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Abstract: Load forecasting has received crucial research attention to reduce
peak load and contribute to the stability of power grid using machine learning
or deep learning models. Especially, we need the adequate model to forecast
the maximum load duration based on time-of-use, which is the electricity
usage fare policy in order to achieve the goals such as peak load reduction
in a power grid. However, the existing single machine learning or deep learn-
ing forecasting cannot easily avoid overfitting. Moreover, a majority of the
ensemble or hybrid models do not achieve optimal results for forecasting the
maximum load duration based on time-of-use. To overcome these limitations,
we propose a hybrid deep learning architecture to forecast maximum load
duration based on time-of-use. Experimental results indicate that this archi-
tecture could achieve the highest average of recall and accuracy (83.43%)
compared to benchmarkmodels. To verify the effectiveness of the architecture,
another experimental result shows that energy storage system (ESS) scheme in
accordance with the forecast results of the proposedmodel (LSTM-MATO) in
the architecture could provide peak load cost savings of 17,535,700KRWeach
year comparing with original peak load costs without the method. Therefore,
the proposed architecture could be utilized for practical applications such as
peak load reduction in the grid.

Keywords: Load forecasting; deep learning; hybrid architecture; maximum
load duration; time-of-use

1 Introduction

As cutting-edge technologies have been developed, there are significantly growing demands
for electricity power. The increase in energy demands has been raising important issues, such as
grid failure and peak load problem [1]. To overcome these issues, several techniques have been
investigated. Demand response (DR) [2–4] is an incentive or price-based program provided by
electric utility companies to reduce or shift energy demands from the peak period to the off-peak
period. Virtual power plant (VPP) [5–7] is the method to combine several renewable resources,

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.
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energy storage system (ESS) and power plants that can be activated as a single power plant for
peak load shaving.

First of all, load forecasting [8] has been a crucial research field as its elementary technology
of DR and VPP. In addition, the load forecasting has become an essential method for peak
load shaving technologies and has contributed to grid stabilization, thereby enabling additional
distributed energy resources to participate in the grid and improve the efficiency of electricity
usage [9]. Especially, in order to achieve the ultimate goals such as peak load reduction in the
grid, it necessary to employ the adequate model to forecast the maximum load duration (MLD)
using time-of-use (TOU) pricing plans. The MLD is the peak load zone when electricity usage
is fairly high at the maximum load zone of KEPCO TOU, the electricity usage fare policy of
Korean utility company.

Recently, machine learning and deep learning models based on data-driven technologies have
been regarded as an efficient load forecasting model. However, single machine learning or deep
learning forecasting cannot easily avoid overfitting to the specific dataset and may fail to fit
previously unseen data. Moreover, most commonly employed ensemble or hybrid models are not
the most adequate models to forecast MLD based on KEPCO TOU.

Therefore, we propose a hybrid forecasting architecture incorporating three models: long
short-term memory (LSTM) deep learning model, moving average, and K-fold-Correlation. The
architecture can help to reduce overfitting using the highest performance model extracted from
the hybrid combination process compared to single models. The main contributions of this study
are summarized below.

• The proposed hybrid deep learning architecture can forecast the MLD based on TOU using
binary combination technique for practical applications such as peak load reduction in a
power grid.
• The experimental results of forecasting daily MLD indicate that the architecture could

achieve the improved forecasting performance based on recall and accuracy compared to
other benchmark models.
• The experimental results to verify the quantitative effectiveness for the proposed architecture

show that the architecture employing energy storage system (ESS) operation scheme in
accordance with the highest performance model provides peak load cost savings.

In Section 2, we present a general review of various methods of forecasting techniques.
In Section 3, we describe the detailed technical results of the proposed architecture. Section 4
introduces benchmark models to identify the performance of proposed architecture. In Section 5,
we address performance metrics. In Section 6, we discuss the experimental results of forecasting
performance and peak load cost savings based on TOU. Finally, we discuss the effectiveness of
the proposed architecture.

