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Research Article
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Tweets Recommendation
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Mining social network data and developing user profile from unstructured and informal data are a challenging task.(e proposed
research builds user profile using Twitter data which is later helpful to provide the user with personalized recommendations.
Publicly available tweets are fetched and classified and sentiments expressed in tweets are extracted and normalized.(is research
uses domain-specific seed list to classify tweets. Semantic and syntactic analysis on tweets is performed to minimize information
loss during the process of tweets classification. After precise classification and sentiment analysis, the system builds user interest-
based profile by analyzing user’s post on Twitter to know about user interests. (e proposed system was tested on a dataset of
almost 1 million tweets and was able to classify up to 96% tweets accurately.

1. Introduction

In the last decade, social networks have witnessed multifold
advancements due to the rapid digitization of the service
industry and other advancements in the field of information
technology. A plethora of information sharing platforms and
the increased connectivity with the Internet [1] have also led
to a change in the general perspective of networking, so-
cialization, and personalization [2]. For the month of De-
cember 2018, an average of 1.52 billion users were active on
Facebook daily [3]. (is is besides auxiliary services offered
by Facebook, such as WhatsApp, Messenger, and Instagram,
each of which has over 1 billion active users, per month [4].
Similarly, as identified from third-party reports, other
platforms, such as YouTube owned by Google, iMessage by
Apple, and WeChat by Tencent, are also a part of the, no
longer elite, 1 billion-per-month-active-user-club. More

significantly, three out of every four adult Internet users are
now actively utilizing at least one social network platform
[5]. From a pure technological point of view, this enhanced
connectivity has created unique challenges and opportu-
nities [6, 7] by allowing the users to not only consume
services but also to share their experiences, feelings, and
thoughts. One of the most impactful and emerging social
networks is Twitter, which allows its users to broadcast the
latest (personal, communal, national, or international)
events in the form of short messages, “tweets,” which are
typically comprised of text, audiovisual content, and/or links
to external websites [8, 9]. Twitter is playing a key role in
many fields such as social marketing [10], election cam-
paigns [11], academia [12], and news. Hashtags (words
identified by the symbol #) form a key part of any tweet,
allowing public content to be categorized and made
searchable for users. (is allows the hashtag(s) to enrich the
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shared content and enable valuable analysis leading to
discovering new insights and trends. In terms of information
discovery and knowledge creation, this plethora of user
created content allows the application of sentiment analysis,
which aims to provide an automated mechanism for de-
termining the writer’s attitude towards the subject or its
overall contextual polarity [13]. (ese insights are especially
useful for digital marketing, allowing organizations and in
some cases governments (such as during the Arab Spring
[14]) to monitor and measure social media and gain ac-
tionable business/social intelligence, allowing to understand
how people view their brands, products, and services and to
improve brand visibility.

In the same manner, social media is now playing an
active role in improving healthcare service delivery [15].
Shifting to a more user-centric approach, social media en-
ables near real-time information flow, which in turn enables
immediate interventions for individuals and communities in
hospitals, at clinics, or at homes [16]. For example, in a
survey [17], the authors reported that search for health
information stood out as the third most popular online
activity. Today, patients, irrespective of their age, gender, or
socio-economic standings, are relying on the web to find
healthcare information related to their particular needs
[18, 19]. Additionally, patients can now make more in-
formed decisions by examining the experiences of their peers
in terms of symptoms, reactions, and treatments related to a
particular disease, thereby bridging the communication gap
between the patients and healthcare providers [20]. In ad-
dition, healthcare organizations can also take benefits by
finding the timely response of problems and monitoring the
user’s behaviors, conditions, and feelings in between their
visits [2]. Keckley and Hoffmann [21] studied online social
networks to analyze their effect on patient health and found
that people get more benefit while sharing their data on
social networks such as PatientsLikeMe portal [22]. (is
virtual connectivity can provide many benefits, such as
improving medication adherence, pharmacovigilance [23],
reduction in side effects, enhanced community support,
improved epidemiological analysis [24], and generally better
healthcare services. Consequently, it is safe to say that
healthcare benefits are directly related to social reachability
[25]. According to PwC Health Research Institute [26],
almost 90% users in the age of 18–24 were willing to share
their health information on social networks.

