because
of the wide variety of real-world applications that it can solve, we use SDA as an upper bound to aim
for, because SDA typically outperforms UDA, and we will exploit this fact to make our model perform
even better by using a concept called pseudo-labelling [10]. Most of the previous DUDA approaches
aimed at achieving two targets: (i) Produce (or learn) feature vectors from the data from Ds that can be
used by a classifier to get highly accurate class labels, and (ii) make the features of both Ds and Dt
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indistinguishable. Both Z. Ren et al., in [11], and Lanqing Hu et al., in [12], used generative models in
different manners to achieve those targets. The former used Generative Adversarial Networks (GAN)
to reconstruct various property maps of the source images while keeping the features extracted of
both domains similar by training a base encoder on the opposite loss of the discriminator. The latter
work used a duplex GAN architecture that could reconstruct the input images in both flavours, source
and target, using the features extracted from the encoder. Next, a duplex discriminator was trained to
distinguish the reconstructed images into source and target.

Our model is motivated by the latter work, yet it is much simpler. More specifically, we show
that the generative part is hard to train and is not necessary to obtain a domain adaptive model.
By introducing novel loss functions, we show that our model produces comparable results to the
state-of-the-art models in a computationally efficient way.

To conclude, in this work, we make the following contributions:

• We implement a novel DUDA technique for image classification. Deep (D) because it consists
of an auto-encoder, a discriminator, and a classifier—all of which are simple deep networks.
Unsupervised (U) because we do not use the actual annotations of the target domain. Domain
adaptation (DA) because, while learning the model using source data, we adapt it such that it
performs well on the target domain, too.

• Our approach obtains a domain adaptive model by introducing separability loss, discrimination
loss, and classification loss, which works by generating a latent representation that is both
domain-invariant and class informative, by pushing samples from the same classes and different
domains to share similar distributions.

• We compare the performance of our model against several existing state-of-the-art works in DA
on different image classification tasks.

• Through extensive experimentation, we show that our model, despite its simplicity, either
surpasses or achieves similar performance to that of the state-of-the-art in DA.

The rest of the sections are organized as follows: Section 2 provides a brief of the main
contributions in DA. Section 3 presents our model architecture and our novel loss function. Details of
our experimental setup, datasets, and empirical results are shown in Section 4. Finally, Section 5 wraps
up the paper.

2. Related Work

In solving the problem of UDA, recent works used deep learning in various ways to build their
models. A discriminator module was the core in most of the papers [11–14], and its loss was used to
tell if the features extracted from both domains were distinguishable or not. Within the works that
used the discrimination loss, several were based on generative models [11,12] and their reconstruction
loss [15,16], and some used pseudo-labeling [10,12,17–20] to engage the target domain data into the
process of classification. In this regard, our model is an example of the case where discrimination loss
and pseudo-labeling are used without any reconstruction of the input images. We briefly touch upon
these topics below.

2.1. Discriminator

The works [11,13,14] used the discriminator in the same manner. The discriminator was fed by the
feature vectors of the source and target images and its loss was used to push the base/encoder/feature
extractor network to produce indiscriminate features. In [12], the feature vectors were used to generate
images in both source and target domains, and those images were fed into one of two discriminators
that distinguished between real and fake images. This methodology was designed to ensure that
the features extracted from the encoder network could be used to generate images of both domains;
in other words, the features were domain-invariant.
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2.2. Image Reconstruction

Similar to the image-to-image translation scenario, image reconstruction can be used in
an Encoder–Decoder-like architecture to drive the encoder to generate features for both domains,
so that the model can reconstruct the image regardless of its domain. For example, in [15,16]
a bi-shifting auto-encoder (BAE) and an invertible AE used the reconstruction loss to convert samples
between domains.