2 Structure

In the past 20 years, forecasting techniques have been utilized in various fields. The represen-
tative applied model types discussed in this section are summarized in Tab. 1.
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Table 1: Summary of representative forecasting models applied to various fields

Model type Reference Model description

Probabilistic method [10] SARIMA
[11] Correlation

Machine learning [12,13] ANN
[14] Neural network and PCA
[15,16] SVM
[17] SVR and ARIMA

Deep learning [18,19] LSTM
[20] RNN
[21], CNN and SVM
[22–24] CNN

Ensemble [25–28] Ensemble with SVR, neural network, regression.
XGboost with ARIMA

Hybrid [29,30] CNN and LSTM
[31] LSTM and genetic algorithm (GA)
[32] DNN and LSTM
[33] Hybrid model of fuzzy, inductive reasoning,

random forest, neural networks
[34] Bayesian and log-likelihood
[35] Hybrid model of ANN, MLP and random forest

2.1 Probabilistic Model
Typically, probabilistic models include moving average (MA), exponential smoothing (ES),

autoregressive integrated moving average (ARIMA), and correlation. As an example of these
models, there is a seasonal autoregressive integrated moving average (SARIMA) hybrid model with
neural net- work suitable for processing nonlinear datasets with a variety of complex structures
for forecasting short-term solar PV power generation [10]. Correlation analysis [11] is another
stochastic method that analyzes statistical and mathematical correlations between two data sets
for deriving meaningful insights. To measure the correlation between two probability variables,
covariance is usually employed as follows:

Cov (X ,Y )= σXY = 1
n

n∑

i=1
(Xi−μX ) (Yi−μY ) (1)

The correlation coefficient is defined utilizing covariance as follows:

σ (X ,Y )= Cov(X ,Y )√
Var(X)

√
Var(Y )

= ρXY

ρXρY
(2)

2.2 Machine Learning and Deep Learning Model
Basically, machine learning and deep learning models are the learning-based techniques that

employ the supervised learning to forecast previously unseen data using features and labels that
they learned from training data.
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In case of applying optimized technique such as deterministic method, the optimized one
is usually considered based on related multi variable parameters, constraints and mathematical
model for forecasting, whereas machine learning and deep learning do not need the complicated
mathematical model or several constraints when the amount of data and appropriate algorithm
are utilized [8]. In addition, the learning process to find best parameters can be easily automated
using useful machine learning and deep learning libraries.

There are several studies in renewable energy prediction regarding artificial neural network
(ANN). In [12], a model based on ANN performs a-day-ahead forecast of the electricity profile
usage for a commercial building. In [13], an ANN hybrid model is employed in wind speed
forecasting for energy monitoring and effective management. Khan et al. [14] proposed a wind
power forecasting method from significant features with a tensorflow-based neural network and
principal component analysis (PCA) approach to decompose the raw historical wind speed data
into reduced useful features.

Support vector machine (SVM) is a supervised learning method that performs classification
and regression by distinguishing among two or more datasets with the concept of hyperplane.
In [15], theoretical and experimental investigations are performed on the effects of integrity attacks
that disrupt the training data with SVM and game theory. The article [16] reports a study utilizing
machine learning with SVM related to carbon emissions prediction. The support vector regression
(SVR) model employs the concepts of regression utilizing hyperplane and margin. In [17], SVR
incorporates time series models, such as ARIMA, to predict energy demand.

Deep learning prediction techniques are recently employed to forecast periodic time-series elec-
trical usage or patterns. Kong et al. [18] utilized LSTM to predict energy consumption to reflect
the lifestyle of residents. Li et al. [20] proposed the RNN-based short-term method for forecasting
PV power only by considering previous PV power data as input without weather information. In
addition to prediction, in [19], LSTM is employed as a deep-learning-based method for generating
syllable-level outputs. In [21], convolutional neural network (CNN) and SVM were employed as
the base classifiers to forecast failure in energy sector utilizing textual data. Furthermore, in [22],
CNN was employed to obtain wind power characteristics by convolution, kernel and pooling
operations for 24 h-ahead wind power forecasting. Sun et al. [23] proposed a CNN-based solar
prediction model for 15-min ahead PV output forecasting. Sanakoyeu et al. [24] proposed a
technique for unsupervised learning of visual similarities between a large number of examples to
analyze the shortcomings of exemplar learning on CNN.

