
Zayed University Zayed University 

ZU Scholars ZU Scholars 

All Works 

3-1-2020 

Mitigating the Impact of Congestion Minimization on Vehicles’ Mitigating the Impact of Congestion Minimization on Vehicles’ 

Emissions in a Transportation Road Network Emissions in a Transportation Road Network 

S. Salman 
Zayed University, sinan.salman@zu.ac.ae 

S. Alaswad 
Zayed University, suzan.alaswad@zu.ac.ae 

Follow this and additional works at: https://zuscholars.zu.ac.ae/works 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Salman, S. and Alaswad, S., "Mitigating the Impact of Congestion Minimization on Vehicles’ Emissions in 
a Transportation Road Network" (2020). All Works. 4138. 
https://zuscholars.zu.ac.ae/works/4138 

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All 
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae. 

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/4138?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4138&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae


Mitigating the Impact of Congestion Minimization 
on Vehicles’ Emissions in a Transportation  
Road Network
S. Salman a*, S. Alaswad b
a College of Technological Innovation, Zayed University, Abu Dhabi, UAE; 
b College of Business, Zayed University, Abu Dhabi, UAE

In this paper, we study the impact of road conges-
tion minimization on vehicles’ emissions. We focus 
on traffic pattern optimization as a mean for conges-
tion reduction and present an optimization model to 
help mitigate its environmental effect.

The design of transportation road networks to im-
prove some utility measure is commonly known in 
the literature as the Network Design Problem (NDP). 
While the general problem structure remains mostly 
similar, many approaches have been proposed over 
the years to handle variations in its modelling and 
solution methods. Farahani et al. [1] presented a re-

view of NDPs in recent literature as part of the larger 
topic of urban transportation NDPs, which also in-
cluded public transit network design.

Many NDP approaches found in literature target 
total travel time as the sole objective for optimization. 
The underlaying assumption is that minimizing to-
tal travel time through network design reduces traffic 
congestion, which in turn results in lower environ-
mental footprint as smooth traffic flow replaces stop-
and-go traffic. However, recent literature has been 
challenging this assumption [2], [3]. In fact, Nagurney 
showed that a network change resulting in improved 
travel cost may result in increased total emissions [4]. 
To understand this paradox in terms of the problem 

Traffic optimization normally improves flow conditions at the expense of increased vehicles’ 
emissions. This paper proposes a bi-objective optimization approach to address this situ-
ation. In contrast to existing literature, this study considers environmental and congestion 
impacts of Network Design Problems (NDPs) using the Markov chain traffic assignment 
approach instead of user equilibrium. The NDP model selectively reverses roads’ directions 
to improve network performance. The model is optimized by simultaneously minimizing 
maximum traffic density and total vehicles’ emissions cost using non-dominated sorting ge-
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single-objective optimization solutions.

Nomenclature

BPR Bureau of public roads CO Carbon Monoxide 
GA Genetic algorithm  GHG Greenhouse gas
MCTA Markov chain traffic assignment NDP Network Design Problem
NOx Nitrogen oxides TEC  Total emissions cost
UE User equilibrium VOC Volatile organic compounds
NSGA-II Non-dominated sorting genetic algorithm

Article history:

Received  September 4, 2019
Revised February 11, 2020
Accepted February 12, 2020 
Published online March 3,  2020

Keywords:
Markov chain traffic assignment; 
Sustainable network design;
Congestion minimization;
Vehicle emissions;
Bi-objective optimization

*Corresponding author:
Sinan Salman
sinan.salman@zu.ac.ae

1. Introduction

ISSN 2683-345X

DOI: http://doi.org/10.24867/IJIEM-2020-1-251Published by the University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia. 
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions

A B S T R A C T A R T I C L E  I N F O

International Journal of Industrial 
Engineering and Management

Volume 11 /  No 1  / March 2020 / 40 - 49

journal homepage: http://ijiemjournal.uns.ac.rs/ 

Original research article



41Salman and Alaswad 

International Journal of Industrial Engineering and Management Vol 11 No 1 (2020)

presented here (i.e. traffic pattern optimization), con-
sider the following. While network flow improves 
as traffic restrictions divert vehicles from congested 
roads, these restrictions also have the side effect of 
eliminating shorter route options from the network. 
This translates into longer travel distances for some 
road users. Consequently, longer travel distances to-
gether with increased vehicles’ average speeds (due to 
lower congestion) translate into increased total vehi-
cles’ emissions in the network.

As a result, researchers started to include bi-objec-
tive modeling in NDPs with increased attention given 
to environmental impacts [3], [5]. A review of envi-
ronmental sustainability considerations in road net-
work equilibrium analysis can be found in [6]. The 
attention to environmental impacts is not surprising 
given that transportation activities are the top contrib-
utor to total greenhouse gas (GHG) emissions, sur-
passing industrial activities and electricity generation 
in the USA, as an example [7]. The trend to include 
environmental impacts in decision making has even 
made it into corporate strategic agendas [8].

However, most NDP studies still utilize the tradi-
tional approach of User Equilibrium (UE)  to model 
traffic assignment and road user behavior. In contrast, 
this paper explores the use of a recently developed 
alternative approach, the Markov chain traffic assign-
ment (MCTA), to analyze and mitigate environmen-
tal impacts of congestions minimization. MCTA data 
requirements compared to those of UE approaches 
are considerably easier to satisfy. Whereas UE ap-
proaches require the creation of an origin-destination 
demand matrix, which requires conducting road-user 
surveys followed by a transportation forecasting mod-
el to produce the needed data, MCTA requires data 
that can be collected directly and automatically using 
sensors installed on the road network. To our knowl-
edge, this study is the first to consider environmental 
impacts of NDPs using the MCTA approach.

