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ABSTRACT The biggest fear when deploying machine learning models to the real world is their ability
to handle the new data. This problem is significant especially in medicine, where models trained on
rich high-quality data extracted from large hospitals do not scale to small regional hospitals. One of
the clinical challenges addressed in this work is magnetic resonance image generalization for improved
visualization and diagnosis of hip abnormalities such as femoroacetabular impingement and dysplasia.
Domain Generalization (DG) is a field in machine learning that tries to solve the model’s dependency on the
training data by leveraging many related but different data sources. We present a new method for DG that is
both efficient and fast, unlike the most current state of art methods, which add a substantial computational
burden making it hard to fine-tune. Our model trains an autoencoder setting on top of the classifier, but the
encoder is trained on the adversarial reconstruction loss forcing it to forget style information while extracting
features useful for classification. Our approach aims to force the encoder to generate domain-invariant
representations that are still category informative by pushing it in both directions. Our method has proven
universal and was validated on four different benchmarks for domain generalization, outperforming state of
the art on RMNIST, VLCS and IXMAS with a 0.70% increase in accuracy and providing comparable results
on PACS with a 0.02% difference. Our method was also evaluated for unsupervised domain adaptation and
has shown to be quite an effective method against over-fitting.

INDEX TERMS Computer Vision, Deep Learning,Domain Adaptation, Domain Generalization, Transfer
Learning.

I. INTRODUCTION

DEEP learning (DL) and Convolutional neural networks
(CNN) empowered the computer vision field to be used

in many situations efficiently and provide very promising
results. Nowadays, all of our smart phones use facial recogni-
tion as an option for authentication with Federated Learning
[1], and all new self-driven cars [2] are based mainly on
a combination of deep CNNs for road image processing.
This massive adoption raises the bar for computer vision
systems to be more robust to edge cases and generalizes well
in unforeseen situations. As useful as DL techniques are,
deploying them and using them on real-world data brings
some problems that we don’t commonly see while working
on toy datasets or training data in general [3], even if it

was taken from previous users of the system. As powerful
as they are, Deep Convolutional Networks showed a huge
dependency problem on the data set they were trained on,
commonly known as over-fitting [4]. This problem (called
domain-shift [5] or concept drift [6]) is mainly due to the fact
that the training data set (Source domain) comes from a dif-
ferent distribution than the deployment data (target dataset),
resulting in a decrease in the performance of the model [7],
largely due to the fact that the latent distribution extracted
by the encoders for both domain don’t overlap, this can
also be confirmed by using several Manifold Learning [8],
[9] techniques as Bekkouch et al. showed [10] by reducing
the dimensions of the rich latent space into a lower dimen-
sionality and visualizing the distributions of both domains.
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FIGURE 1. A horse wrongly predicted as an Arabian camel by ResNet,
because of the surroundings. The left part is the LIME interpretation of the
ResNet decision.

FIGURE 2. A horse wrongly predicted as a macaw parrot by ResNet, because
of different colors (painting). The left part is the LIME interpretation of the
ResNet decision.

Manifold Learning and domain generalization (deep learning
in general) are both similar on many levels since they both
reduce the input shape and learn an underlying structure in
high dimensional data. The main difference between them
is the ability for deep learning based feature extraction to
include the class information in the latent space that is easily
interpretable by a deep learning classifier unlike manifold
learning methods which are mostly unsupervised or lack the
easy integration with other deep learning components.

Such changes in real life can occur from very simple things
like a change in image resolution or the brightness of the
pictures or even changes in the background. As Fig 1 shows,
the horse was misclassified as an Arabian Camel by ResNet
mostly because of the sand and Arabian architecture in the
background, which the Local Interpretable Model-agnostic
Explanations (LIME) [11] algorithm (used to interpret the
decisions of black-box models per sample [12]) confirms
by showing the pixels on which the ResNet relied on to
make the decision. The same can be found in Fig 2 where
a horse painting was misclassified as a macaw parrot because
of the resemblance between their colors. Such problems are
unavoidable in real datasets, which created a new field in
transfer learning named Domain Generalization (DG).

DG can be also seen as a generalized case of the over-
fitting problem, in the sense that the model is learning the
data and not the task, even though in DG cases the model
performs very well on the source test data, unlike traditional
over-fitting scenarios. Domain Generalization (DG) [13] is a
sub-field of Transfer Learning (TL) [14] that aims to solve the
aforementioned problem by combining multiple data sources
to train a more resilient model in hopes of generalizing
to unseen domains. DG assumes the existence of multiple
sources of data Ds

i (e.g. Photo, Art Paintings, and Cartoon)

that are used for the same task T si (e.g. classifying images
of animals), and a target domain Dt (e.g. Sketches of the
same classes of animals) that is harder to work with (harder
to label or to collect). Most DG methods provide an extension
to a closely related field, Domain Adaptation (DA) [10], [15]
which often uses one source domain and one target domain
to solve the domain shift problem. At the time of training,
DA assumes the availability of target domain data but can
be classified according to the presence of labels in the target
domain in three key ways: Supervised [16], Unsupervised
[10], and Semi-Supervised DA [17]. DG differs from DA in
the fact that we do not have access to the target data nor its
labels at training phase. Therefore, DG aims at building a
model that can generalize well to unseen domains rather than
generalizing to a single known domain.

Researchers have approached the problem of domain gaps
and their consequences in many ways. One traditional yet
very commonly used technique is to treat this problem as an
over-fitting problem and use regularisation techniques to help
the model (parametric models) generalize well [18], [19].
Many techniques have proven to be useful in the case of
deep neural networks such as learning rate decay, dropout
[18], batch normalisation [19], L1, L2 regularisation [20]
and Shakeout [21]. Although these techniques were proven
effective to help the model generalize well within the same
data set and achieve higher test accuracy, however, it is not
the most effective method for DG. Hence, we need to develop
new methods that are both effective for over-fitting and for
DG problems.