2.3 Ensemble Model
Ensemble models are Bagging and Boosting with a combination of single machine learning

models. Bagging and Boosting can obtain a higher performance than a single model through
the learning process that combines a set of weak learners to produce a strong learner. Ensemble
methods can be employed as a prediction model of energy usage of buildings [25]. In [26], it
is proposed the ensemble model combining SVR, neural network, and linear regression learners
for energy consumption forecast. Divina et al. [27] presented short-term forecasting results based
on ensemble learning incorporating different learning mechanisms to achieve accurate prediction
results. The XGboost model with ARIMA evaluated and forecasted the energy supply level and
energy supply security index in [28].
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2.4 Hybrid Model
A hybrid model is a method that combines various models with optimized techniques. In [29],

a hybrid model combining CNN and LSTM model is employed on power de-mand value (key)
forecasting with a context value (context). An integrated CNN with LSTM model was employed
to fore- cast oncoming responses of wind turbine [30]. Bouktif et al. [31] developed a LSTM
hybrid model employing the Genetic Algorithm (GA) to find optimal time lags and the number
of layers to predict electricity consumption. In [32], electricity prices forecasting was proposed
employing a hybrid deep neural network (DNN)-LSTM to simultaneously forecast day-ahead
prices in several countries. In [33], a hybrid methodology was proposed to combine feature
selection based on entropies and machine learning approaches such as fuzzy, inductive reasoning,
random forest, and neural networks. In [34], a hybrid learning method for bayesian networks
incorporating two-component mixture-based log-likelihood was performed for binary classification
tasks. In [35], a financial time series volatility is forecasted through hybrid learning employing
various models such as ANN, multilayer perceptron (MLP), and random forest (RF).

Basically, in [10–17], these studies addressed probabilistic- based or machine learning fore-
casting model not to consider forecasting MLD based on TOU that the proposed architecture
wants to address. In [18–20], only single LSTM model was addressed for forecasting. In [21–24],
these CNN models have commonly been applied as a feature extraction and a part of prediction
module for forecasting. Ensemble [25–28] or hybrid models [29–35] among these studies do not
consider achieving optimal results for forecasting the MLD based on KEPCO TOU for peak load
reduction in the grid.

In this paper, to overcome these limitations, the proposed architecture can forecast MLD
based on KEPCO TOU and the proposed architecture shows the improved forecasting perfor-
mance compared to benchmark models and even a hybrid benchmark model.

3 Proposed Hybrid Architecture

In this section, the proposed hybrid architecture is introduced. We developed it as a hybrid
framework as shown in Fig. 1. We utilized original electricity data (06.01.2015–08.02.2018)
obtained from the Korea Electric Power Corporation Knowledge Data & Network (KEPCO
KDN) headquarter located in Naju City, South Korea. The original dataset consists of electricity
usages at each time zone (from 1 to 24 h) each date for all days. The data pattern analysis block
for treating the entire dataset efficiently chooses which data type is more suitable as an input
dataset between the electrical pattern of the same day for previous week and the electrical pattern
for the previous day. In the data preprocessing block, the original data is preprocessed to predict
MLD which the proposed architecture attempts to forecast. The entire dataset is divided into
training data for building a prediction model and test data for testing. The ratio of training data
and test data is 70% and 30% respectively.

The model group block is composed of three models: MA, LSTM model, and K-fold-
Correlation. The binary combination combines the results of the two models with an OR logical
combination. Through the binary combination in the model group, the proposed architecture can
provide two kinds of predicted outputs to fit newly measured electricity data continuously to
reduce overfitting.
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Figure 1: The proposed hybrid architecture incorporating three kinds of models

3.1 Data Pattern Analysis
We generate two types of input datasets with the assumption the real electricity pattern is

similar to the predicted pattern utilizing the same day for the previous week or the predicted one
utilizing the previous day.

As shown in Fig. 2, it requires twice as long to train and test each model of the architecture
if we utilize two types of datasets. To reduce training and testing time of each model, and
to understand dataset characteristics efficiently, we analyze electricity usage patterns applied as
a training dataset extracted from the original data employing the data pattern analysis block.
Therefore, we can identify a more suitable data pattern as an input dataset in advance. From the
analysis block result, we decide a type of dataset as an input for each model between two types
of datasets, train and test models using extracted a dataset type. By applying this approach, we
can reduce the time by up to 50%.