However, such large use of social media has also in-
troduced the problem of information overload. With an
overwhelming amount of data on social media, users find it
difficult to get personalized and concise information. Short
and noisy text on social media also makes it hard to un-
derstand full context and classify data. In this paper, we
propose a framework for providing personalized recom-
mendations to the user by analyzing his health interest on
social networks. While this work can be generalized in many
domains, the research work presented henceforth is focused
on processing healthcare data and information.

(e proposed classification and sentiment analysis
system uses a semantic structure, important keywords, and
opinion words from tweets to monitor user interests and

then generates personalized healthcare and wellness-related
tweet recommendations. (ese personalized tweets consist
of publicly available content which is precisely preclassified
by our system. For tweet classification, the proposed system
uses a domain-specific seed list which helps to decide which
category a particular tweet belongs to. After classification,
the proposed system also applies a lexicon-based sentiment
analysis approach to extract topic level sentiments in tweets.
To increase the accuracy of tweet analysis, the proposed
system also uses synonyms with keywords. (e proposed
model performs more precise analyses of tweets enriching
temporal patterns and semantics of keywords which opti-
mize filtering result and help to extract more knowledge
from tweets. For testing of profile generation, we collected
6000 tweets of users and generated user profile by extracting
health-related keywords, entities, and sentiments. For
classification, the system was tested on almost 1,000,000
tweets of different categories. Due to our preclassification
strategy and other significant improvements, our current
model showed an accuracy of 96% for tweet classification,
which is significantly better than our previously published
approach, with an accuracy of 89.5% [27]. (e proposed
system also measured how much information for one cat-
egory can be extracted from other categories which were
ignored by keyword-based search from tweets.

(emain contribution of the presented work is complete
design and implementation of a personalized recommender
system for a user based on his temporal social media history.
(e proposed system does not just rely on keyword-based
interest but it also takes user’s temporal sentiments into
account. (e syntactic and semantic analysis of tweets leads
to more complete profile generation and tweet classification.

(e rest of this research paper is structured as follows.
Section 2 discusses related work closely aligned with our
work. In Section 3, we present the theoretical foundations of
the proposed platform and its components, followed by
Section 4, which briefly describes our implementation
strategy and presents the evaluation results of the proposed
system. In the end, Section 5 concludes the research work
and highlights future work.

2. Related Work

Social media analytics is an active, interdisciplinary research
field, which has enabled the researchers to gain unique
perspectives into human and data behaviors. (e volume
and variety of this largely unstructured data, produced at
high velocity, has led to the development of many tools and
technologies for extracting or rather enhancing the value of
social interactions. Yet, there still remain many challenges in
terms of identifying relevant data, tracking actions and
reactions, increasing the veracity of data, optimization of
data storage, data processing and visualization of infor-
mation, extracting hidden patterns, and closing the data to
knowledge loop [28]. A key task for researchers pursuing
applied research in this field is to not only identify the
techniques used for converting data to information and
subsequently knowledge but also to look at its impact [29].
Twitter, along with its streaming API, and a large open (in
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terms of keeping their tweets public) user base has further
enabled the monitoring and analysis of a rich gold mine of
data produced via a novel information propagation strategy.