Recent approaches for DG are commonly neural-network-
based and are separated into two main types: one-for-all
and one-for-each. The former uses all source domains and
learns a common model that works for all of them hoping it
would generalize to future domains [22] whereas the latter
approach (one-for-each), trains a different branch for each
source domain. Next, at evaluation, we measure the closeness
of each source domain to the target image and only consider
the output of the corresponding classifier [23].

In this paper, we deal with the case of one-for-all DG in its
largest definition given its applicability and speed increase
over the the one-for-each type. We implemented a new DG
method that can generalize from multiple source domains
to an unknown target domain, from one domain to another,
and from one domain to itself, making this method easily
applicable in many real world scenarios where the CNN or
the neural networks in general show signs of over-fitting and
dependency on the underlying distribution of the training
data.

Similar to JiGen [22], who trains a jigsaw puzzle solver
over the images to help the encoder better learn the internal
structure, our approach belongs to the one-for-all category
of DG approaches, focusing on how to use the training data
more effectively to help the model learn better features in
an unsupervised manner. In contrast to JiGen, the proposed
model uses an Encoder, a Decoder, and a classifier to forget
specific features of the data and not to learn it better. Unlike
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traditional Auto-Encoders that are trained to reconstruct the
input, by training a Decoder to reconstruct the images and
training the encoder in an adversarial way against the recon-
struction loss, we force the Encoder to neglect the domain-
specific details and only forward the information required for
classification.

As proven by our experimental results on single source
DG, our technique can also be helpful as a measure against
over-fitting. Our approach uses pure deep learning based
methods that can be run easily on GPUs, making it simpler to
train and quicker to converge, unlike most other DG methods
that add a huge computational burden such as JiGen (to make
the jigsaw puzzle).

In short, this paper presents a new DG system based adver-
sarial auto encoders by training the encoder to extract only
classification needed information and remove all the style
details noise, which achieves state-of-the-art efficiency in
various scenarios for Domain Generalization, Domain Adap-
tation and Overfitting without adding a huge computational
burden, making it more applicable to real-world scenarios
and easily incorporated into more complex architectures. We
evaluated our method against the state of the art deep learning
methods based on five primary datasets and 13 sub-datasets
and showed that our method outperforms most of them on all
tasks.

II. RELATED WORKS
The field of transfer learning has witnessed a great deal of
research interest, especially domain adaptation and domain
generalization as two sub-fields of TL. Hence we will present
some of the most prominent works in both fields. Further-
more, since our method is based on the use of a robust adver-
sarial loss function, we will also briefly discuss works related
to designing adversarial loss functions and reconstruction
losses for neural networks in different problems.

A. DOMAIN ADAPTATION
Domain Adaptation has been one of the most active research
areas in the last few years, and has been approached in both
traditional Machine learning ways and more sophisticated
Deep Learning based techniques. The deep Learning tech-
niques that were applied on DA varied a lot but they all
aimed at achieving two properties for the latent space of
the input: (i) extract features from the data of both domains
that can be used by a classifier to get good accuracy i.e
Category Informative Latent Space, and (ii) make the latent
spaces of both domains harder to tell apart i.e Domain
Invariant Latent Space. For this purpose many researchers
have used Generative models to generate images from both
domains aiming at finding a mapping between domains that
allows the model to reduce the domain gap [24]. Only the
discriminating portion of the Generate Adversarial Network
has been used to formulate a minimization-maximization
competition between the feature extractor (Encoder) and the
domain discriminator that showed more promising results
and faster convergence [10], [25].

B. DOMAIN GENERALIZATION
Domain Generalization is less explored as topic than Domain
Adaptation, but the ability to access multiple source do-
mains allowed for more innovation and creative techniques.
Most DG methods primarily fall into two main streams:
(i) Calculating the similarity between and target image and
possible source domains and then this information is used
later to either combine or select a certain classifier to use
for this sample as in BSF [26]. (ii) Combining the source
domains in a way that allows the model to learn domain
invariant characteristics that can generalize well to unseen
domains, one of the state of the art techniques attempts to
learn domain agnostic representation by rearranging the input
images and asking the network to solve it as a puzzle [22].
While it has proven to be very successful, it faces a risk as
different groups will share the same sub-components but are
connected together differently.

C. ADVERSARIAL & RECONSTRUCTION LOSSES
Using Convolutional Auto Encoders while Pre-Training
CNN classifiers is considered one of the best practices when
the dataset is too small or when the labels are too sparse.
[27]. In order to assist with the absence of labeled data, this
task leverages the availability of unsupervised data under re-
construction loss. They are also used widely used for outlier
detection [28]–[30], novelty detection [31], auto-drawing for
with RNNs [32] and Open-Set Recognition [33]. Recon-
struction loss is also used for domain adaptation by jointly
learning a shared encoding representation for: i) supervised
classification ii) unsupervised reconstruction of unlabeled
data [34], this way the encoder learns to extract information
from the target dataset too making it more familiar with it.
This idea goes exactly against ours where our goal is to
maintain the latent space empty of any style information that
can reduce the performances of the classifier. Adversarial
losses, which are at the heart of most recent developments
in Computer Vision and Generative models, are another very
useful type of loss functions [35]. Adversarial losses allow
us to define an unwanted situation and go the other way
around it. It has been employed in GANs to generate new
images similar to the real ones by detecting the differences
between them and working to reduce them. In the same
manner, [24] has used it to generate images in both domains,
whereas [10] has defined the problem of the domains being
distinguishable and trained the encoder on the opposite of it,
which allowed it learn more domain agnostic representations
of the images. Another interesting approach was separating
source and target domains from the adversarial losses by only
applying to one domain only where [36] applied it target
dataset and kept the source domain the same whereas [37]
applies it to the source domain and keeps the target domain
fixed.