Tab. 2 explains the comparison results between actual electricity pattern in two cases: The
predicted one using the same day for the previous week and the other using the previous day.
As described in Tab. 2, we can see the higher performance in case of employing the electrical
pattern for the previous day. Therefore, we apply the previous five days to input data format of
the architecture instead of using data format for the same days (total of five days) during the
previous five weeks from the analyzed results.
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Figure 2: Two types of dataset: (a) without data pattern analysis, (b) using data pattern analysis

Table 2: The comparison results between actual pattern and two cases

Pattern analysis Recall (%) Accuracy (%)

For previous day 67.61 75.50
For previous week 62.80 72.55

3.2 Data Preprocessing
In this section, we define the MLD based on TOU. As introduced in prior research, we utilize

key parameters [36]: slope index (SI), cumulative slope (CS), and cumulative slope index (CSI).

The SI is defined as the variation of electricity usage divided by time zone. The SI is
calculated as follows:

SIn = Pn−Pn−1
Tn−Tn−1

(3)

where n is the time interval; Pn is the electricity usage; Tnis the time zone [1.24] each day.

The CS is defined as the sum of the current SI and the previous CS. The CS is calculated as
follows:

CSn= SIn+CSn−1 (4)

The CSI is defined as the ratio of CS divided by the maximum CS. The CSI is calculated as
follows:

CSIn = CSn
CSmax

× 100[%] (5)

where CSmax is the highest CSn within the time zone [1.24] each day.
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In this paper, we define the CSI value (= 1) when CSI ≥80% in all load zones of KEPCO
TOU and zero (= 0), otherwise. In addition, we define the MLD based on KEPCO TOU using
the CSI parameters as follows:

• The CSI value in the maximum load zone of KEPCO TOU
• One (= 1) when CSI≥ 80%

Therefore, the MLD is the peak load zone when electricity usage is fairly high (CSI≥ 80%) at
the maximum load zone of KEPCO TOU. To address input data for various models, original data
is preprocessed to three kinds of CSI data formats organized by formatting, scaling, and attribute
transformation. The input dataset and the dataset description for three models (MA, LSTM, and
K-fold-Correlation) in the architecture and three other benchmark models (MLP, Convolutional
LSTM, and ES) are listed in Tab. 3. The dataset only includes workday only except holidays
and weekends.

Table 3: The input dataset list for three models in the architecture and benchmark models

Input dataset Description Model

MA-CSI-Raw Electricity usage dataset for previous
two weeks

MA (Proposed, Benchmark)

ML-Input CSI input dataset for previous five
days

LSTM (Proposed, Benchmark)

K-fold-Correlation (Proposed, Benchmark)
MLP (Benchmark)
Convolutional LSTM (Benchmark)

ES-CSI-Raw Electricity usage dataset for previous
five days

ES (Benchmark)

3.3 Model Group
There are three models (MA, LSTM, and K-fold-Correlation) in the model group. As time-

series data may exhibit uncertainty that is unpredictable, the model group makes two kinds of final
predicted outputs (LSTM-MATO, LSTM-KTO) to overcome the limitation in this paper. LSTM-
MATO employs MA and LSTM. The MA is used to smooth out the data fluctuation problem
and get long term trends. The LSTM is used to make predictions based on time series data using
deep learning method. LSTM-KTO employs LSTM and K-fold-Correlation. Especially, K-fold-
Correlation is used to combine advantages of Perceptron and Correlation. Perceptron is a simple
and efficient neural network model and Correlation method is a statistical interrelations analysis.

The MA is the simple probabilistic method to calculate average electrical usage at each time
for all days during a specific period. The first step of the model operation is to calculate average
electrical usage at each time for previous two weeks. Then, the CSI parameter can be extracted
from the calculated average electricity usage. In the third step, we can find MLD (=1) when CSI
value exceeds 80% at the maximum load zone of KEPCO TOU using extracted MA-CSI-Raw
input dataset shown in Tab. 3. The MA is defined as follows:

MA= 1
n
(Dt−1+Dt−2+ · · · +Dt−n) (6)
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where n is the number of samples for the last two weeks; Dt is the electricity usages.

