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Abstract

Maternal vitamin D deficiency is considered to be the key determinant of the
development of neonatal vitamin D deficiency at birth and during early infancy.
Specific vitamin D receptor (VDR) gene polymorphisms have been associated with
adverse pregnancy and offspring outcomes. The aim of this study was to evaluate the
effect of maternal and neonatal VDR polymorphisms (Apal, Taql, Bsml, FoklI, Tru9l)
on maternal and neonatal vitamin D status. V'DR polymorphisms were genotyped in
70 mother-neonate pairs of Greek origin, and classified according to international
thresholds for Vitamin D status. Mean neonatal and maternal 25-hydroxy-vitamin D
[25(OH)D] concentrations were 35 £ 20 and 47 + 26 nmol/l, respectively. Neonatal
VDR polymorphisms were not associated with neonatal 25(OH)D concentrations. In
contrast, mothers with the Fokl FF polymorphism had a 70% lower risk of vitamin D
deficiency [25(OH)D <30 nmol/l] compared with ff ones, after adjustment for several
confounders. They were also in 73% and 88% lower risk of giving birth to vitamin D
deficient [25(OH)D <30 nmol/l] neonates compared with Ff and ff mothers,
respectively. These results suggest a protective role of maternal Fokl FF genotype
against both maternal and neonatal vitamin D deficiency. Further studies are needed
to clarify the complex gene-gene and gene-environment interactions that determine

vitamin D status at birth.

Keywords: Vitamin D; pregnancy; neonatal health; calcium; rickets.
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1. Introduction

The teleological purpose of an ongoing pregnancy is to fulfil its fundamental role in a
successful, uncomplicated delivery, along with an optimal intrauterine environment
for the developing fetus [1]. Vitamin D homeostasis during pregnancy is adapted to
meet both those demands, first, by stimulation of calcium (Ca) absorption for
adequate intrauterine bone mineral accrual of the fetus and second, by enhancing
systemic and local maternal tolerance to paternal and fetal alloantigens [1]. On that
basis, data from observational studies during the last decade have suggested a
potential adverse effect of maternal hypovitaminosis D during pregnancy on maternal
and offspring health outcomes. Randomized trials of moderate quality indicate that
vitamin D supplementation during pregnancy might reduce the risk of pre-eclampsia,
gestational diabetes, low birth weight and severe postpartum hemorrhage [1].
Maternal vitamin D deficiency is also considered to be the key determinant of the
development of neonatal vitamin D deficiency at birth and during early infancy.
Maternal 25-hydroxy-vitamin D [25(OH)D] crosses the placental barrier and
represents the main pool of vitamin D for the fetus [2]. Serum fetal (cord blood)
25(OH)D concentrations correlate strongly with maternal 25(OH)D concentrations,
being on average 25% lower compared with the latter [3.4].

Guidelines suggest a maternal vitamin D intake of >600 1U/day, to prevent elevated
cord blood alkaline phosphatase, increased fontanelle size, neonatal hypocalcemia and
congenital rickets [2] and to ensure the adequacy of maternal vitamin D status,
especially in women at risk of deficiency [5]. However, there is an ongoing
controversy among experts worldwide about the definition of maternal vitamin D
deficiency during pregnancy, especially about the optimal thresholds of maternal

25(OH)D concentrations (>50 nmol/l vs. >75 nmol/l) [6,7]. On the other hand,
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different criteria are used to define optimal neonatal vitamin D status (sufficiency >50
nmol/l, insufficiency 30-50 nmol/l, deficiency <30 nmol/l) [5].