III. METHODS
We explain the approach of Adversarial Reconstruction Loss
for Domain Generalization and the motivation behind it in
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FIGURE 3. Model Architecture: The Encoder generates latent representation z which is used by the Decoder to reconstruct the input using LR and by the
Classifier to classify the sample using LC . The encoder is trained on the classification LC and adversarial LA losses.

this section. We base our approach on the premise that for
the same problem, deep neural networks can not generalize
to different domains because they are too dependent on their
training domain. In other words, the CNN encoder portion
is learning features that are helpful for prediction but also
for extracting other domain-specific features that restrict the
model’s ability to handle unseen data. The CNN (Enoder)
part of the models is responsible for the feature extraction;
our main assumption is that the feature extractor extracts two
types of information. Type 1 is the class-informative, which
helps make the decisions and the classification, whereas type
2 is the misleading background noise. Thus, we characterize
the model’s ability for generalizing to unseen datasets by
its ability to forget the data’s peculiarities, symbolizing how
much of the input has been overlooked or neglected by the
encoder.

We illustrate the Encoder’s ability to sustain low-level
image information despite the fact that the only loss we used
for the training was the classification loss. Figure 4 explains
the amount of information the Encoder preserves even after
applying extreme input alterations.

After training an Encoder plus a Classifier setup on
MNIST, the images were reconstructed based on a frozen
Encoder and newly trained Decoder. These findings on the
test dataset support our hypothesis that even though we train
the encoder for classification only, it retains numerous input
features from its source data.

A. DOMAIN GENERALIZATION
As with all DG methods, our technique requires S source
datasets (domains) and at least one target dataset (domain).
Ni is used to represent the ith source dataset’s sample size,
such that Xs

i = {(xsi,j , ysi,j)}
Ni
j=1, where xsi,j references the

jth sample of the ith source dataset and ysi,j is its correspond-

ing label. Moreover, we denote M as the target domain’s
sample size with Xt = {(xtj , ytj)}Mj=1, where xtj is the jth
sample from the target dataset and ytj is its label, the t is used
to distinguish between source and target domains.

The three main components of our model are: Encoder,
Decoder, and a classifier, as shown in Figure 3. The central
part of the model and our point of focus is the Encoder E(.)
with its weights θE , which maps the input samples x into
the latent embedding space z. These features are commonly
known as the images’ latent representation.

The Classifier C(.) with weights θC , is a feed forward
neural network and the whole classification model is the com-
bination of the encoder and the classifier which is represented
with the function fc = e ◦ c , where e : X −→ Z is the
encoder function that maps the images into feature vectors
and c : Z −→ Y is the classification function operating on
the latent space.

The last part of our method is the Decoder D(.), which
will not be included in the final model since it is not part of
the inference process. Its weights are denoted as θD and we
use it to reconstruct the input samples given their latent space
representation such that the reconstruction function fd = e◦d
where d : Z −→ X .

Each component of the architecture is trained with a
different combination of losses, starting with the Classifier
which is trained by minimizing the classification error (cross
entropy loss) H(., .)

Lc(θE , θC) =
S∑
i=1

( ∑
xs
i∈Xs

i

H(C[E(xsi )], y
s
i )

)
(1)

The decoder’s weights are updated to reduce the recon-
struction Loss (Mean Squared Error) between input sample
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FIGURE 4. Reconstructed images formed by training a decoder on a model
(Encoder+Classifier) trained only for classification. Reconstructed on the left,
Input image on the right.

x and the reconstructed image x̂ even though it doesn’t have
access to the input, it does that by mapping the latent space
into a data sample.

LR(θD) =
S∑
i=1

( ∑
xs
i∈Xs

i

‖D[E(xsi )]− xsi‖
2

)
(2)

Our method’s crucial element is that the reconstruction
loss LR will not be used to update the encoder’s weights
directly. Nevertheless, the encoder will be trained on both the
classification loss and the adversarial of the reconstruction
Loss:

Algorithm 1: Domain Generalization with Adversar-
ial reconstruction loss
Input: Xs — Source domain images.

Y s — Source domain image labels.
generalizing_epochs — NB epochs 1
pretraining_epochs — NB epochs 2
α — The learning rate
β — Balancing factor - hyperparameter

Output: θE — Weights of the encoder
θC — Weights of the classifier

// Start Pre-training the Model
for i← 1 to generalizing_epochs do

for j ← 1 to nb_batches do
Sample a batch of source images
(xj1s, y

j
1s), (x

j
2s, y

j
2s), ..., (x

j
Ns, y

j
Ns);

θE = θE − α∂LC

∂θE
Equation 1 ;

end for
end for

// Start the Generalization process
for i← 1 to pretraining_epochs do

for j ← 1 to nb_batches do
Sample a batch of source images
(xj1s, y

j
1s), (x

j
2s, y

j
2s), ..., (x

j
Ns, y

j
Ns);

θD = θD − α∂LR

∂θD
Equation 2 ;

θC = θC − α∂LC

∂θC
Equation 1 ;

θE = θE − α∂(LA+βLC)
∂θD

Equation 1, 3 ;

end for
end for
return θE , θC

LA(θE) = −
S∑
i=1

( ∑
xs
i∈Xs

i

‖D[E(xsi )]− xsi‖
2

)
(3)

In computer vision, the initialization of the model’s
weights using an auto-encoder architecture and learning
features useful for reconstructing the input is considered
a standard best practice; and assumed to help build better
classifiers using fewer data [38]–[41]. We propose to take in
the opposite route, enabling the Encoder to update its weights
under the classification loss and skipping the structure, shape,
and other information that overfits the network.

The step by step process of the training is described in
Algorithm 1.