One of themore recent works in terms of analyzing tweet
propagation, for prominent Mexican political figures,
through the utilization of visual aids and pattern recognition
approaches has been laid out by [30]. In this work, the
authors collected tweets from six prominent Mexican pol-
iticians, their mentions, retweets, and favorites to their
tweets. By applying sentiment analysis followed by a contrast
pattern-based classifier working on 124 extracted (5 nominal
and 119 numerical) features, the authors were to quantify
impact of tweets based on their propagation patterns. In an
earlier approach, as presented by [31], the authors utilized
social features (such as number of followers, favorites, and
others) and tweet features (such as number of hashtags,
tweet length, and others) to predict the likelihood of a tweet
being repropagated (also known as retweeting). In this work,
the authors used a passive-aggressive algorithm for auto-
mated categorization of tweets. (e performance of their
model was slightly higher than manual categorization by
human subjects. Tweet categorization is also important to
identify relevant data for early responders, immediately after
a disaster event. Li et al. [32] have built on earlier works and
presented a supervised Naive Bayes model, along with an
iterative self-training strategy which is able to provide good
results. However, the presented results are from a controlled
environment (CrisisLexT6-labelled data set, covering 6 di-
sasters between Oct 2012 and July 2013), and its application
in live environment would require a lot of data
preprocessing.

A use case of such categorization is to build recom-
mendation systems, which can provide a more personalized
experience to the users. A basic URL recommendation
system based on the user tweets, topic interest models, and
social voting was introduced by Chen et al. [33]. Using 12
voting algorithms and feedback from 44 users, the authors
were able to provide a basic platform for future recom-
mendation systems based on Twitter data. Abel et al. [34–36]
analyzed user modeling for presenting personalized news
recommendation and improved the semantic of Twitter
activities by enriching news items with tweets. (e work
used methods including topic-based, entity-based, and
hashtags to analyze user modeling. (ey also focused on
temporal pattern extraction in users’ profile. Piao and
Breslin [37] analyzed user modeling strategies by incorpo-
rating categories, classes, and connected entities from
DBpedia for extending user interest profiles and found that
their proposed method significantly outperforms existing
approaches in the context of link recommendations. A
dynamic user modeling-based recommendation system was
proposed by Deng et al. [38] to integrate information
extracted from tweets and the video ranking system
employed by Youtube based on the same user’s profile. (is
strategy greatly enhanced the relevancy of the video rec-
ommendations. Celik et al. [39] identified the semantic
relationship between Twitter entities to provide mediation
among the same, thereby allowing the users to access the
relevant content of their interest. Balabanović and Shoham

[40] proposed a system to build user profile by combining
both collaborative and content-based recommendation
techniques. In content-based recommendation systems, user
preferences are considered for providing recommendations.
On the other hand, in the collaborative recommendation,
the system identifies users with similar taste to that of the
given user and provides recommendation based on this
similarity.

Another popular use case of data analytics on Twitter is
sentiment analysis. Yi et al. [41] presented a model to extract
only subject-based sentiments from tweets by extracting
topics and sentiments, followed by an application of a
mixture model to detect relations between them. Similarly,
Nasukawa and Yi [42] identified sentiment related to the
particular subject using natural language processing tech-
niques. (e novelty of their approach was based on Markov
model-based tagger for recognizing part of speech, followed
by statistics-based techniques to identify sentiments related
to a subject. Godbole et al. [43] introduced a system to
determine public sentiment, and its variation over time, for
news and blog entities. Using synonyms and antonyms, the
authors were able to find a path between positive and
negative polarity and increase seed list.

Some of the other popular use cases include improved
search, improved tweet contents, and predicting election
outcomes. Reviewing studies catering to these use cases is an
important tool for identifying the techniques, which can
help improve the impact and effectiveness of the recom-
mendation system. Guo and Lease [44] proposed a novel
ranking model, for enriching the search functionality on
Twitter, with personalization and content analysis. Clark and
Araki [45] introduced a text normalization technique to
categorize errors and informal language used on social
media into different groups, followed by natural language
processing techniques to correct common phonetic and
slang mistakes. On the contrary, Laniado and Peter [46]
applied hashtags on Twitter and demonstrated mappings of
fifty percent hashtags to entities in freebase. (e system was
categorized into four dimensions: frequency, specificity,
consistency, and stability to assess hashtags as strong
identifiers. Lösch and Müller [47] proposed a method to
associate hashtags with encyclopedia entities. (eir system
used Wikipedia entities as a description of hashtags in
microblogging service to understand the actual context of
hashtags. Tumasjan et al. [48] analyzed Twitter as a source of
predicting elections. (ey used the context of the German
federal election to investigate whether Twitter is used as a
forum for political deliberation. (ey used LIWC 2007 [49],
a text analysis software, which uses a psychometrically
validated dictionary for identifying and assessing the
emotional, cognitive, and structural components of given
text samples. (e authors used 12 dimensions including past
and future orientation, positive and negative emotion,
sadness, anxiety, anger, tentativeness, certainty, work,
achievement, andmoney to extract political sentiments from
this data.