The LSTM is the time series forecasting model of deep learning neural network. Fig. 3
explains the input data structure of LSTM model. The entire dataset consists of two sets: a
training set that accounts for 70% and a test set that accounts for 30%. The “ymd” set denotes
year, month and day attributes. The x_train set explains CSI input features and the number of
x_train features is 30. Furthermore, xt_train set is the temperature features and the number of
features is 30. The y_train set and y_test set consist of CSI labels and the size of each set is six.
The input test set (x_test, xt_test) has the same structure as the training set structure with the
difference of size (= 30%).

Figure 3: The input data structure of LSTM model

As an input of LSTM with three dimensions (3D) on the right side of two dimensions (2D)
data structure, the total dimension of the training set is (maxloadsize × windowsize× 70%× 2)
which represents 6× 5× 70%× 2 in the architecture. The maxloadsize (= 6) denotes there are six
maximum load zones of KEPCO TOU each day and windowsize (= 5) denotes input dataset for
previous five days. The total dimension of the test set has the same structure as training set with
the difference of size (= 30%).

Tab. 4 shows the main parameters for designing LSTM model. The input variable size is
60 and output variable size is six. The hyperparameters optimized for the model are two layers,
128 layers units, 0.3 dropout, tanh activation function, binary_crossentropy loss function and
adam optimizer.

Table 4: Main parameters for designing LSTM model

Model Parameter Description

LSTM Input variable size [maxloadsize(= 6)]× 2× [windowsize(= 5)]
Output variable size [maxloadsize(= 6)]
Number of layers 2
Layer units 128
Dropout 0.3
Activation function tanh
Loss function binary_crossentropy
Optimizer adam
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K-fold-Correlation is a proposed hybrid model to combine neural network and correlation
analysis. To develop a simple and efficient model, we incorporate the neural network model of
Perceptron and Correlation method that can perform statistical interrelations analysis. Algorithm
1 explains the operation principal of K-fold-Correlation model as follows:

Algorithm 1: K-fold-Correlation
1: Input dataset for Perceptron: {Date(1,...,n),CSI(1,...,24)}
2: Input dataset for Correlation: {Date(1,...,n),Load(1,...,24)}
3: n← The last number field of dataset
4: Logi = {Datei,Loadi}
5: M← Memory to store Logi
6: Per−out← The output of Perceptron
7: Correl (i, j)← Correlation between i− th dataset and j− th dataset
8: Cut_correl← Correlation threshold
9: function PERCEPTRON()
10: if Per−out= 1 then
11: Extracted_Pattern ← The pattern of Per−out
12: else
13: Do CORREL()
14: end if
15: end function
16: function CORREL()
17: while i≤ n do
18: while j≤ 24 do
19: Ci,j←Correl(i, j)
20: if Ci,j ≥Cut_correl then
21: Mi,j← 1
22: else
23: Mi,j← 0
24: end if
25: j← j+ 1
26: end while
27: Count_ratioi =

∑n
j=1Mi,j

n
28: i← i+ 1
29: end while
30: s← argmaxi∈M(Count−ratioi)
31: Extracted_Pattern ← Logs
32: end function

The first process of K-fold-Correlation is to perform the k-fold validation test (Leave-One-
Out, K= 5) employing Perceptron. The Perceptron is designed to obtain the electrical pattern that
can represent patterns among datasets. If the result of Perceptron is the one (= 1), the extracted
pattern from Perceptron can be employed as a predicted MLD. However, if the results are zero or
more than two, we perform an alternative method of correlation to find the most frequent pattern.
In the second step, we analyze sequential correlation one by one to select the most accurate
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pattern that can represent the majority of electrical pattern with correlation coefficient ≥80%
(correlation threshold). Finally, the extracted pattern from Perceptron or Correlation method is
employed as a predicted MLD.

The binary combination combines the predicted outputs of the two single models by using
a binary combination (OR). The first combination model (LSTM-MATO) employs MA and
LSTM. The second combination model (LSTM-KTO) employs LSTM and K-fold-Correlation.
The combination can be utilized to improve the forecasting ability of MLD as well as reduce
overfitting through binary combination technique without biasing a single model.

4 Benchmark Models

We developed benchmark models to identify the performance of the proposed architecture.
There are six benchmark models: MA, K-fold-Correlation, LSTM, ES, MLP, and Convolu-
tional LSTM.