1) Extension to Unsupervised Domain Adaptation
Our method is easily generalisable to the Unsupervised Do-
main Adaptation setting. Given the unsupervised nature of
the Adversarial Reconstruction Loss, we can always add
more samples without labeling which will help the model
generalize even better. We also add in this setting a separation
loss that operates on the output of the encoder similar to Lin-
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ear Discriminant Analysis (LDA). The optimization goal is
to maximize the between-class variability (making different
classes further apart from each other in the latent space) and
minimize the within-class variability (making samples from
the same class close together). Our separability loss is defined
as follows:

Lsep(θE) =
(∑

i∈Y
∑
zij∈Zi

d(zij , µi)∑
i∈Y d(µi, µ)

)
× λBF (4)

λBF =
mini |Y ti |
maxi |Y ti |

where Zi is the set of all the latent representations of both
source and target domains, that belongs to class i. For the
target domain classes, we used the pseudo-labels that are
produced with a high level of confidence from the classifier
since we assume that the target data has no labels for training.
µi is the mean of all latent representations with label i, such
that µi = mean(Zi), whereas µ is the mean of all the latent
representations for both source and target µ = mean(Z).
d(., .) is the distance function used to measure the dissimi-
larity between the latent vectors. λBF is a normalizer since
the behavior of this loss is very fluctuating in cases where
the batch doesn’t contain a large enough amount for each
class, and it represents the ratio between the number of least
represented pseudo-labeled target samples mini |Y ti | and the
number of the most represented ones maxi |Y ti |.

2) Extension to Over-fitting
Over-fitting arrives when a model has learned the training
data too well. It is very common with strong models such as
neural networks and decision trees. A number of techniques
for combating over-fitting in neural networks exist such as re-
ducing the model size, reducing the input data’s dimensions,
regularization (L1, L2), dropouts, and batch normalization,
yet most of them constrain the model from actually learning
category informative features.

Our technique although made for DG, can be easily ap-
plied in the case of single source datasets and contrarily to
other over-fitting techniques, ours allows the model to learn
as deep as possible without letting it over-fit on the style
of the training data. Our method is not exclusive with other
techniques, but it should be used along the side of most of the
previously mentioned techniques since they are considered to
be the best practice for the training process.

IV. ANALYSIS
Our Adversarial Reconstruction Loss method provided out-
standing performances compared to other states of the art
methods on several experiments using different datasets. This
section is split into four main parts; the first one is the dataset,
where we present the five primary datasets and their 13 sub-
datasets. The second part is the main results section, where
we compare our model against several Domain Generaliza-
tion methods on four benchmarks. The third and last parts are

related to unsupervised domain adaptation and over-fitting
results.

A. DATASETS
To explore our Method’s effect on the domain generalization
problem and its related issues (UDA, overfitting), we analyze
five datasets extensively chosen in the field. The first one
is MNISTR; the Rotated MNIST dataset is an alteration to
the popular digits classification dataset MNIST. The different
domains of RMNIST are created via rotating images by
15 degree increments: 0, 15, 30, 45, 60, and 75 (referred
to as M0, ...,M75). We employ a leave-one-out situation at
the training phase, signifying that we will have five source
domains and one remaining for the target. Nevertheless, the
data has an identical test/train split as the primary MNIST;
therefore, there is no overlap between train and test samples
of the different domains. Next, we use the MNIST-SVHN-
USPS Street View House Numbers (SVHN) which is a real-
world image dataset for digit recognition commonly used
with MNIST for domain adaptation tasks. SVHN is obtained
from house numbers in Google Street View images and is
a little bit more challenging because of many side artifacts
in it and the inclusion of color. US Post Office Zip Code
Data (USPS) Handwritten Digits has 7291 train and 2007
test images. The images are 16*16 grayscale pixels which
make them similar to MNIST but less complex. This com-
bination of datasets is used both for Domain Generalization
and Unsupervised Domain Adaptation. PACS dataset is a
new benchmark challenge dataset for object classification
which covers seven object classes (person, elephant, dog,
house, giraffe, horse, and guitar) spread across four differ-
ent domains (Photo, Art Paintings, Cartoon, and Sketches),
producing a more tough predicament for our models. Hence,
we start with a pre-trained imagenet model, namely AlexNet.
VLCS dataset is commonly used in Domain Generalization
settings as a benchmark for performance evaluation on multi-
class object recognition tasks. VLCS is an abbreviation of
the four datasets that make it up: PASCAL Visual Object
Classes 2007 (V) [42], LabelMe (L) [43], Caltech (C) [44],
and SUN09 (S) [45]. It was created by combining the five
common classes between its sub-datasets, which are: Birds,
Cars, Dogs, Chairs, Person. For evaluation purposes, we use
the same setup as the previous works [13], [22], [46], [47]
by using pre-extracted DeCAF6 features (4096-dimensional
vector) and performing a leave-one-domain-out validation
by randomly splitting each domain into 70% training and
30% testing. We also use a two fully connected layer neural
network inputting to two fully connected layers with sizes
of 1024 and 128 respectively with ReLU activation. IX-
MAS is a cross view action recognition dataset containing
eleven different human actions that are recorded by five
cameras in different positions. We aim to build an action
detector that works regardless of the angle of view. We
follow the same experimental setup as [47]–[49] by using
the same Dense trajectory input features and excluding the
irregularly performed actions by only keeping the first five
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actions (check watch, cross arms, scratch head, sit down,
get up) performed by the six actors (Alba, Andreas, Daniel,
Hedlena, Julien, Nicolas). Each camera position is treated
as a separate data domain named (0,1,2,3,4). Following the
previous works, we generate a 4-source domain generaliza-
tion task (leave-one-domain-out). Skin lesion dataset is a
combination of 7 public datasets for skin lesion detection
collected from different equipments. The main dataset is
HAM10000 [50] which is used as part of the source data
of all experiments following the setup of [51], [52]. The
other datasets are Dermofit (DMF) [53], Derm7pt (D7P) [54],
MSK [55], PH2 [56], SONIC (SON) [55], and UDA [55]. All
the datasets contain 7 common lesions which are melanoma
(mel), melanocytic nevus (nv), dermatofibroma (df), basal
cell carcinoma (bcc), vascular lesion (vasc), benign keratosis
(bkl), and actinic keratosis (akiec). Following [52] we split
the data into training (50%), validation (20%) and testing set
(30%) in a stratified manner. In each experiment we choose
one of the secondary datasets as a target domain and keep
HAM10000 and the other dataset for the source domains.
We use a pretrained Resnet18 as the backbone of our model
for fair comparison with the other methods. Hip MR scan
Landmark detection HML dataset is a 3D dataset of 423
3D Magnetic resonance scans of the hip area for 114 patients
[57]. The dataset contains 12 landmarks annotated by doctors
for diagnosis of several pathologies such as Hip dysplasia and
impingement syndrome. The dataset contains three domains
which are the different MRI sequences (T1 weighted, T2
weighted and PD weighted). All three modalities are needed
for correct indentification of early signs of hip abnormalities.
However there is no garentee that all three of them will be
available at a specific hospital. The challenge is therefore to
mitigate the problem of missing sequences and ensure higher
rates of abnormality defections. For each experiment we use
two source domains and the remaining one is the target. We
split the data into 80% training 5% validation (For hyper-
parameter tuning) and 15% testing in a stratified manner
according to the pathologies for the patients and the patient
IDs don’t overlap between sets. We use a pretrained Resnet18
as the backbone for our model and decoder of 3 layers.