In this paper, we are providing the users with person-
alized health-related profiling and aggregated sentiment
analysis using precisely classified data and sentiments. We
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propose a novel approach for analyzing the behavior and
lifestyle of individuals by monitoring patient’s self-reported
data and social posts. (e archivist is a service that finds and
archives tweets using Twitter search API. It helps the user to
get real-time trend information on Twitter [50]. Our model
uses the archivist to collect Twitter data and process them
using natural language processing techniques to extract
knowledge and sentiments from tweets. Twitter contains a
lot of information; however, the proposed model focuses on
how the information is filtered precisely to provide per-
sonalized knowledge to users.

3. The Proposed System Architecture

Twitter is a popular social media platform that enables users
to post short texts, images, and videos of personal and/or
collaborative nature.(is data provides a unique insight into
the user’s personality. Of particular interest to our research
work, are the user’s interests and emotions, which are used
by our proposed system to build a user profile and then
provide personalized data/services to similar users. Our
proposed system, as shown in Figure 1, consists of two
modules and integrates with Twitter as a plug-in application.
(e first module builds user health profile by extracting the
user’s profile information, health interests, and emotions
enriched with temporal patterns. To achieve the objectives,
Alchemy API [51] is used for the extraction of user’s interests
from the free text (tweets). (e API processes unstructured
text using natural language processing techniques and
machine learning algorithms to produce keywords, entities,
concepts, and the sentiment of the user in relation to these
(keywords and entities). (e second module collects public
data from Twitter and precisely classifies it to recommend
users with personalized data based on their generated
profile. To classify tweets and extract topic level sentiments,
the system analyzes tweets using domain-specific seed
words, opinion words, n-gram generator, POS tagger,
synonym binder, and dependency parser. Seed words and
opinion words are enriched by synonyms to increase ac-
curacy of classification.

3.1. Data Manager. Data manager acts as a plugable inter-
face to Twitter, which internally utilizes a data fetcher to
acquire streaming data. (ese data are received in XML
format, a sample of which is shown in Figure 2. Each tweet is
encapsulated in a structured format, containing the user-
name of the person tweeting, timestamp of the tweet, textual
content of the tweet, IT unique identifier, any associated
image, and other information. Using a DOM parser, we
parse this XML corpus to extract the username, tweet date,
status, tweet ID, and image fields. We then apply text
preprocessing on the tweet text (status field) to convert the
raw data into meaningful information. (e main aim of this
step is to convert abbreviations and slangs, contained in the
tweets, into their formal counterparts. (is aim is set to
alleviate the tweet behaviorisms, which have informally
encouraged the use of abbreviations (such as “plz” instead of
“please” and “gud” instead of “good”) and other slang words

[52], by Twitter users to save time and space. Users can also
repeat characters in words to emphasize a particular word
(such as using “Plzzz, as shown in the second tweet in
Table 1”). Such words represent noise in data, since it affects
the knowledge extraction process.

(e data preprocessor module achieves this aim by
utilizing a repository of 1300 slang words to remove this
noise. As a result of this process, the resulting data are free of
most commonly used (on social media) slang and abbre-
viated words. Additionally, the spell checker module uses
jazzy (Java-based spell checking API) to correct any spelling
mistakes from the data. (e final data produced by the data
manager is very rich and can be used by the consuming
services to build a user profile and extract knowledge.