At first, three models (MA, K-fold-Correlation, and LSTM) are the benchmark models
incorporating the proposed architecture to identify the synergistic effect of the hybrid model.

The ES is the prediction model to calculate electricity usage with different weights each date
for previous five days. The ES is defined as follows:

ES= αXt−1+α (1−α)Xt−2+ · · · +α(1−α)nXt−n (7)

where α(= 0.5) is the default weight; n is the number of samples for previous five days; Xt is the
electricity usages.

Eq. (7) shows that the most recent data earns the largest weight and the old data receive the
weight that decreases exponentially over time. CSI can be calculated using predicted electricity
usage extracted from the ES model. If CSI value is over 80% in maximum load zone of KEPCO
TOU, the time zone is set as MLD and if it is less than that, the zone is set as not MLD.

The MLP is an artificial neural network that generates outputs from a series of inputs.
It features hidden layers connected by graphs plotted between the input and output layers. To
optimize the model, the MLP employs backpropagation training the model. As shown in Tab. 5,
the hyperparameters optimized for MLP are 0.001 learning rate, 3 hidden layers, gradient descent
optimizer, sigmoid activation function and 2000 epochs. Regarding the input variable, maxloadsize
(= 6) denotes there are six maximum load zones of KEPCO TOU each day and windowsize (= 5)
denotes the input dataset for the previous five days.

Convolutional LSTM is the deep learning model incorporating CNN and LSTM. The output
from CNN that can extract input features is employed as an input of LSTM. Tab. 5 shows the
model description for convolutional LSTM using keras deep learning library. The input variable
size is 120 incorporating maxloadsize (= 24) and windowsize (5). Specifically, the maxloadsize is 24
which denotes 24 hour each day as an input dataset. Output variable size is maxloadsize (= 24).
The hyperparameters optimized for the model are 64 filters, (1,6) kernel size, (5, 1, 24, 1) input
shapes for CNN. The hyperparameters for LSTM are one layer, 24 layers unit, tanh activation
function, mean squared error (MSE) loss function and adam optimizer.
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Table 5: Main parameters for designing benchmark models (MLP, Convolutional LSTM)

Model Parameter Description

MLP Input variable size [maxloadsize(= 6)]× [windowsize(= 5)]
Output variable size [maxloadsize(= 6)]
Number of layers 3
Activation function Sigmoid
Optimizer GradientDescent

Convolutional LSTM Input variable size [maxloadsize(= 24)]× [windowsize(= 5)]
Output variable size [maxloadsize(= 24)]
[CNN] Number of filters 64
[CNN] Kernel size (1, 6)
[CNN] Input shape (time_steps, rows, cols, channel)= (5, 1, 24, 1)
[LSTM] Number of layers 1
[LSTM] Layer units 24
[LSTM] Activation function tanh
[LSTM] Loss function MSE
[LSTM] Optimizer adam

5 Performance Metrics

Basically, we need the adequate model to forecast the MLD based on TOU for peak load
reduction in the grid. The proposed architecture is to predict MLD, the peak load zone when
electricity usage is fairly high (CSI ≥80%) at the maximum load zone of KEPCO TOU shown in
Tabs. 6 and 7.

Table 6: KEPCO TOU: (1) Electricity usage fare for load zone and season

Electricity usage fare (KRW/kWh)

Load zone Summer Spring, Autumn Winter
Jun.–Aug. Mar.–May, Sep.–Oct. Nov.–Feb.
61.6 61.6 68.6
114.5 84.1 114.7
196.6 114.8 172.2

For this reason, the performance metrics are configured to predict MLD as accurately as
possible, employing the proposed preprocessed CSI datasets featured in binary classified attributes
(MLD or not MLD).

A confusion matrix is generally utilized to analyze the performance of a binary classification
model as machine learning and deep learning. When CSI value is over 80% at the maximum load
zone of KEPCO TOU, we define the load zone as MLD (= 1), and if the value less than 80%
or the value is not at the maximum load zone of KEPCO TOU, we set it as not MLD (= 0).
Therefore, the binary classification matrix can be the best performance metrics to classify MLD
attributes. Each class of performance metrics can be represented as follows:
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• True Positive (TP): The load zone is also MLD when the model predicts MLD.
• True Negative (TN): The load zone is not MLD when the model predicts not MLD.
• False Positive (FP): The load zone is not MLD when the model predicts MLD.
• False Negative (FN): The load zone is MLD when the model predicts not MLD.