Well-designed clinical trials indicate that maternal 25(OH)D concentrations >100
nmol/l (40 ng/ml) during pregnancy are associated with a 60 % reduction in preterm
birth risk in the daily clinical obstetric care [8]. In this setting,
prenatal screening programs for optimizing 25(OH)D concentrations have been
demonstrated as an effective approach to detect deficient women and prevent
pregnancy complications [9]. Previously published randomized controlled trials
demonstrated that a daily vitamin D dose of 4000 IU safely elevated circulating
25(0OH)D concentrations and normalized vitamin D metabolism and Ca homeostasis
in pregnant women, regardless of race [10,11]. More specifically, a circulating
25(0OH)D level of about 100 nmol/l was found to be the required concentration to
optimize production of 1,25(0OH),D during pregnancy through renal and/or placental
production of the hormone [12].

Based on these findings, a target of maternal 25(OH)D >100 nmol/l seems to be
biologically and scientifically sound [13]. The fact that the aforementioned data was
not incorporated into previous systematic reviews [1], might lie in the fact that most
of those systematic analyses did not include trials in which any amount of the
investigated agent was given to the control group, including the study by Hollis et al.
[12], in which the authors considered unethical not to supplement with minimal dose
the control group.

Despite the differences in definitions of maternal and neonatal vitamin D status and
the lack of uniform results on the association between maternal thresholds and
neonatal outcomes, the appliance of criteria for vitamin D status resulted in an

improvement of the management of maternal hypovitaminosis D in the daily clinical



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

setting [5-7]. On the other hand, the clinical aspects of this controversy are largely
reflected in the conflicting results between observational and supplementation studies
[14], also affected by country-specific dietary patterns, public health policies and
variation in ultraviolet B (UVB) exposure, due to cultural and life-style reasons [15].
In this context, the effects of genetic variations of vitamin D receptor (VDR) gene on
maternal and neonatal vitamin D status are gaining increasing interest. Specific VDR
polymorphisms have been associated with adverse pregnancy and offspring outcomes
[16-18]. However, robust evidence of such an association is currently unavailable,
given that various studies present significant heterogeneity in terms of maternal and
neonatal criteria for vitamin D status, study design, sample size and racial descent of
the included subjects.

The aim of this study was to evaluate the effect of maternal and neonatal VDR
polymorphisms (Apal, Taql, Bsml, Fokl, Tru9I) on maternal and neonatal vitamin D
status, by applying internationally-adopted criteria for maternal and neonatal vitamin

D deficiency.

2. Methods

2.1. Inclusion and exclusion criteria

This study included data and samples from a cohort of mother-child pairs at birth that
has been previously described [3]. Pregnant women on regular follow-up were
recruited from the Maternity Unit of the 15t Department of Obstetrics and Gynecology,
Aristotle University, Thessaloniki, Greece. The inclusion criterion was full-term
pregnancy (gestational week 37-42). Maternal exclusion criteria were primary
hyperparathyroidism, secondary osteoporosis, heavy alcohol use (>7 alcohol units per

week or >6 units at any time during pregnancy), hyperthyroidism, nephritic syndrome,
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inflammatory bowel disease, rheumatoid arthritis, osteomalacia, obesity [body mass
index (BMI) >30 kg/m?], gestational diabetes and use of medications affecting Ca or
vitamin D status (e.g. corticosteroids), except for Ca and vitamin D supplements.
Neonatal exclusion criteria were being small-for-gestational age (SGA) and presence
of severe congenital anomalies. Informed consent was obtained from all mothers. The
study was conducted from January 2018 to September 2018. The protocol received
approval from the Bioethics Committee of the Aristotle University of Thessaloniki,

Greece (approval number 1/19-12-2011).