2.3. Generative Models

For the purpose of mitigating domain discrepancy, [12,21,22] tried to find a mapping between
the two domains using cycle GANs [19,23], where DupGAN [12] achieved promising results in
learning a domain-invariant latent representation. In their model, the generator was trained against
two discriminators, one for each domain, resulting in one of the state-of-the-art performances in
unsupervised domain adaptation. Similarly, [19,23] used the generator module to generate images
from both domains using the same latent representation, which helped to verify that the encoder had
lost domain-style information and had generated domain-invariant representations. Lv et al. [24]
used a Coupled GAN to learn the joint distribution of multiple domains, in an unsupervised manner,
through enforcing a weight-sharing constraint to the classifier network and, partially, to the GAN
architecture. In [25], S. Sankaranarayanan et al., used a two-stream architecture: The first was a normal
encoder-classifier network, and the other was an Auxiliary Classifier GAN (ACGAN) where the
discriminator worked as a base for two classifiers: (1) For image labels, and (2) for image domains.

2.4. Pseudo-labeling

Pseudo-labeling is a commonly-used method in semi-supervised learning. In UDA, pseudo-labeling
is used for narrowing the gap between the target and source domains, by providing pseudo-labels for
the unlabeled samples from the target domain. In [19], two classifiers were used to label the unlabeled
target data, which was used further in training the rest of the components. On the other hand, in [20],
the researchers used a similarity metric in building a K-Nearest Neighbours (K-NN) graph for the
unlabeled target samples and the labeled source samples. In DupGAN [12], a classifier, built on the
labeled source images, was used to obtain high-confidence images from the target domain, which were
then used to train both the classifier and the discriminators.

3. Architecture and Methodology

3.1. Overview

The following section describes the proposed model for UDA. We start by defining the notation
that we use. The source domain images and labels are denoted as Xs = (xs

i , ys
i )

N
i=1 and the target

domain images are Xt = (xt
i )

M
i=1; both xs

i and xt
i share the same dimensions, but different distributions.

As our research focuses on closed-set domain adaptation, the target and source domain labels Y are
exactly the same.

Our model contains an encoder, a classifier, and a discriminator, as shown in Figure 2. The encoder
and the classifier make up the final classification model, and the discriminator is used to train the
encoder to generate domain-invariant features. Hence, our classification function f is the composition
of two functions f = e ◦ c, where e : X −→ Z is the encoding function that maps the images into
feature vectors and c : Z −→ Y categorizes the features for both domains. The discrimination
function g is also the composition of two functions g = e ◦ d, where e is the same encoding function
and d : Z −→ A is the binary classification function that discriminates the domain of the latent
representation of the input image.

In addition to the usual classification and discrimination loss, we introduced a separation loss
that operates on the output of the encoder, similar to Linear Discriminant Analysis (LDA).
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Figure 2. Architecture of our model. This can be divided into three parts: An encoder, a discriminator,
and a classifier. The encoder translates the images (i.e., the X space) to embeddings in the latent space
(i.e., the Z space). In the latent space, each group of embeddings is marked by either Si or Mi, where
i is the label of the image, and the prefix letter denotes whether it is from MNIST (M) or SVHN (S).
Thus, the Z space can be expressed as Z = Zs ∪ Zt, where Zs =

⋃
i Si and Zt =

⋃
i Mi. The latent

representation is fed to both the discriminator and the classifier. The discriminator distinguishes if the
latent representation is from source or target domain, whereas the classifier finds the suitable label
for it.

3.2. Architecture

Encoder: The encoder E(.) is a Convolutional Neural Network (CNN)-like network with weights WE.
The target of the encoder is to produce the latent representation of both source and target domain
images, as below:

z = E(x), x ∈ Xs ∪ Xt, (1)

where z ∈ Z are the extracted features that we aim to be domain-invariant and category-informative.
Therefore, in the case of an input image from the source domain xs, the output of the encoder is
zs = E(xs); and if the image is from the target domain xt, then the output is zt = E(xt). The output of
the encoder is fed to both the discriminator and the classifier.

Discriminator: Discrimination between the source and the target in the latent space is a core
part in many of the recent contributions in DA, as was mentioned in Section 2. Our Discriminator
D(.) is a DNN with weights WD. The discriminator works as a binary classifier to label the latent
representation of the images to one of the domains, as follows:

a = D(z) = D(E(x)), a ∈ A, A = {0, 1}. (2)

Classifier: The classifier is a feed-forward neural network C(.) with weights WC for either binary or
multi-class classification. It takes, as input, the latent representation z and outputs the probabilities for
each class ŷ. C can be any kind of DNN with a softmax output activation function that fulfills the tasks
Tt and Ts.