Using four cases, three performance evaluation indexes can be introduced as follows:

Precision= TP
TP+FP (8)

Recall= TP
TP+FN (9)

Accuracy= TP+TN
TP+TN +FP+FN (10)

In this article, we set the performance metrics to achieve a high hit rate of the MLD detected
rather than the hit rate of MLD precise detections. Considering these metrics, the recall turns
out to be an important performance index and the accuracy index is also an important factor in
any case. Therefore, we choose the model with the highest average of recall and accuracy among
the models.

Table 7: KEPCO TOU: (2) Time zone for load and season

Electricity usage fare (KRW/kWh)

Load zone Summer Spring, Autumn Winter
Jun.–Aug. Mar.–May, Sep.–Oct. Nov.–Feb.

Low 23:00–09:00 23:00–09:00 23:00–09:00
Medium 09:00–10:00 09:00–10:00 09:00–10:00

12:00–13:00 12:00–13:00 12:00–17:00
17:00–23:00 17:00–23:00 20:00–22:00

Maximum 10:00–12:00 10:00–12:00 10:00–12:00
13:00–17:00 13:00–17:00 17:00–20:00

22:00–23:00

6 The Experimental Results

In this section, we examine the experimental results of the proposed architecture. In the first
experiment, we compare the proposed architecture models with other benchmark models to find
the highest performance model. In the second experiment, we analyze peak load costs savings of
the highest performance model quantitatively. Finally, we discuss forecasting effectiveness of the
proposed architecture.

6.1 Forecasting Performance of the Proposed Architecture
Tab. 8 explains the experimental results of the proposed models in the architecture and

benchmark models.

The experimental results of LSTM-MATO show the synergistic effect of the hybrid model.
The LSTM-MATO could achieve the highest recall (86.77%), the highest accuracy (80.08%)
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compared with other benchmark models and show the highest average of recall and accuracy
(83.43%) among models. The LSTM-KTO obtained the highest recall (87.04%) among models,
whereas the model could not show the improved accuracy (74.65%).

Table 8: The experimental results of proposed models in the architecture and benchmark models

Model Type Recall (%) Accuracy (%) Average (%)

Benchmark MA single 82.34 79.01 80.68
K-fold-Correlation hybrid 75.50 75.61 75.56
LSTM single 69.69 79.87 74.78
ES single 78.35 78.24 78.30
MLP single 0.26 72.81 36.54
Convolutional LSTM hybrid 39.15 77.47 58.31

Proposed LSTM-MATO hybrid 86.77 80.08 83.43
LSTM-KTO hybrid 87.04 74.65 80.85

Especially, the proposed model (LSTM-MATO) obtained scores over 80% for recall, accuracy,
and an average of recall and accuracy. Therefore, LSTM-MATO is the highest performance model
with the highest average of recall and accuracy among the models for peak load cost savings.

6.2 Peak Load Cost Savings based on TOU
Battery storage dispatch strategy incorporating TOU and demand charge management was

developed and was utilized as an application of peak load shaving [37]. The strategies of this
article indicate that ESS charges at off-peak and discharges at on-peak. Uddin et al. [1] explained
peak load shaving techniques through the process of charging ESS when demand is low and dis-
charging when demand is high. Considering the above strategies of ESS operation, it is important
to set ESS discharging operation at the peak and charging operation at night when demand is low.
In this article, to operate ESS for peak load costs reduction, ESS operating scheme is configured
following the predicted MLD from the architecture. It indicates ESS discharges in operation at
the peak when electricity usage is high (CSI ≥80%) at the maximum load zone of KEPCO TOU.
Therefore, the ESS operating scheme follows two conditions:

• ESS charges at night in the low load zone of KEPCO TOU.
• ESS discharges at MLD (= 1) that the model in the architecture predicts.

Using the ESS operating scheme, we calculate the cost savings of LSTM-MATO to analyze
peak load cost savings quantitatively.