2.2. Demographics and dietary assessment

At enrolment, maternal demographic and social characteristics, as well as dietary
habits, were recorded. Ca and vitamin D dietary intake during the last month of
pregnancy were assessed through a validated, semi-quantitative, food frequency
questionnaire that includes 150 foods and beverages [19-21]. For each dietary item,
participants were asked to report their frequency of dairy products consumption and
portion size. From these data, calculations were made for estimations of consumed
quantities (in g per day) based on a food composition database, modified to
accommodate the particularities of the Greek diet [22] for estimating daily dietary
calcium and vitamin D intake. Maternal education was classified as elementary
(primary), standard (secondary) and higher (tertiary and holding of academic
degrees). Maternal alcohol use during pregnancy was treated as a dichotomous
variable, defined either as none (subdivided in never drinking alcohol or drinking
alcohol but not during pregnancy) or light (1-2 units per week or at any one time
during pregnancy) / moderate (3-6 units per week or at any one time during

pregnancy) [23].
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2.3. Biochemical and hormonal assays

Blood samples were obtained from mothers by antecubital venipuncture 30-60 min
before delivery. Umbilical cord blood was collected immediately after clamping, from
the umbilical vein. Serum and umbilical cord specimens were stored at -20°C prior to
analysis for the following parameters: Ca, phosphorus (P), parathyroid hormone
(PTH), 25-hydroxyvitamin D, [25(OH)D,] and 25(OH)D. Serum Ca and P
determinations were performed using the Cobas INTEGRA clinical chemistry system
(D-68298; Roche Diagnostics, Mannheim, Germany). The inter- and intra-assay
coefficients of variation (CVs) were 1.0% and 3.5% for Ca, and 1.3% and 2.5% for P,
respectively. PTH  determinations were performed wusing the electro-
chemiluminescence immunoassay ECLIA (Roche Diagnostics GmbA, Mannheim,
Germany). Reference range for PTH was 15-65 pg/ml, functional sensitivity 6.0
pg/ml, within-run precision 0.6-2.8% and total precision 1.6-3.4%. Concentrations of
25(0OH)D, and 25(OH)D were determined using novel assay, liquid chromatography-
tandem mass spectrometry (LC-MS/MS), with lower limits of quantification (LLOQ):
25(0OH)D,(0.5 ng/ml), 25(OH)D (0.5 ng/ml). Briefly, the assay involves analyte
purification using liquid-liquid extraction followed by chromatographical separation
using a chiral column in tandem with a rapid resolution microbore column. Full

method validation parameters have been previously reported [24,25].

2.4. Neonatal and maternal vitamin D status
Differences in the frequency of neonatal VDR polymorphisms were determined
between three groups of neonates, according to their vitamin D status at birth:

25(OH)D <30 nmol/l (deficiency), 30< 25(OH)D <50 nmol/l (insufficiency) and
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25(0OH)D >50 nmol/l (sufficiency) [2]. Differences in the genotype distribution of
maternal VDR polymorphisms were evaluated between different groups of Vitamin D
status, defined by using two thresholds for maternal 25(OH)D concentrations:
[25(OH)D <30 nmol/1)] vs. [25(OH)D >30 nmol/l] and [25(OH)D <50 nmol/l] vs.

[25(0OH)D >50 nmol/l] [26].

2.5. VDR analysis

DNA was isolated from peripheral blood samples by QlAamp DNA Blood Mini Kit
(Cat. No. 51304, QIAGEN, Hilden, Germany) according to manufacturer’s protocol.
In order to determine the genotypes of 17975232 (Apal), rs7731236 (Taql), rs757343
(Tru9l) and rs1544410 (Bsml) SNPs within VDR gene, Polymerase Chain Reaction
(PCR) and Restriction Fragment Length Polymorphism (RFLP) methods were
performed as previously described [27]. Real-Time PCR (RT-PCR) method was used
for determining genotypes of rs2228570 (Fokl) SNP by using Simple Probe
(LightSNiP, TibMolBiol, Berlin, Germany) and LightCycler Fast Start DNA Master
HybProbe Kit (Cat. No. 12239272001, Roche Diagnostics, Mannheim, Germany)
with LightCycler 480 Instrument II (Roche Diagnostics, Mannheim, Germany).
Melting curve analysis were performed for genotyping as previously described [28].
Each SNP allele named after as follows: for rs7731236 (Taql), “t” represents C, “T”
represents T nucleotide; for rs7975232 (Apal), “a” represents C, “A” represents A
nucleotide, for rs757343 (Tru9l), “u” represents A, “U” represents G nucleotide, for
rs1544410 (Bsml), “b” represents G, “B” represents A nucleotide, and for rs2228570

(FokI), “f” represents T, “F” represents C nucleotide.