B. DOMAIN GENERALIZATION RESULTS
1) digit classification: RMNIST
For the task of digit classification, we assessed our model’s
performance versus numerous state of the art deep learning
methods in domain generalization which are: MTAE [58],
CAE [59], BSF [26], UDS [46], PSSO [60], AFLAC [61].
We were inspired to pursue this method after conducting
experiments on the MNIST dataset to understand domain de-
pendency better. Therefore, our model performs significantly
better on this dataset than all the current state of the art, as
Table 1 clearly shows our model’s performance exceeds all
the other models on average and is ranked at least first or
second in each experiment.

The reported results are the averaged over 20 runs
of the model with the learning rate set to 0.003,

generalizaing_epochs = 50, pretraining_epochs = 100,
and the balancing factor set to β = 0.1. Our method
outperformed all other methods on average providing more
consistent results than others especially on the extreme case
of 75 degrees, where we had 1.33% accuracy increase over
the second best method AFLAC. We trained our model on a
Tesla V100 SXM2 32 GB with a server with 64 cores and
80G of ram, for a total of 5 hours and 46 min. The time
needed to train the models for classification only without our
loss is 2 hours and 18 mins.

TABLE 1. Domain Generalization for digit classification: RMNIST. The
average accuracy over 20 runs of the model. We represent each experiment
by the name of its target dataset.

Method 0 15 30 45 60 75 mean

CAE [59] 72.1 95.3 92.6 81.5 92.7 79.3 85.5
MTAE [58] 82.5 96.3 93.4 78.6 94.2 80.5 87.5
PSSO [60] 94.2 82.5 96.3 93.4 78.6 80.5 87.5
UDS [46] 84.6 95.6 94.6 82.9 94.8 82.1 89.1
BSF [26] 85.6 95.0 95.6 95.5 95.9 84.3 92.0

AFLA [61] 89.3 98.8 98.3 93.3 97.4 88.1 94.2

ARL (ours) 89.5 97.2 97.3 98.1 96.7 89.4 94.7

In order to fully understand what our technique achieves
we regenerated the experiment from Fig 4 but with adver-
sarial reconstruction loss used for the training of the model.
So our experiment goes as follows, We train the Encoder by
the adversarial reconstruction loss and the classification loss
as described in Algorithm 1 and after convergence, we re-
train a new decoder on the latent space of the MNIST dataset
without changing the encoder weights. After it converges, we
evaluate the results on the test data with extreme rotations to
see if the same effects from the previous experiment Fig4 still
holds. We inferred that the results in Fig 5 are definitely dif-
ferent in this case where most of the reconstructions appear
to be centered and without rotation, unlike their respective
original inputs. Furthermore, we can see that most of the
specific details in the pictures tend not to appear in the
reconstructed images. We can also easily see that all the
reconstructions have the same class as their input. Proving
that the aim of our method was actually achieved and that the
learned features don’t contain information about the specific
details of the input yet they are still useful for classification.

2) Object Recognition 1: VLCS
We use the same experimental setup as the deep learning
works we compare our model with [13], [22] with our learn-
ing rate being α = 0.003 , generalizaing_epochs = 550,
pretraining_epochs = 300, and the balancing factor is set
to β = 0.15. We found the values of our hyper parameter
with 10-fold cross validation hyper parameter tuning and we
report the average test accuracy over 20 experiments.

As Table 2 shows, our model achieves the best perfor-
mance on two experiments out of 4 and is quite competitive
in the rest being second and third, whereas on average it
achieves the best results.We trained our model on a Tesla
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TABLE 2. VLCS results for Domain Generalization

Source Target
Deep All

(Base line)
MTAE [58] MMD-AAE [61] CCSA [46] MLDG [62] Epi-FCR [47] MASF [16] JiGen [22] Ours

L,C,S V 68.67 63.90 67.70 67.10 67.7 67.1 69.14 70.62 68.93
V,CS L 63.10 60.13 62.60 62.10 61.3 64.3 64.90 60.90 65.12
V,L,S C 92.86 89.05 94.40 92.30 94.4 94.1 94.78 96.93 96.97
V,L,C S 64.11 61.33 64.40 59.10 65.9 65.9 67.64 64.30 65.78

Average 72.19 68.60 72.28 70.15 72.3 72.9 74.11 73.19 74.2

FIGURE 5. Reconstructed images formed after applying our ARL
Generalization and training a new decoder to reconstruct the input images.
Reconstructed on the right, Input image on the left.

V100 SXM2 32 GB with a server with 64 cores and 80G
of ram, for a total of 8 hours and 12 min. The time needed to
train the models for classification only without our loss is 4
hours and 12 mins.

3) Object Recognition 2: PACS
We followed the same protocol as the previous deep learn-
ing papers, by using the same train/test/validation splits
for a fair comparison and the same model sizes and
pre-trained weights. Our learning rate is α = 0.003 ,
generalizaing_epochs = 150, pretraining_epochs =
500, and the balancing factor is set to β = 0.25.