Algorithm 2 explains the peak load cost savings calculation. In the beginning, we prepare the
original CSI dataset and the predicted MLD dataset of LSTM-MATO. Then, comparing CSI at
the maximum load zone of KEPCO TOU with predicted MLD, the count of cost-saving increases
whenever the CSI (= 1) at the maximum load zone of KEPCO TOU and predicted MLD (=
1) are equal. Cost savings are finally calculated using the count of cost-saving, an average of
electricity usage and the usage fare difference between the maximum and the low load zone of
KEPCO TOU.
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Algorithm 2: Peak load cost savings calculation
1: CSI at maximum load zone: {Date(1,...,n),CSI(1,...,6)}
2: Predicted MLD: {Date(1,...,n),MLD(1,...,6)}
3: n← The last number field of date
4: Dn← Cost savings by date
5: Average←Mean of electricity usage in Date(1,...,n)
6: M←Usage fare in maximum load zone
7: L←Usage fare in low load zone
8: while i≤ n do
9: while m≤ 6 do
10: if CSIm =MLDm then
11: S← S+ 1
12: else
13: S← S+ 0
14: end if
15: m←m+ 1
16: end while
17: Di = S×Average× (M −L)

18: Di←Di+Di−1
19: i← i+ 1
20: end while

From the Algorithm 2, it is expected to reduce the peak load costs (= 17, 535, 700 KRW) each
year comparing with original peak load costs without the method when we apply the predicted
results of LSTM-MATO in the proposed architecture to ESS scheme and the ESS also operates
in accordance with the scheme thoroughly.

Fig. 4 shows the comparison results between peak load costs without the method and peak
load costs with the proposed method each day (from 08.23.2017 to 08.02.2018) marked as an
index (from 1 to 236) using the Algorithm 2.

Figure 4: The results between (a) and (b): (a) without the method, (b) with the proposed method
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7 Discussion

The first benefit of the proposed forecasting technique is that the architecture can offer the
high potential to improve the stability of the grid with peak load costs reduction. Peak load
cost reduction means to shave the peak load at the peak load zone in each household or each
office building.

Fig. 5 illustrates the power grid concept that several office buildings or households to employ
ESS operation scheme and ESS. When we consider each office building or each household to
achieve each own peak load costs reduction based on TOU using the proposed method efficiently,
the proposed approach can offer the potential that the aggregate peak load costs reduction effects
lower peak loads at the maximum load zone based on TOU of the whole office building or
households in the grid.

Figure 5: The power grid concept of office buildings and households to employ ESS opera-
tion scheme

The second benefit of the proposed architecture is that the electricity aggregators can provide
more efficient DR signals to electricity consumers than before. Recently, the demand response
program has been investigated in [2–4] based on the real power market.

In this scenario, when the proposed architecture is applied to DR program efficiently, elec-
tricity aggregators can provide more efficient DR signals to electricity consumers than before. For
example, the aggregator would send the higher price signal when the aggregate forecasting results
represent the peak load at the maximum load zone of TOU.

8 Conclusion

In this article, we proposed a hybrid architecture incorporating MA, LSTM model, and K-
fold-Correlation. The proposed architecture combined the results of the two models with an
OR logical combination to fit newly measured electricity data continuously to reduce overfitting.
Especially, the proposed LSTM-MATO in the architecture showed the synergistic effect as a hybrid
model. The LSTM-MATO showed the highest recall (86.77%), the highest accuracy (80.08%), and
the highest average of recall and accuracy (83.43%) compared to MA and LSTM benchmark mod-
els incorporating LSTM-MATO. Comparing with other benchmark models (K-fold-Correlation,
ES, MLP, and Convolutional LSTM), the proposed model (LSTM-MATO) obtained scores over
80% for recall, accuracy, and an average of recall and accuracy. On the contrary, other bench-
mark models obtained scores under 80%. To verify the quantitative effectiveness of the proposed
architecture, another experimental result showed that the proposed architecture could provide peak
load cost savings of 17,535,700 KRW each year using ESS operation scheme, in accordance with
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the forecasting results of the highest performance model (LSTM-MATO). The proposed hybrid
architecture can be utilized to forecast the MLD based on TOU for practical applications such
as peak load reduction in the grid. In the near-future research, it is expected that the proposed
architecture will be available as a forecasting application for peak load reduction in the real
power grid.
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