2.6. Statistical analysis
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Kolmogorov-Smirnov and Shapiro-Wilk analyses were carried out on the data to test
for normality. Group differences were tested using the chi-square test, whereas
Fisher’s exact test was applied, in case the expected values were less than five.
Categorical data were presented as absolute numbers and frequencies (percentages).
Univariate logistic regression was performed to identify independent associations of
maternal and neonatal polymorphisms with both neonatal and maternal vitamin D
status, after adjusting for confounders, such as age, smoking status, education level,
alcohol consumption, Ca supplementation, dietary daily Ca and vitamin D intake
during the third trimester, pre-pregnancy BMI and delivery BMI. The genotype
frequencies were tested for the Hardy-Weinberg equilibrium using the

https://ihg.gst.de/ihg/index_engl.html for cases and controls through the Pearson chi-

square (y?) test. ORs and p-values, were all adjusted for confounders and tested for

co-dominant, dominant and additive genetic models.

3. Results

Seventy mother-neonate pairs were included in the study. Demographic and
laboratory data of mothers and neonates are presented in Table 1. Mean neonatal
25(0OH)D concentrations were 35 = 20 nmol/l. Overall, 52% (n=36) of the neonates
were vitamin D deficient, 27% (n=19) insufficient and 21% (n=15) sufficient. Mean
maternal age and 25(OH)D concentrations were 33 + 6 years and 47 £ 26 nmol/l,
respectively. Overall, 34% (n=24) of the mothers were vitamin D deficient, 30%
(n=21) insufficient and 36% (n=25) sufficient. No deviations from HWE were

observed.

3.1. Association between neonatal polymorphisms and neonatal Vitamin D status

10
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No differences in the genotype distribution of the VDR gene polymorphisms (Apal,
Taql, Bsml, Fokl, Tru9l) were detected among sufficient, insufficient and deficient
neonates (Table 2). In the case of the Fokl polymorphism, the difference in the
frequency of the FF genotype between sufficient and deficient neonates approached,

but did not reach, significance (67 vs. 36%, p=0.05).

3.2. Association between maternal polymorphisms and maternal Vitamin D
status

Fokl FF genotype was more frequent among mothers with 25(OH)D concentrations
>30 nmol/l compared with those with <30 nmol/l (57 vs. 25%, p=0.02) (Table 3).
Similar results were yielded when the threshold of 50 nmol/l was used to define
groups of maternal Vitamin D status [64% in mothers with 25(OH)D >50 nmol/I vs.
36% in those <50 nmol/l, p=0.02] (Table 4). No differences in the genotype
distribution of the other polymorphisms (Apal, Taql, Bsml, Fokl, Tru9l) were
detected between maternal groups of Vitamin D status, irrespectively of the Vitamin
D threshold applied. The probability of maternal deficiency [25(OH)D <30 nmol/l]
was 70% lower in Fokl FF mothers compared with Ff ones [odds ratio (OR) 0.3, 95%
confidence interval (CI) 0.09-0.92, p=0.03) and 88% lower in carriers of the FF

genotype than those of the ff genotype (OR 0.12, 95% CI 0.02-0.78, p=0.03).