PACS object recognition dataset provides a much more
challenging setting due to its big image resolution, small
sample size, and the notable variation among the domains.
Nevertheless, our method outperformed most of the state of
the art as table 3 shows. Furthermore, it gave near-perfect

results on the Photo target domain being the best at this
experiment. Overall, our model performed very well and was
ranked 2nd after JigSaw with similar performances as the
MetaReg model. Even though our model did not rank first,
it is still more applicable in real-world scenarios, given its
training speed and simplicity.

We trained our model on a Tesla V100 SXM2 32 GB with
a server with 64 cores and 80G of ram, for 2 hours and 37
min per experiment. The time needed to train the models for
classification only without our loss is 1 hours and 28 mins.

TABLE 3. AlexNet PACS dataset results for Domain Generalization.

Method Photo Art Cartoon Sketches Mean

IRDCD [63] 82.9 61.2 63.8 57.51 66.7
deeper [64] 89.50 62.86 66.97 57.51 69.21
MetaGen [62] 88.00 66.23 66.88 58.96 70.01
SSO [60] 87.9 66.8 69.7 56.3 70.2
BSF [65] 90.2 64.1 66.8 60.1 70.3
MetaReg [66] 91.07 69.82 70.35 59.26 72.62
JiGen [22] 89.00 67.63 71.71 65.18 73.38
ARL (ours) 92.1 66.42 68.87 63.07 72.62

4) Action Recognition:IXMAS
IXMAS is a human action dataset with 5 actions and 5
different domains. We train on 4 domains and test on the
last one. We report the average accuracy of over 20 runs.
We use one hidden layer network with 2000 hidden neurons
as the previous works did. Our learning rate is α = 0.01 ,
generalizaing_epochs = 50, pretraining_epochs = 150,
and the balancing factor is set to β = 0.1. We trained our
model on a Tesla V100 SXM2 32 GB with a server with 64
cores and 80G of ram, for a total of 6 hours and 08 min. The
time needed to train the models for classification only without
our loss is 3 hours and 02 mins.

From our experimental results in Table 4 we see that our
model is very competitive with the state of the art having the
best average accuracy and if most experiments either being
the best or the 2nd best.

5) Skin Lesion
Skin Lesion dataset is an image classification dataset used to
benchmark the knowledge transfer abilities of several mod-
els. It contains 7 classes and 7 domains (1 primary and 6 sec-
ondary). For each of the experiments of Table 5 we use one
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TABLE 4. Cross-view action recognition results (accuracy. %) on IXMAS
dataset for Domain Generalization. Best result in bold.

Source 0,1,2,3 0,1,2,4 0,1,3,4 0,2,3,4 1,2,3,4
Ave.

Target 4 3 2 1 0

LRE-SVM 75.8 86.9 84.5 83.4 92.3 84.6

CCSA [46] 75.8 92.3 94.5 91.2 96.7 90.1

MMD 79.1 94.5 95.6 93.4 96.7 91.9

DANN 75.0 94.1 97.3 95.4 95.7 91.5

MLDG 70.7 93.6 97.5 95.4 93.6 90.2

CrossGrad 71.6 93.8 95.7 94.2 94.2 89.9

MetaReg 74.2 94.0 96.9 97.0 94.7 91.4

AGG 73.1 94.2 95.7 95.7 94.4 90.6

Epi-FCR 76.9 94.8 99.0 98.0 96.3 93.0

Ours 79.4 94.2 98.4 97.1 96.5 93.1

of the 6 secondary dataset as the target data and the rest as the
source. We report the results of the average of 5 runs on each
experiment and take the results as mentioned in their original
papers. We use the same experimental setup as the state of
the art methods used for comparison, by training a Resnet
18 as our base classifier and using mirror of their encoder
as our decoder component. Our learning rate is α = 0.003 ,
generalizaing_epochs = 75, pretraining_epochs = 150,
and the balancing factor is set to β = 0.2. We trained our
model on a Tesla V100 SXM2 32 GB with a server with 64
cores and 80G of ram, for a total of 7 hours. The time needed
to train the models for classification only without our loss is
4 hours .

As the results on Table 5 show, all the DG techniques can
outperform the DeepAll methods (which trains on all the
source domains using only the classification loss) which is
the expected behaviour. The best method on average is ours
with a significant marge of 1.58%. Our paper provides the
best results on 3 out of 6 experiments followed by LDDG and
MASF. We can see that the results of the different methods
are overall consistent with the difficulty of the domain gaps,
where they provide good results on datasets such as PH2 and
SON, and fail on datasets such as DMF.

6) Pelvic Landmark Detection

The pelvic Landmark Detection [57] dataset is a 3D MR
scans dataset manually annotated by expert doctors. It con-
tains 12 landmarks with 423 3D scans of size ranging from
350*350*42 to 370*370*128 for the x, y, and z axes re-
spectively.The dataset contains 3 different domains which
represent the different MR squences used for each scan: T1,
T2, and PD. We report the results of the average of 20 runs
on each experiment. We use a Resnet 18 as our base classifier
and using mirror of their encoder as our decoder component.
Our learning rate is α = 0.01 , generalizaing_epochs =
50, pretraining_epochs = 150, and the balancing factor
is set to β = 0.03. We trained our model on a Tesla V100
SXM2 32 GB with a server with 64 cores and 80G of ram,
for a total of 12 hours. The time needed to train the models

for classification only without our loss is 8 hours .

FIGURE 6. Comparison of the deep all baseline versus our ARL models on
the task of landmark detection. Only four out of twelve landmarks are shown.
The 3D landmarks were projected into a coronal MR cross-section for better
visibility

We compared our model against two of the state of the art
methods in Domain Generalization which are JiGen and Epi-
FCR. Our model and all compared DG models outperform
the deep all baseline as shown in Table 6 and Fig 6. Our
method outperforms both of them but with a small mar-
gin against Epi-FCR which outperforms our method on the
T1, PD −→ T2 experiment. Our method stil outperforms
both methods on the two other experiments.