3.2. Profile Builder. (is submodule extracts useful infor-
mation from tweets and maintains temporal history to build
user health interest-based profile. Profile builder extracts the
user’s interests by using Alchemy API. It accepts unstruc-
tured text and obtains knowledge by exposing the semantic
richness hidden in posts using named entity and sentiment
related to those entities. System stores extracted keywords,
entities, and user sentiments in the user’s profile repository
for future use. Table 1 shows a sample of the keywords,
entities, and associated sentiments extracted by profile
builder using the IBM Watson Natural Language Under-
standing module (Alchemy API). For instance, the tweet “I
feel my high blood pressure is at an unsafe level every time
I’m at work. It’s seriously going to give me a depression one
of these days” when processed through this API shows “high
blood pressure” as the most relevant keyword with the
highest confidence score of 0.99206. Similarly, the highest
rated concept against this tweet is “hypertension” with a
score of 0.915043. (e overall sentiment associated with this
keyword is negative with a confidence score of −0.96.
Similarly, the other sample tweets with their corresponding
keywords, entity concepts, and entity sentiments are shown
in Table 1, along with their score in parentheses. For each of
these attributes, we have selected the top one keyword,
concept, and sentiments, with respect to their relevance in
the text. It is also pertinent to note that not all entities are
correctly identified, as in the case of the third example in the
table “Wide awake, I’ve got a headache and work in the
morning” which has the correctly identified keyword
“headache” with a score of 0.71, but an unrelated concept
“2006 singles” with a confidence score of 0.86%. We do not
disregard this incorrect conceptualization, which only
slightly affects that overall accuracy, as will be shown in the
result section.

After extracting this information from tweets, profile
builder searches for the temporal patterns of user interest,
e.g., in the morning, the user is usually interested in the
blood sugar level, while in the evening, the user usually talks
about insulin and diet. If same pattern appears more than
two times, profile builder attaches temporal information
with the knowledge extracted to use it for data recom-
mendations. All the extracted data and temporal informa-
tion are then stored in the database.
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3.3. Knowledge Extractor. Knowledge extractor module
consumes the processed tweets, coming from the data
manager in order to apply natural language processing and
sentiment analysis techniques to precisely classify them. In

particular, the proposed system uses the Stanford Part-of-
Speech (POS) tagger, dependency parser, four-gram, and a
synonym binder to classify the tweets. (e tags identified by
the Stanford POS tagger are used to extract synonyms from

<Tweet 
TweetStatus = "Unapproved," Username = “...”, TweetDate = “2015-06-12T16:57:47+09:00” 
Status = "I love new Diet PSPSI and hate aspartame.”
TweetID = “…“
Image ="http://a0.twimg.com/profile_images/2569014433/IMG00354-20120526-
1717_normal.jpg"

/>
<Tweet 

TweetStatus = "Unapproved," Username = “…“, TweetDate = "2015-04-12T16:59:47+09:00"
Status = “I am Diabetic. Here’s how it works. My insulin pump and continuous glucose meter 
(CGM). Plzzz help me”
TweetID = “... ..." 
Image = "http://a0.twimg.com/profile_images/2569014433/IMG00354-20120526-
1717_normal.jpg" 

/>

Figure 2: Sample Twitter data collected by the data manager.

Table 1: A sample of knowledge extracted by profile builder, with confidence scores shown in parenthesis.

Tweet Keyword
Entity

Concept Text Sentiment
I feel my high blood pressure is at an unsafe level every time I’m
at work. It’s seriously going to give me a depression one of these
days

High blood
pressure (0.99204)

Hypertension
(0.91)

High blood
pressure

Negative
(−0.96)

Health condition Depression Negative
I am diabetic. Here’s how it works. My insulin pump and
continuous glucose meter (CGM). Plzzz help me

Insulin pump
(0.996333) Insulin (0.96) Diabetes Negative

(−0.54)

Wide awake, I’ve got a headache and work in the morning Headache (0.71) 2006 singles
(0.858618) Headache Negative

(−0.8)
I am healthy and feeling good after having high blood pressure
now

High blood
pressure (0.981841)

Hypertension
(0.915043)

High blood
pressure

Positive
(0.83)