In the case of multi-class classification, C predicts the class probabilities, as follows:

ŷ = C(z) = C(E(x)), x ∈ X, X = Xs ∪ Xt, (3)

where ŷ is the vector of predicted class probabilities for the images of both domains ŷ ∈ Ŷ, Ŷ = Ŷs ∪ Ŷt,
and it shares the same dimensions as the one-hot-encoded source labels ys and the target pseudo-labels
yt . The classifier C and the encoder E are pre-trained on the source data alone, and are then used to
generate the pseudo-labels for the target domain Yt [12,26,27] , using the output of the classifier on the
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target images that C is highly confident about. In the beginning, the number of samples chosen for
pseudo-labeling will be small, or even zero, but it increases as we get more domain-invariant features.

3.3. Losses

Here, we introduce our three losses and explain how each one contributes to achieve
domain-invariant and category-informative features.

Classification Loss: This is the usual cross-entropy loss H(, ., ) for the output of source images and
their labels and the output of target images (chosen for pseudo-labeling) and their corresponding
pseudo-labels, and is computed as follows:

Lc(WE, WC) =

(
λs∑

xs∈Xs
H(ŷs, ys) + λt∑

xt∈Xt

H(ŷt, yt)

)
, (4)

where λs and λt are used to balance the weighted sum between the source and the target, since we
only take a few samples using pseudo-labeling. By minimizing this loss, we update the weights of
both the encoder and the classifier, WE and WC.

Discrimination Loss: In order to get domain-independent features, we used the discrimination
loss to train the discriminator to distinguish between the features for both domains, using binary
cross-entropy, as follows:

LD(WD) = − ∑
zs∈Zs

log(D(zs))− ∑
zt∈Zt

log(1− D(zt)), (5)

which can be written as:

LD(WD) = − ∑
xs∈Xs

log(D(E(xs)))− ∑
xt∈Xt

log(1− D(E(xt))), (6)

where we assign 1 to the source images and 0 to the target images. The weights of the discriminator
WD are updated by minimizing this loss as an objective function. The encoder is trained against
an opposite loss that tries to put them in the same label, as follows:

LP(WE) = −∑
xs∈Xs

log(1− D(E(xs))). (7)

LP is used to update the encoder, such that the discriminator is deceived into thinking that the features
extracted from both domains are indistinguishable. We also tried to deceive the discriminator using
other loss variations, one aimed at pushing the domains in the exact opposite direction (i.e., target
→ 1 and source → 0) by adding −∑xt∈Xt log(D(E(xt)) to LP, and another loss aimed at pushing
both the source and the target into the same label by adding −∑xt∈Xt log(1 − D(E(xt)) to LP in
Equation (7), but these variations didn’t improve the results and caused the model to diverge with
more iterations. LD and LP work against each other in a scenario similar to GAN discrimination loss
and generative loss.

Separability Loss: Inspired by Linear Discriminant Analysis (LDA) to capture the separability,
Ficher [28] defined an optimization function to maximize the between-class variability and minimize
the within-class variability. Using this idea, we defined the separability loss, as follows:

Lsep(WE) =

(∑i∈Y ∑zij∈Zi
d(zij, µi)

∑i∈Y d(µi, µ)

)
× λBF, (8)
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λBF =
mini |Yt

i |
maxi |Yt

i |
,

where Zi is the set of latent variables that belongs to class i, which can be expressed as Zi = Zs
i ∪ Zt

i ;
the union of the sets of latent representation of both domains that have the same label i. Again,
for the target domain latent representation, we used the pseudo-labels that were produced with a high
level of confidence from the classifier. Further, µi is the mean of the latent representations that have
label i, so it can be expressed as µi = mean(Zi), while µ is the mean of all the latent representations,
µ = mean(Z); d(., .) is a distance function we use to measure the dissimilarity between the latent
vectors. So, the numerator part of the equation is the summation of the distance between each latent
vector and its labeled-center, while the denominator is the summation of the distance from each
labeled-center to the overall center of the latent representation; λBF is a balancing factor and is equal to
the ratio between the number of least-represented pseudo-labeled target samples mini |Yt