C. UNSUPERVISED DOMAIN ADAPTATION
In the case where the unlabeled target images exist during
the training (Unsupervised Domain Adaptation), we add an
extra loss to our model which is the Separability loss 4. We
explore the effects of this loss along with the performance
of our model on two challenging scenarios, MNIST-USPS-
SVHN dataset and the PACS data.

1) Digit Classification: MNIST-USPS-SVHN
This is the most common benchmark for domain adaptation
tasks and UDA specifically. Hence we follow the same exper-
imental setup as [10], [24]. We compare our results against
first the two baselines (Upper Bound UB, and Lower Bound
LB) which represent the accuracy of training and testing on
the target dataset, and the accuracy of training on the source
dataset only without access to the target dataset (not even
unlabeled images), respectively. We also compare it against
several of the state of the art deep learning methods in the
field such as TripNet [10], DuplexGan [24], TarGan [67],
Image2Image [68], Maximum Classifier Discrepancy [69],
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TABLE 5. Skin Lesion results for Domain Generalization. The bolded experiment is the best and underlined in the second.

Target DeepAll MASF [16] MLDG [62] CCSA [46] LDDG [51] ARL (ours)
DMF 0.2492±0.0127 0.2692±0.0146 0.2673±0.0452 0.2763±0.0263 0.2793±0.0244 0.2789±0.0137
D7P 0.5680±0.0181 0.5678±0.0361 0.5662±0.0212 0.5735±0.0227 0.6007±0.0208 0.6461±0.0319
MSK 0.6674±0.0083 0.6815±0.0122 0.6891±0.0167 0.6826±0.0131 0.6967±0.0193 0.6830±0.0172
SON 0.8613±0.0296 0.9204±0.0227 0.8817±0.0198 0.9045±0.0128 0.9272±0.0117 0.9184±0.0218
PH2 0.8000±0.0167 0.7833±0.0101 0.8016±0.0096 0.7500±0.0419 0.8167±0.0096 0.8453±0.0239
UDA 0.6264±0.0312 0.6538±0.0196 0.6319±0.0284 0.6758±0.0138 0.6978±0.0110 0.7418±0.0402
Avg 0.6287 0.6460 0.6396 0.6438 0.6697 0.6855

TABLE 6. Pelvic Landmark detection results for Domain Generalization. The
bolded experiment is the best.

Source T1, T2 T1, PD T2, PD AvgTarget PD T2 T1
Baselines

Deep All 0.8153 0.9360 0.8813 0.8875
Theoretical Max 0.9174 0.9821 0.9468 0.9487

Models
JiGen [22] 0.8690 0.9332 0.9214 0.9078

Epi-FCR [47] 0.8814 0.9420 0.9253 0.9162
ARL (ours) 0.8973 0.9261 0.9338 0.9190

Generate to adapt [70], Joint Adaptation Networks [71] and
Transferrable Prototypical Networks [72].

Our learning rate is α = 0.01 , generalizaing_epochs =
250, pretraining_epochs = 200, and the balancing factor is
set to β = 0.15. Table 7 shows that our method outperforms
most of the current state of the art techniques in 2 out of
4 experiments and ranked 2nd in the other two being only
a few 0.05% away in the MNIST-USPS experiment. We
can also see that our ARL-sep model outperforms our ARL
model on all experiments, demonstrating the efficiency of
the separability loss, yet it is also worth mentioning that the
ARL model alone performed nicely being only 1.18% behind
ARL-sep in the MNIST - USPS. We trained our model on a
Tesla V100 SXM2 32 GB with a server with 64 cores and
80G of ram, for a total of 1 hours and 32 min. The time
needed to train the models for classification only without our
loss is 0 hours and 31 mins.

2) PACS - Multi-source Domain Adaptation
Multi-source Domain Adaptation is a subset of DA where
we have multiple source domains with labels but they are
treated as one source, and a target domain either with or
without labels. We are focused on the unsupervised case
where the target domain is only available with images. Our
method is unsupervised at its core making it easily applied
in such case. To verify our assumptions we make the same
experimental setup as other deep learning methods such
as JiGen [22], DDiscovery [73], and Dial [74] by using
ResNet18 [75] as our base model (Encoder + Classifier),
whereas our Decoder is built as the mirror of the Encoder. We
compare our method against all of the previous models and
against a ResNet18 only model as our lower baseline. Our

learning rate is α = 0.003 , generalizaing_epochs = 350,
pretraining_epochs = 500, and the balancing factor is set
to β = 0.1. We trained our model on a Tesla V100 SXM2
32 GB with a server with 64 cores and 80G of ram, for a
total of 12 hours. The time needed to train the models for
classification only without our loss is 8 hours and 12 mins.

The results in Table 8 summarize the outcome of this
experiment, where the provided accuracies show that our
method ARL-sep is superior to the other techniques on
average and on two out of four of the experiments which are
Photo target domain and the more difficult task of Cartoon
target domain. We can also see that even though the ARL
only model isn’t outperforming the other methods but it
still way better than the baseline with a 8.78% increase in
accuracy on average and a maximum of 11.64% accuracy
increase on the Sketches dataset.

D. OVER-FITTING
Over-fitting problems have been explored ever since the
start of neural networks. Given the strong ability of neural
nets to remember and memorize data samples. To evaluate
the efficiency of our method on this problem we make the
following setting, Train a model longer than it needs to force
it to over fit, and then see if adding our loss can help bring it
back from the over-fitting scenario, we refer to this model as
(O-ARL).