Profile builder
Entity extractor

Keyword extractor

Sentiment extractor

Personalized profile

Filter engine
Personalized 

data filter

Social media 
repository

Knowledge extractor

NLP
N-gram 
generator

Wordnet

POS tagger

Synonym 
binder

Data manager

Data preprocessor

Data fetcher

XML parser

Tokenizer

Spell checker

Text normalizer

Slang handler

Slang lexicon

Data 
classifier

Sentimental 
analyzer

Sentiment 
extractor

Dependency 
parser

Sentiment 
lexiconKnowledge

Twitter

*Archivist crawler

Figure 1: (e proposed system architecture for profiling and tweet recommendation.
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WordNet. Additionally, the synonym binder helps improve
the accuracy of classification by binding synonyms from the
seed list with each noun word. (is binder is based on the
WordNet dictionary, which also allows us to identify the
contextual meaning of the present words. Jaws API [53]
provides the synonym binder with an external interface to
WordNet. For example, the word workout is not present in
our seed list; however, its bound synonym exercise does
exist. (e synonym binder also handles other problems
related to word structure as well. For example, it can convert
plurals to singulars, thereby binding calories with calorie and
exercises with exercise. Sentiment analyzer uses sentiment
lexicon to extract positive, negative, and neutral sentimental
words from these enriched tweets. For positive and negative
sentiments, the system uses the list of 6800 words from [54].
In addition, for neutral classes, a list of neutral keywords is
built after analyzing tweets.

(e proposed system classifies tweets based on the
knowledge extracted from them.(is classification process is
dependent on the seed list, which is used to identify the
particular category that a tweet belongs to. In this research
work, we have focused on the healthcare domain by keeping
the most frequently used healthcare and wellness terms in
our seed list. (e classified data are stored in a knowledge-
base for improving accuracy and future use.

Once the proposed system has classified and detected
sentimental words from tweets, the Stanford dependency
parser was used to identify the relation between the extracted
categories and sentimental words. (is helps the system to
find topic-based sentiments in tweets. (e proposed system
uses dot, exclamation mark, and hyphen as sentence
boundaries for splitting tweets into sentences if there are
multiple sentences in a tweet. Typed dependencies are
grammatical relations between words which help to decide
either a sentiment belongs to a specific word or not. It also
helps for extracting multiple sentiments from a tweet.
Figure 3 shows how dependencies are used to find topic-
based sentiments. Dependency parser also helped to find
negation of any sentimental words to inverse its value, e.g.,
in tweet “I don’t like the taste of that medicine” has the
negation of a positive word “like.” Without considering
negation, the system was not able to link negative sentiment
to “taste.”

3.4. Filter Engine. Filter engine processes classified tweets
using personalized profile and aggregate sentimental result
to recommend the user with relevant data. While generating
data recommendation, filter engine also incorporates tem-
poral patterns extracted by profile builder to generate more
valuable, time-specific recommendations. Figure 4 shows
the positive, negative, and neutral sentiments associated with
the various common drugs used by diabetic patients and
mentioned in their tweets. (is sort of filtering can enable
the physicians and caregivers to optimize drug delivery by
incorporating the patient sentiments in their medicine
prescription process. (is could enable a positive impact on
the medication adherence by the diabetic patient. Figure 5
shows another use case of the filter engine’s application,

whereby the diabetic patient is shown relevant tweets based
on similar keywords and sentiments to reenforce con-
structive dialog and create a virtual support system for the
diabetic patient. (rough this approach, the patients can
obtain useful information related to their disease and others’
experiences on different kind of insulin, drugs, or medical
tests.

4. Implementation and Result

While the presented approach can be generalized to any
domain, in this research work, we have extended our pre-
vious approach, presented in [27], to extract healthcare
knowledge from publicly available tweets, providing rec-
ommendations for diabetes. In order to realize the proposed
framework, we have used Java and other open APIs to create
an application which amalgamates the data curation service,
knowledge extraction service, user profile building service,
and filter engine into the proposed recommendation system.
(ese services are briefly explained in the following
subsections.