i | and the
number of the most-represented ones maxi |Yt

i |, where i is the label. The purpose of this is to pull the
loss from converging to some local minima if some classes are not well-represented in the pseudo-labels.
Thus, λBF keeps the separability loss from pushing the model into a very high separability and accuracy
in only a subset of the classes. Thus, by minimizing this loss function, we can increase the separability
of the latent representation, according to the labels and regardless of domain, which drives the encoder
to lose domain-specific features but preserve category-informative features. It should be noted that the
generator component in DupGAN [12] has the same purpose: It uses the extracted features to generate
images in both domains to ensure that they are domain-invariant, and reconstructs the input image
to ensure that the features do not lose the category information. However, by using a loss function,
instead of a separate generator module, this work achieves the said purpose in a cost-effective manner.

3.4. Optimization

The overall objective function that we aim to minimize in this work is the weighted sum of the
three losses, which we call the triplet loss, and is given as follows:

L = min
WD ,WC ,WE

βCLC + βPLP + βSepLSep, (9)

where βC, βP, and βSep are the balancing parameters. The detailed training process of our model,
called TripNet, is described in Algorithm 1. The input number of iterations ranges from 500–1000.

Algorithm 1: The training process of TripNet
Input: Xs — Source domain images

Ys — Source domain image labels
Xt — Target domain images
I — Number of iterations

Output: WE — Weights of the encoder
WC — Weights of the classifier

Pre-train E and C using Xs and Ys;
for i← 1 to I do

Sample a batch of images for both domains xt, (xs, ys);
Get pseudo-labelling ŷt for xt using C;
Update WD by deriving LD;
Update WC by deriving LC;
Update WE by deriving LC, LP and LSep;

end
return WC,WE
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3.5. Novelty

The main novelty of our work is imposing the separability loss on the latent representation of
both domains, in order to drive the encoder to close the gap between the two domains by clustering
the latent representations of images using their labels (regardless of their domain) and keeping the
class information within this latent space. At the same time, we use pseudo-labeling for the target
domain to compensate for the absence of labeled data in the target domain.

4. Experiments and Results

We compared our model with several state of the art models, including DupGAN [12], TarGan [24],
Maximum Classifier Discrepancy (MCD) [29], Gen2Adpt [25], SimNet [13], Domain-Adversarial
Training of Neural Networks (DANN) [30,31], T. Adversarial Discriminative Domain Adaptation
(ADDA) [32], Domain Separation Networks (DSN) [33], Deep Reconstruction-Classification Networks
(DRCN) [34], Coupled Generative Adversarial Networks (CoGAN) [35], Unsupervised Image-to-Image
Translation Networks (UNIT) [36], RevGrad [30], PixelDA [37], kNN-Ad [20], Image2Image [21],
and Asymmetric Tri-training for Unsupervised Domain Adaptation (ATDA) [27], for digit classification
and object recognition. As we followed the same experimental set-up as the one that was employed
for the compared networks, we evaluated our model based on the accuracy on the target test set,
as this was the most-used metric within the previous works, which will enable us to compare it
with the previously-mentioned papers using their reported results. The comparison will be made
on three different tasks: (1) Digit classification, (2) object recognition, and (3) simulation-to-real
object recognition. Then, we compare our model against DupGAN in terms of complexity (number
of iterations).

We will also compare our model against itself, using just the encoder and the classifier trained on
the source domain only (noted as training on source only) and the target domain only (noted as training
on target labels) to give a lower bound and approximation of the upper bound. This comparison,
shown in Table 4, shows the degradation of the accuracy of the target domain before domain adaptation
in the EC-SourceOnly row. This demonstrates the effectiveness and the usefulness of the adaptation
technique generally, and our model specifically.