3.3. Association between maternal polymorphisms and neonatal Vitamin D
status

Maternal Fokl FF genotype was more frequent among mothers of non-deficient
[25(OH)D >30 nmol/I] neonates compared with those of deficient ones [25(OH)D <30

nmol/l)] (62 vs. 31%, p<0.01) (Table 5). When the same analysis was performed

11
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using a neonatal 25(OH)D threshold of 50 nmol/l [25(OH)D <50 nmol/l vs. 25(OH)D
>50 nmol/l], no differences in the distribution of maternal VDR genotypes were
observed between groups. Mothers with the Fokl FF genotype presented a 73% lower
risk of giving birth to vitamin D deficient neonates (logistic regression - OR 0.27,

95% CI 0.1-0.77, p=0.01) compared with carriers of the Ff genotype (Table 6).

4. Discussion

This study aimed to evaluate the effects of maternal and neonatal VDR
polymorphisms on maternal and neonatal vitamin D status at birth, including a
population from a sunny Mediterranean area in Northern Greece. Results from this
maternal-neonatal pair cohort indicate that specific maternal genotypes might be
protective against neonatal vitamin D deficiency, defined according to internationally
applied criteria for vitamin D status [5], irrespective of neonatal VDR genetic
variation. These findings are the first to be reported on the association between
neonatal VDR polymorphisms and vitamin D status from this region.

A protective effect of maternal Fokl FF genotype against the development of neonatal
vitamin D deficiency [25(OH)D <30 nmol/l] was demonstrated. This effect was
rationally mediated through the attainment of sufficient maternal vitamin status
[25(OH)D >30 nmol/l and >50 nmol/l] [6,7], in mothers with the FF genotype.
Neonatal 25(OH)D concentrations at birth roughly follow the maternal pattern in the
deficient and insufficient mother groups, while follow the normal distribution in the
group of mothers with sufficient vitamin D status [3,4]. The attainment of maternal
vitamin D sufficiency during pregnancy is associated with a decreased prevalence of
maternal and neonatal complications [29]. Still, there is a lack of consensus regarding

specific maternal 25(OH)D thresholds that affect neonatal outcomes. Taking into

12
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account that neonatal vitamin D status at birth is decreased by approximately 25%
compared with the respective maternal vitamin D concentrations, a maternal
25(OH)D threshold of >50 nmol/l, could theoretically be able to prevent the
development of neonatal vitamin D deficiency. However, the extent to which this
phenomenon is affected by genetic variants and ethnic differences has not been
elucidated.

The present study was conducted in an area with a high prevalence of maternal
vitamin D deficiency during pregnancy, albeit abundant sunshine [30], mainly due to
sartorial habits, lack of food fortification [31] and reduced sunshine exposure,
especially during the hot summer months [32]. The identification of maternal Fokl FF
carriers could contribute to the overall improvement of prediction scores for
management of maternal and neonatal vitamin D deficiency, yet to be developed in
this region. In addition, such an approach could provide individualized management
of vitamin D supplementation to the future mother.

The Fokl FF genotype was associated with optimal maternal 25(OH)D concentrations
(=30 nmol/l and >50 nmol/l), still not with an increased probability of neonatal
vitamin D sufficiency [25(OH)D >50 nmol/l]. Possible reasons for this observation
might be related to the small study sample or other parameters implicated in the
regulation of maternal-neonatal vitamin D equilibrium. Apart from low dietary
vitamin D intake during pregnancy, additional factors such as sunlight / UVB
exposure, dark skin pigmentation and maternal anthropometry may constitute gene-
environment interactions that affect neonatal Vitamin D status.

Although an association between VDR polymorphisms and adverse pregnancy
outcomes, such as preterm birth and SGA neonates [18,33,34] has been suggested,

relative evidence is still inconclusive. In a case-control study, maternal but not
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placental, VDR Fokl Ff genotype was found to be lower in preeclamptic women
compared with controls [35]. On the other hand, Fokl VDR variant was associated
with a higher risk for preterm birth and recurrent pregnancy loss [36,37]. The
significant heterogeneity among the studies might be explained by the lack of
standardized thresholds for vitamin D status, which would enable a universal
stratification of mothers and neonates. The racial diversity of included populations
might also contribute to the inconsistency of the results, underlying the importance of
regionally-derived data in the implementation of national health policies for the
prevention of vitamin D-associated adverse maternal and neonatal outcomes [38, 39].