We compare our method against several baselines: (i)
Over-fitted model (OF), (ii) Well trained model (WT), (iii)
model trained with ARL only from the start (T-ARL), and (iv)
model fine-tuned with ARL-sep (F-ARL-sep). We perform
this experiment on several benchmarks for digit classifica-
tion which are: MNIST, SVHN, USPS, MNISTR-0, ... ,
MNISTR75. For each one of these experiments we used a
different set of Hyper-parameters which are all mentioned
in Table 10. We use the same experimental setup as [76].
We trained our model on a Tesla V100 SXM2 32 GB with
a server with 64 cores and 80G of ram, for a total of 14
hours and 52 min. The time needed to train the models for
classification only without our loss is 2 hours and 12 mins.

Table 9 shows the results of our over fitting experiments.
The most obvious conclusion we can make is that the F-ARL-
sep model, which was first trained on the data and then fine
tuned with both the Adversarial Reconstruction Loss and the
Separability loss, outperforms all the other models in most
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TABLE 7. Digit Recognition Benchmark on the MNSIT-USPS-SVHN dataset for Unsupervised Domain Adaptation. Each experiment name follows source_domain -
target_domain naming convention. ARL-sep is used to reference to our method + the seperability loss and ARL is used to reference our model without it. The “-“
notation is used for experiments where the results have not been reported in previous works.

Method UB LB JAN [71] Gen2Adpt [70] MCD [69] I2I [68] TarGAN [67] DupGAN [24] TPN [72] TripNet [10] ARL-sep ARL
SVHN - MNIST 98.97 62.19 78.4 92.4 93.6 90.1 98.1 92.46 93.0 94.70 98.7 93.81
MNIST - USPS 95.02 86.75 84.4 92.8 90.0 98.8 93.8 96.01 92.1 97.63 98.3 97.12
USPS - MNIST 98.96 75.52 83.4 90.8 88.5 97.6 94.1 98.75 94.1 97.94 97.14 95.31

SVHNE - MNIST 98.97 73.67 - - - - - 96.42 - 98.57 98.76 97.13

TABLE 8. Multi-source Unsupervised Domain Adaptation results on PACS
datasets obtained as average over five runs for each experiment.

PACS-DA photo art paint. cartoon sketches Avg.

ResNet 18 [75] 92.9 74.7 72.4 60.1 75.0
Dial [74] 97.0 87.3 85.5 66.8 84.2

DDiscovery [73] 97.0 87.7 86.9 69.6 85.3
JiGen [22] 97.9 84.8 81.1 79.1 85.7

ARL-sep 98.3 86.1 87.6 73.4 86.3
ARL 96.5 82.9 83.9 71.7 83.7

TABLE 9. Accuracy results of different models on digit classification datasets
MNIST-USPS-SVHN and MNISTR for the Over-fitting scenario. The best
model is bolded and the second best is underlined.

Method OF WT T-ARL O-ARL F-ARL-sep

MNIST 63.74 98.97 99.31 94.73 99.54
USPS 72.41 95.02 98.12 96.41 97.93
SVHN 58.46 94.97 97.85 92.9 98.14
Avg. 64.87 96.32 98.42 94.68 98.53

MNISTR

0 63.74 98.97 99.31 94.73 99.54
15 60.13 96.64 98.07 91.93 97.17
30 68.52 98.03 98.69 92.86 99.05
45 68.24 98.14 98.83 94.33 99.29
60 65.05 97.12 97.41 92.74 98.17
75 62.48 97.59 97.43 93.42 97.84

Avg. 64.69 97.748 98.29 93.33 98.51

cases specifically the models that suffer from over-fitting OF
and those who are well trained WT proving that our method is

TABLE 10. Hyper-parameters for the over fitting experiments on digit
classification Table 9. G-epochs is generalizing epochs and PT-epochs is
pretraining-epochs.

Hyper-paramter α G-epochs PT-epochs β

MNIST 0.01 50 100 0.2
USPS 0.01 50 100 0.15
SVHN 0.003 250 500 0.15

MNISTR

0 0.01 50 100 0.2
15 0.007 100 200 0.25
30 0.007 100 250 0.15
45 0.003 250 500 0.1
60 0.003 250 500 0.15
75 0.003 250 500 0.1

FIGURE 7. Comparison of different models on the task of digit classification
on MNIST for the over-fitting scenario. The accuracy results are reported as
the average of 5 experiments with the best hyper-parameters. OF is the
over-fitted model, which is used by O-ARL as the initial start for solving the
over-fitting problem. WT is the well trained model, T-ARL is the model which is
trained from the start with ARL, and F-ARL-Sep is the WT model and
fine-tuned with both ARL and sep loss4.

quite good for increasing model’s performances and accuracy
even on the same data domain. We can also see that O-ARL
model which was used on top of an over-fitted OF model
was able to help the model go back to performing good even
though it was not as good as F-ARL-sep but it still gave an
increase of 29.81% in accuracy on average. We also see that
the T-ARL model which is trained from the beginning on the
ARL loss was as rigid as O-ARL and even better than WT
model in most of the cases.

We also confirm our findings through Figure 7 where we
show the behaviour of our different losses and how they
influence the testing accuracy of the model on the MNIST
dataset. We can easily notice that the over-fitted models
always go up and then quickly decreases in performance
as shown with OF chart, which is continued using the O-
ARL chart which drops the performance in the first few
epochs but then quickly starts giving positive outcome on
the model’s performance approaching results provided by the
WT models. We can also notice that the WT models achieve
better than our models in the first few epochs where as our
models (F-ARL-Sep and T-ARL) improve slower but with
enough epochs they exceed the WT performances.
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V. CONCLUSION
We proposed a simple but effective task agnostic method
for Domain Generalization and Unsupervised Domain Adap-
tation that is based on the assumption that models extract
two types of information, class informative -useful- and style
information -harmful-. Our method pushes the model to for-
get the style information while keeping the class informative
part of the input which leads to high performance increase
on several Object detection and classification benchmarks
for DG and UDA. Our method also showed a great effect
in fixing over-fitted models as shown by the experimental
results. Moreover, the proposed method shows great promise
of wide applicability since it is implemented orthogonally to
other models and hence can be applied to different problems
such as facial recognition without having to change the
underlying algorithms.
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