4.1. Target Accuracy Comparison

4.1.1. Digit Classification

Our model was evaluated for UDA for the digit classification task, where the labels are 0 ∼ 9,
using different datasets: MNIST of handwritten digits [38], SVHN of street houses numbers [39];
and the USPS [40] of U.S. Postal Service Handwritten Digit Database. These datasets were chosen
because they have different distributions and their labels are present for validation and evaluation.
We used 60,000 images from MNIST from its training part and 10,000 images from its evaluation part.
USPS is a relatively smaller dataset, from which we used 7291 images for training and 2007 images
for testing. Finally, SVHN had 73,257 images for training, 26,032 images for testing, and SVHNextra

had 531,131 additional images for training. Our experiments were SVHN→MNIST, USPS↔MNIST,
and SVHNextra →MNIST.

The target accuracy results are shown in Table 1, where we can see first the decrease in performance
when changing the domain (first two rows): For SVHN → MNIST, we see a decrease of 36.6%;
on average, there was a 23% decrease across all experiments, proving the need for domain adaptation
methods. Our novel model either exceeded the compared methods or approached the highest-achieved
results. It is also noteworthy that our model was so close to the results of a model that was trained on
the target only, and surpassed it in some cases. This is due to the use of the separation loss and the
discriminator, which allowed our latent representations to be domain-invariant, as seen in Figure 3,
where all classes were clustered together, regardless of domain.
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Figure 3 illustrates the projection of the latent representations of both domains in the first
experiment, SVHN→MNIST. The projection for the visualization was produced using T-SNE [41] by
reducing the dimensions of the latent space from 512 into 2, for visualization purposes. In Figure 3,
it can be noticed that, after domain adaptation, the clusters for both domains that carry the same
labels settled close to each other in the latent space, which demonstrates the competence of the
presented model.

According to the results presented in Table 1, there was no one specific model which outperformed
the others in all cases. Those that exceeded our model (though, not by a significant margin) had more
complex architectures and were difficult to train. We highlight this point later, in Section 4.2.

Table 1. Test accuracy comparison for Unsupervised Domain Adapatation on digit classification.
The results for the previous works have been copied from the original papers, or the DupGAN [12],
without repeating the experiments, as we used a similar architecture for the encoder and the classifier
parts, as well as the same experimental setup as those works (except for TarGan, which uses a bigger
classifier). The “-“ notation is used for experiments where the results have not been reported in
previous works.

Method SVHN → MNIST MNIST → USPS USPS → MNIST SVHNextra → MNIST

DCNN-TargetOnly 98.97 95.02 98.96 98.97

DCNN-SourceOnly 62.19 86.75 75.52 73.67

ADDA 76.0 92.87 93.75 86.37
RevGrad - 89.1 89.9 -
PixelDA - 95.9 - -

DSN - 91.3 73.2 -
DANN 73.85 85.1 73.0 -
DRCN 81.97 91.8 73.0 -

KNN-Ad 78.8 - - -
ATDA 85.8 93.17 84.14 91.45
UNIT - 95.97 93.58 90.53

CoGAN - 95.65 93.15 -
SimNet - 96.4 95.6 -

Gen2Adpt 92.4 92.8 90.8 -
MCD 93.6 - - -

Image2Image 90.1 98.8 97.6 -
TarGAN 98.1 93.8 94.1 -

DupGAN 92.46 96.01 98.75 96.42

TripNet (Ours) 94.70 97.63 97.94 98.57
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Before Domain Adaptation After Domain Adaptation

Figure 3. Projection of the latent representations of both source domain (SVHN) and target domain
(MNIST), to describe their distribution in the latent space before and after applying our unsupervised
domain adaptation method. Each cluster is labeled by M-i or S-i to denote whether it belongs to
MNIST or SVHN, respectively; whereas the colors and the i indices represent the labels associated with
the clusters.