By applying seed list-based classification and sentiment
analysis, the system was able to recommend personalized
diabetes-related tweets to users. (e seed list was generated
using the work presented in [55, 56]. In order to overcome
redundancy problems and formatting issues, Google Refine
is used. To calculate the accuracy of our proposed system, we
have used seed list for diabetes for tweet filtration. By in-
tegrating our proposed system with Twitter, the user would
be able to get precisely classified and personalized data with
sentiment value. Moreover, this tweet data is useful for
clustering, trend analysis, and recommendations as well.(e
details of the data collection process, our experiments, and
their results are as follows.

4.1. DataCollection. Archivist tool has been used to scrawl a
specific set of tweets for all the keywords presented in Ta-
ble 2. Table 2 also shows the number of extracted tweets,
along with their classification accuracy when using only
n-gram and when using n-gram with synonyms.

To generate user profile, we analyzed tweets of 100 users
and collected 6000 tweets related to diabetes which helped to
build user profile. Some collected tweets for profile gener-
ation could not provide any information about user health
interests, so the system ignored them and used only those
tweets which helped to generate user’s health profile.

(e seed list of diabetes-related terms has been generated
by utilizing the work presented in [55, 56]. (is list was then
divided into two parts, by using natural language processing
to classify diabetes-related terms, based on their definition in
the original source. As a result, 417 terms have been classified
into categories, such as test, condition, body cell, diabetic
study, professional, devices, medicine, and others (not to be
confused with the well-defined category “other”). For ex-
ample, “hyperinsulinemia” was defined in the seed source, as
“a condition in which the level of insulin in the blood is
higher than normal caused by overproduction of insulin by
the body.” (e proposed system classified it as a “condition”

6 Complexity



term. Our system was able to classify 80.5% of the terms,
leaving only 81 terms, which were labelled as belonging to
the “other” category.

For sentiment analysis, the proposed system used the list
of positive and negative sentiments which is composed of
6800 words from [54]. For neutral class, we manually build a
list of 30 keywords.

4.2. Testing. Almost six thousand tweets were used to
generate user health profile. By using Alchemy API, this
system extracted all important keywords, entities, and
sentiments from tweets. (is information is used to build
user profile which helped to provide the user with per-
sonalized data recommendation. (e data recommendation
is precisely classified data with public sentiment analysis.
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Figure 4: Sentiment analysis results for a diabetic person.
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Stanford dependencies

Tweet
 I love new Diet Pepsi and hate aspartame.

Keywords

Opinion words
Love
Hate

Topic-based sentiments
Aspartame = negative 
Diet Pepsi = positive

Diet Pepsi
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nsubj(love-2, I-1)
root ROOT-0, love-2)

amod(PSPSI-5, new-3)
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cc(love-2, and-6)

conj(love-2, hate-7)
dobj(hate-7, aspartame-8)

Figure 3: Dependencies from tweet for topic-based sentiment analysis.
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Spell checker also improved system performance as social
media data have spelling and typo errors.

(e proposed system has processed almost one million
tweets of different categories for testing and verification of
classification and sentiment analysis. By considering only
four-gram, from all categories, 129,839 diabetes-related
tweets were successfully classified. However, when the
proposed systemwas employed in full, which uses four-gram
and the synonym binder, 142,285 diabetes-related tweets
were classified, from all categories. (is is because the
synonym binder binds the context of words from tweets,
which improves the categorization process. By applying
preprocessing and then semantic and syntactic analysis,
system accuracy has reached up to 96% for diabetes-related
tweets, as shown in Table 2. (e system used n-gram model
with synonym binder to achieve this accuracy. Diabetes-
related tweets from other categories decreased information
loss and increased the quality of sentiment analysis. Simple
keyword-based search from Twitter is not able to provide all
the related information for a specific category. (is can be
greatly enhanced by using a seed list, which would enable the
retrieval of information related to the keyword. In the legacy
search case, the term “diabetes” would only return tweets,
containing this keyword. However, using the seed list to
perform an advanced search can also return additional
information by retrieving those tweets, which do not ex-
plicitly contain this keyword but are still of interest to the
diabetic patient or the caregiver, for example, “Morning
walk is very helpful to maintain blood glucose.” (is tweet is
not filtered when we search Twitter for diabetes; however,
the proposed system has successfully classified this tweet as a
diabetes-related tweet.