The main limitation of the present study is the relatively small sample size, which
attenuates its power to reveal gene-outcome associations. Consequently, the
probability that potentially significant associations may have been missed should be
considered. Furthermore, neonatal vitamin D status and adverse pregnancy outcomes
are dependent on complex gene-gene and gene-environment interactions, that
interplay at both maternal and neonatal levels. As a result, the variation in a single
gene cannot sufficiently explain the entire spectrum of the pathophysiology of vitamin
D deficiency at birth. On the other hand, the strengths of the present study are the
inclusion of an ethnically homogenous population of mothers and neonates and the
use of multiple thresholds to determine vitamin D status. Further studies with larger
sample sizes that will involve subjects of different ethnic origins are needed to
replicate the findings of the present study and clarify the complex underlying
mechanisms. To conclude, this study highlights the value of population-specific,
genetic profiling in understanding vitamin D deficiency among neonates and their

mothers.
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Table 1. Demographic and laboratory features of mothers and neonates.

Variable Value
Mothers’ age (years) 33+£6
BMI pre-pregnancy (kg/m?) 25+5
BMI term (kg/m?) 30+6
Weeks of gestation 39+£2
Smoking (%) 11 (15)

Alcohol consumption (%)

None: 51 (73) / Light: 12 (17) / Moderate: 7 (10)

Higher education (%) Primary: 13 (19) / Secondary: 42 (60) / Higher: 15
2D

Calcium supplementation (%) | 20 (29)

Maternal 25(OH)D (nmol/l) 47 £26

Neonatal 25(OH)D (nmol/l) 35+£20

Calcium (mg/dl) 9+1

PTH (pg/ml) 27+13

Data are presented as mean + standard deviation or absolute value (percentage).

Abbreviations: BMI: body mass index; PTH: parathyroid hormone; 25(OH)D: 25-

hydroxy-vitamin D.
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Table 2. Genotype distribution of neonatal VDR polymorphisms according to

neonatal vitamin D status.

Polymorphism | Genotype | Deficient | Insufficient | Sufficient | p-value
n=36 (52%) | n=19 27%) | n=15 (21%)
AA 12 (33) 8 (42) 3 (20)
APAI Aa 20 (56) 10 (53) 9 (60) 0.57
aa 4(11) 1(5) 3 (20)
TT 15 (42) 4(21) 8 (53)
TAQI Tt 16 (44) 11 (58) 5(33) 0.39
u 5(14) 421) 2 (13)
BB 9 (25) 7(37) 3 (20)
BSMI Bb 14 (39) 7(37) 6 (40) 0.84
bb 13 (36) 5 (26) 6 (40)
FF 13 (36) 10 (53) 10 (67)
FOKI Ff 19 (53) 8 (42) 5(33) 0.05
ff 4 (11) 1(5) 0(0)
(S[§] 24 (66) 11 (58) 11 (73)
TRUII Uu 10 (28) 8 (42) 4 (27) 0.70
uu 2 (6) 0 (0) 0 (0)

Deficient: 25(OH)D <30 nmol/l, Insufficient: 30< 25(OH)D <50 nmol/l, Sufficient:

25(0OH)D >50nmol/l. Data are presented as absolute value (percentage).

Abbreviations: VDR: Vitamin D receptor; 25(OH)D: 25-hydroxy-vitamin D.
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502  Table 3. Genotype distribution of maternal VDR polymorphisms according to

503  maternal vitamin D status [25(OH)D <30 nmol/l vs. 25(OH)D >30 nmol/1].