4.1.2. Object Recognition using OFFICE31

We also evaluated our method on the OFFICE dataset [42] for object recognition. Office31 is
a widely-used dataset in domain adaptation, containing images belonging to 31 different classes
gathered from three different domains: Amazon (A), Webcam (W), and DSLR (D). One of the major
challenges in this dataset is that it contains only 4110 images (A:2817, W:795, and D: 498), which
is too small to build any deep classifier. Most DUDA methods tend to use a pre-trained model
(like AlexNet [43] or ResNet [44]) and fine-tune it to this specific dataset. In our method, we chose to
use a pre-trained AlexNet and replaced the final layer with a dense (4096,31) fully-connected layer,
instead of the dense (4096,1000) layer. We followed the same protocol as for the digit classification task.
We report our results in Table 2. We can see that our model provided state-of-the-art performance on
AlexNet-based models (rows above our model) and even beat the ResNet-based models on the D→W
experiment, even though we used a much smaller network; as we aimed to design a simple model
with good adaptation ability, ease to training, and, yet, which provides better performance as well. It is
apparent, from our results, that indeed our model beat (or provided similar results to) most existing
methods. It is also worth mentioning that the cited ResNet-based models did not show a significant
increase in accuracy, ranging from 0.5% to a maximum of 11% of accuracy increase, when compared
against the vanilla ResNet (last row in Table 2).
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Table 2. Performance comparison on the OFFICE31 dataset, based on accuracy for unsupervised
domain adaptation. Results were generated by averaging the results of five runs of our model, as well
as using the reported results of the other papers. AlexNet-based experiments are separated with a bold
line from ResNet based experiments; the best results are in bold for each; and the missing values are
denoted by “-”.

Methods W -> A W ->D D ->A D ->W

AlexNet before DA 32.6 70.8 35.0 77.3

DANN 52.7 - 54.5 -
DRCN 54.9 - 56.0 -
DCNN 49.8 - 51.1 -

DupGan 59.1 - 61.5 -

TripNet 55.6 99.3 57.3 98.5

TCA - ResNet 60.9 99.6 61.7 96.9
RevGrad - ResNet 67.4 99.1 68.2 96.9

Gen2Apdt - ResNet 71.4 99.8 72.8 97.9

ResNet before DA 60.7 99.3 62.5 96.7

4.1.3. SYN-SIGNS to GTSRB

Our last comparison will be on the German traffic signs recognition benchmark (GTSRB) datasets
and Synthetic Signs (SYN-SIGNS) dataset. The goal of this evaluation is to evaluate the use of DA in
generalizing to real-world images using synthetic data. Both datasets were split into 43 different traffic
signs. We used 10,000 labeled SYN-SIGNS images as the source domain, and 31,367 GTSRB images as
training data; while 3000 GTSRB images were used for validation and the rest of the images were used
as a test set for evaluating the final performance. We used the same experimental setup as the one in
the digits experiment, with the same model and network architecture.

We can definitely see an improvement, from 56.4–88.7% (Table 3). Although our model was
behind the state-of-the-art in this experiment, it is important to note that consumed less computational
resources and converged much faster.

Table 3. Unsupervised domain adaptation results for the SYN-SIGNS to GTSRB experiment. The results
have been directly used, as well as the results reported in the original works.

Methods Before DA DANN DDC DSN TarGAN Tri-Training TripNet (ours)

SYN-SIGNS to GTSRB 56.4 78.9 80.3 93.1 95.9 96.2 88.7

4.2. Comparison of TripNet and DupGAN

We conducted a comparison between the convergence of TripNet and DupGAN for the experiment
SVHN→MNIST, as shown in Figure 4, within the same experimental setup. It is clear that our model
converged significantly faster—after just the first 120 iterations—whereas DupGAN didn’t even
approach its maximum accuracy after 500 iterations. Based on our experiments, we found that the
generative model DupGAN needs roughly 100 times the number of iterations that TripNet needed to
reach its maximum accuracy.
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Figure 4. Comparison between TripNet and DupGAN, in terms of the number of iterations needed for
convergence in the SVHN→MNIST case. This shows that the generative model comes with a high
cost, in terms of training time.

4.3. Ablation Study

For the purpose of seeing the usefulness of each component of TripNet, we performed an ablation
study on the MNIST→ USPS and SVHNextra →MNIST cases by running the experiments each time
without a specific component and comparing it with our final (full-model) results. We also compared
the performance against two extreme cases: (i) tTraining and testing on target domain, and (ii) training
on the source domain and testing on the target domain. Our experiments also covered training without
the balancing factor for separation loss (referred to as TripNet-WBF), training without the separation
loss (referred to as TripNet-WSL), training without pseudo-labeling (referred to as TripNet-WPL),
and training without the discriminator (referred to as TripNet-WD).