Dependency parser has helped the proposed system to
find an accurate relationship between sentiments and
classes. It has also helped to find multiple sentiments for
multiple classes from a single tweet. Figure 3 shows how the
proposed system has extracted topic-based multiple

sentiments from a single tweet. At first, sentimental words
and topics were extracted, but it was not clear which sen-
timent is related to which topic. So, the system used a de-
pendency parser to bind sentiments with the topic.
Dependency parser also helps the system in negation de-
tection, e.g., “neg (good, not)” shows that “good” is negated.
Negation inverts opinion of the sentimental word from
positive to negative and vice versa. Figure 4 shows the
sentiment analysis of the tweet data generated for a diabetic
person. It shows that 37% tweets about basal insulin are
positive, 38% are negative, and 25% have neutral sentiments.
(e figure shows that the majority of sentiment for glucagon
is negative. (ese results help the user not only to find
related tweets but also aggregated sentiments. (rough the
application of advanced natural language processing tech-
niques, such as topic modeling, keyword extraction, and
sentiment analysis, the classification accuracy is greatly
improved. Figure 6 shows comparison of the proposed
system with existing technique [27]. It shows 6.5% perfor-
mance improvements, from existing technique, in terms of
accurately classifying tweets related to diabetes and 22.8%
improvement on classification for blood pressure.

Additionally, the proposed system addresses a key use
case of information loss, caused by a legacy keyword-based
search engine. Twitter search can be greatly enhanced by
using seed lists and short text classification to extract a larger
set of related information, without increasing the cognitive
load on the user. Table 2 shows the effectiveness of using this
process for extracting information related to diabetes. In-
formation diffusion varies in each category; while 10.6%
tweets from the diet category and 6.1% tweets from dengue
contain valuable information about diabetes in the blood
pressure category, we found 95% of tweets containing
content related to diabetes. Legacy keyword search on
Twitter was not able to extract these tweets. It is also im-
portant to note that the information collected through this
process is not unique, and as we found out, there is an

Table 2: Diabetic tweets classification.

Category Total
Classified as diabetic

4-gram (%) 4-gram+ synonyms (%)
Diabetes 94992 95 96
Blood pressure 31659 95 95.60
Diet 37738 8.50 10.60
Medication 16997 4.30 5.60
Parkinson 6503 3.80 5.20
Food 42415 2.06 4.70
Education 245317 0.90 2.50
Dengue 5200 0.80 6.10
Pain 109067 0.50 1.90
Technology 110572 0.36 1.30
Entertainment 136308 0.20 1.05
Earth quake 103632 0.17 1.60
Movie 30943 0.10 1.20
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overlap in the tweets across the keywords. (is means, the
same tweet can be categorized under two different keywords
and it is important to remove the duplicates and not
overwhelm the user with redundant information.

5. Conclusion

In this research work, we have demonstrated a person-
alized recommendation system, based on user profile
matching. We have also presented the effectiveness of
using a synonym binder for avoiding information loss and
enhancing the knowledge extraction process, which was
also supported by a sentiment analyzer. Sentiment anal-
ysis shows people attitude towards different topics which
can be used to generate a richer user profile and per-
sonalized recommendations. Topic-based sentiment
analysis can generate a rich user profile, personalized
recommendation, and helps the user to gather summa-
rized public opinions on entities of their interest. Do-
main-specific seed words helped to decrease information
loss during the keyword-based search. User-generated
profile from social media can be integrated with clinical
decision support system (CDSS) or electronic health re-
cord (EHR) to know about user interest and behavior in
detail. In future, we are planning to integrate user in-
formation from other social media and user activities log
to find interesting patterns and use them in personalized
recommender systems.
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