Polymorphism | Genotype Maternal vitamin D status p-value
25(OH)D <30 nmol/1 | 25(OH)D =30 nmol/l
n=24 (34%) n=46 (66%)
AA 10 (42) 19 (43)
APAI Aa 11 (46) 22 (46) 0.98
aa 3(12) 5(11)
TT 7(29) 18(39)
TAQI Tt 12 (50) 21 (46) 0.60
tt 521 7(15)
BB 10 (42) 16 (35)
BSMI Bb 8(33) 13 (28) 0.63
Bb 6 (25) 17 (37)
FF 6 (25) 26 (57)
FOKI Ff 14 (58) 18 (39) 0.02
ff 4(17) 24
UuU 16 (67) 25(59)
TRU9I Uu 8(33) 18 (39) 0.30
Uu 0(0) 3D

504

505 Data are presented as absolute value (percentage). Significant differences are
506  presented in bold.

507  Abbreviations: VDR: Vitamin D receptor; 25(OH)D: 25-hydroxy-vitamin D

508
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Table 4. Genotype distribution of maternal VDR polymorphisms according to

maternal Vitamin D status [25(OH)D <50 nmol/l vs. 25(OH)D >50 nmol/1].

Maternal vitamin D status

25(OH)D <50 nmol/l1 | 25(OH)D >50 nmol/l
Polymorphism | Genotype p-value
n=45 (64%) n=25 (36%)
AA 19 (42) 10 (40)
APAI Aa 22 (49) 11 (44) 0.68
aa 49 4 (16)
TT 14 (31) 11 (44)
TAQI Tt 23 (51) 10 (40) 0.60
tt 8(18) 4(16)
BB 17 (38) 9(36)
BSMI Bb 15 (33) 6 (24) 0.57
bb 13 (29) 10 (40)
FF 16 (36) 16 (64)
FOKI Ff 23 (51) 9 (36) 0.02
ff 6 (13) 0(0)
UuU 27 (60) 14 (56)
TRUII Uu 16 (36) 10 (40) 091
uu 24) 1(4)

Data are presented as absolute value (percentage). Significant differences are

presented in bold.

Abbreviations: VDR: Vitamin D receptor; 25(OH)D: 25-hydroxy-vitamin D.
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Table 5. Genotype distribution of maternal VDR polymorphisms according to

neonatal Vitamin D status [Vitamin D deficient: 25(OH)D <30 nmol/l, Vitamin D

non-deficient: 25(OH)D >30 nmol/1].

Neonatal vitamin D status

25(OH)D <30 nmol/l 25(OH)D =30 nmol/l
Polymorphism | Genotype p-value
n=36 (51%) n=34 (49%)
AA 15 (42) 14 (41)
APAI Aa 17 (47) 16 (47) 1.00
aa 4 (11) 4(12)
TT 1131 14 (41)
TAQI Tt 18 (50) 15 (44) 0.69
Tt 7(19) 5(15)
BB 14 (39) 12 (36)
BSMI Bb 12 (33) 9 (26) 0.63
bb 10 (28) 13 (38)
FF 11 31) 21 (62)
FOKI Ff 21 (58) 11(32) <0.01
ff 4(11) 2 (6)
UuU 23 (64) 18 (53)
TRU9I Uu 12 (33) 14 (41) 0.59
uu 1(3) 2 (6)

Data are presented as absolute value (percentage). Significant differences are

presented in bold.

Abbreviations: VDR: Vitamin D receptor; 25(OH)D: 25-hydroxy-vitamin D.
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Table 6. Association between maternal Fokl genotypes and risk of maternal and

neonatal Vitamin D deficiency [25(OH)D <30 nmol/l].

Outcome Maternal OR Cl p-value
genotypes

Neonatal deficiency FF vs. Ff 0.27 0.10-0.77 0.01

Maternal deficiency FF vs. Ff 0.30 0.09 - 0.92 0.03

Maternal deficiency FF vs. ff 0.12 0.02-0.78 0.03

Abbreviations: OR: odds ratio, CI: confidence interval
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