As shown in Table 4, the accuracy degrades if we exclude any component, which shows the
necessity of each in the presented model to build an efficient architecture for domain adaptation. It is
also worth noticing that our model (TripNet) obtained better results than EC-TargetOnly on MNIST→
USPS, even though EC-TargetOnly was trained directly on the USPS data; this is mainly due to the fact
that USPS and MNIST are very similar, and as USPS has a small training set.

Table 4. Test accuracy for the ablation study for TripNet.

Experiments MNIST → USPS SVHNextra → MNIST

Training and testing on target labels 95.02 98.97
Training on source and testing on target 86.75 73.67

TripNet-WD 96.07 81.4
TripNet-WPL 90.42 71.06
TripNet-WSL 90.86 71.33
TripNet-WBF 96.71 92.83
TripNet (Full) 97.63 98.57

4.4. Implementation Details

In the digit recognition and synthetic-to-real experiments, our input images from all domains
were reshaped into 32× 32× 3 images, or into 227× 227× 3 for the OFFICE31 object recognition
task, and each pixel was re-scaled to [0.0, 1.0]. Given that the latent representation vectors zi are
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high-dimensional (512 in digit classification and SYS-SIGNS to GTSRB, and 9216 for OFFICE31),
we used the cosine similarity as our measure of distance d(., .) in the separability loss in Equation (8).

For digit classification and synthetic-to-real task, the encoder part of our model has four
convolutional layers using 5 × 5 filters with 64, 128, 256, and 512 filters per layer, respectively.
The classifier and the discriminator are four-layer fully-connected networks with 256, 128, and 50
neurons per each of their first three layers, respectively, and with an output layer of 10 neurons for
the classifier and one neuron for the discriminator. The model weights were initialized using Xavier
weight initialization [45]. The rest of the hyper-parameters are reported below, in Table 5, as they were
tuned empirically for each experiment in Table 1. For the object recognition task, we used a pre-trained
AlexNet [43] as the base for our encoder and classifier. For detailed information about our code, see the
supplementary data/materials.

Table 5. The best set of hyper-parameters for TripNet for the experiments reported in Table 5.
The parameters βSep, βP, and βC are the balancing parameters for the triplet loss from Equation (9);
λT and λS are the balancing parameters between the source and target classification losses from
Equation (4); and PLThresh is the minimum confidence level provided by the classifier so that the image
would be considered for pseudo-labeling.

Experiments βSep βC βP λS λT PLThresh

SVHN→MNIST 1.5 1 4 0.5 0.8 0.999
MNIST→ USPS 1.5 2.5 1 0.2 1 0.995
USPS→MNIST 2.5 3 1.5 0.6 1 0.995

SVHNextra →MNIST 3 0.5 2 0.5 1 0.9999
W→ A 2 1.5 3 0.5 1 0.999
W→ D 1.5 1 2.5 0.7 1 0.999
D→ A 2 1.5 2.5 0.5 1.5 0.999
D→W 1.5 2 3 0.5 1 0.999

SYS-SIGNS→ GTSRB 2 2 1.5 0.5 1 0.99

5. Conclusions

Domain Adaptation proves its benefit in increasing the accuracy for unlabeled datasets into
other domains, which is a significant breakthrough in the field of machine learning. The current
models that approach the unsupervised domain adaptation problem using generative models (or very
deep models, like ResNet) as their baseline are highly expensive to train, in terms of time and space.
Therefore, in this work, we present our model, TripNet, which has a simple model that allows for
fast convergence, yet which can achieve good performance on domain adaptation in different image
classification problems. TripNet consists of an encoder, a classifier, and a discriminator. Both the
classifier and the discriminator are stacked on the encoder. For each of the three components, we define
a specific loss: Classification, discrimination, and separability losses. These losses are used to train
the components in a weighted manner. When tested on three image classification problems, TripNet
achieved the best results in some cases and a fair performance (given its simplicity, in terms of training)
in other cases. As further work on TripNet, we will explore the problem of semi-supervised domain
adaptation, as we believe that TripNet will perform better in this field compared to the existing models.

Supplementary Materials: The code for Triplet Loss Network for Unsupervised Domain Adaptation can be
found in: Tri-Loss-Unsupervised.
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