In this paper, we extend the single-objective NDP 
model proposed in [9] to a bi-objective model that 
includes network congestion and vehicles’ emission 
objectives. Similar to the single-objective version, the 
new NDP model selects roads for conversion from 
two-way traffic to one-way traffic (i.e. traffic direction 
reversal). This conversion enables significantly more 
flow capacity in one direction while eliminating traf-
fic flow on the other, for the selected road pair. The 
goal of these selective road conversions is to improve 
overall network performance, which we measure 
here using the network’s maximum traffic density 
and total vehicles’ emissions cost.

The approach taken in this study is to analyze the 

relationship between the two NDP objectives using 
single-objective and bi-objective optimizations. The 
single-objective optimization was deployed to study 
the impact of congestion optimization on emissions. 
To accomplish this, the NDP was optimized using 
maximum traffic density while at the same time to-
tal vehicles’ emissions cost passively tracked. Due 
to problem complexity and large solution space, we 
used a Genetic Algorithm (GA) to solve the NDP. 
Next we deployed bi-objective optimization to define 
a pareto-front which was then used to find compro-
mise solutions, mitigating the impact of congestion 
minimization on the network’s environmental foot-
print. Similarly, due to problem complexity and its 
large solution space, we used the well-known fast 
non-dominated sorting genetic algorithm (NSGA-II) 
[10] in solving the bi-objective NDP.

The remainder of this paper is organized as fol-
lows. In section 2, we briefly introduce MCTA theo-
ry, and the NDP formulation including total cost of 
vehicles’ emissions as a second objective. In sections 
3, we present the bi-objective optimization solution 
method and investigate its results for a real city exam-
ple. Finally, we conclude and point to future work in 
section 4.

The application of Markov chain analysis to trans-
portation road networks and traffic assignment is not 
new. Crisostomi et al. [11] were the first to thorough-
ly define and analyze the application of this approach 
mathematically. The following is a summary of their 
approach. Throughout this paper we use "road" to 
describe a line segment between two points on a net-
work where a vehicle must travers the entire line be-
fore it can transition into another. Using this defini-
tion, streets with intermediate entry or exit points are 
simply segmented into two (or more) roads meeting 
at such points.

In the MCTA approach, each road is modelled 
as a state in a Markov chain. Vehicles transition from 
one state (road i) to another (road j) with a transi-
tion probability p�  ij. This probability can be derived 
from network sensors counting vehicles transitioning 
between roads at intersections and entry/exit points. 
If a transition between two roads is not possible (i.e. 

2. Modelling Network Design Problems 
using Markov Chain Traffic  
Assignment

2.1 An Overview of Markov Chain  
Traffic Assignment
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roads are not directly connected or turning is pro-
hibited), the transition probability between the two 
roads is set to zero. The result is a sparse transition 
probability matrix, which we refer to as P�  .

Since roads in a network have different lengths, 
the probability of a vehicle staying on a given road 
rather than transitioning to the next step in its journey 
depends on the vehicle’s travel time ti for that road. 
In turn, a vehicle’s travel time for a road depends on 
the road’s length and the vehicle’s average speed on 
that road. Modifying transition probabilities using (1) 
and (2) incorporates this into a modified P matrix for 
use in the MCTA model:

 pii =          , i = 1, ... , n (1)

 pij = (1 - pij)�pij , i ≠ j   (2)

where n is the number of roads in the network. To 
complete the analysis, we define π as the stationary 
distribution vector, whose elements πi represent the 
probabilities of a vehicle being on road i in a network 
operating in steady state. Markov chain theory states 
that stationary state probabilities can be obtained via 
a unique solution (π) to the matrix-form system of 
equations represented in (3), and that it exists only if 
the chain is irreducible and aperiodic [12]. In trans-
portation networks, both conditions hold true.

 πP = π    (3)

After solving for π, and given an estimate of the 
total number of vehicles V traversing the network at 
the time of data collection, we can calculate the ex-
pected number of vehicles on each road in the net-
work using Vπi. These expected values represent the 
traffic assignment of vehicles to roads in a given road 
network at a given traffic state. This application of 
Markov chain theory to traffic assignment is used in 
several other literature studies [9], [13]–[17].

The NDP model summarized in this section is 
the single objective model proposed in [9]. We ex-
tend this model into a bi-objective NDP model in the 
following section.

We start by defining the matrix of decision vari-
ables Xd, which is a diagonal matrix with binary deci-

sion variable Xdi representing the decision to reverse 
road i's traffic flow (Xdi = 0) or to leave it unaltered 
(Xdi = 1). All non-diagonal elements in Xd are zeros 
by definition. In addition, we define the following 
sets of constants for the modeled network: Ni is the 
number of lanes in road i, Li is the length of road 
i, and ri is the index of the road that is parallel but 
opposite in direction to road i. To illustrate the use 
of ri, consider the hypothetical example of Elm street 
which runs east-west; we can designate the eastbound 
road as i = 1, the westbound road as i = 2, and the 
corresponding opposite direction road indices of  
r1 = 2 and r2 = 1. We refer to the two roads as op-
posing direction roads. This allow us to model the 
relationship between the two sides of Elm street. An 
example illustration of a road network described us-
ing the terms defined here can be found in Section 3 
(see Figure 5). The figure shows network traffic mod-
ifications applied to the City of Abu Dhabi.

Next, we describe the model presented in (4) 
through (10) in reverse order starting with Constraint 
(10), which ensures that any two opposing direction 
roads can at most have one of the sides reversed; ei-
ther Xdi = 0 or Xdri

= 0, but not both. Constraint (9) 
reassigns the number of lanes from the reversed road 
to its opposing direction road effectively, closing the 
former and increasing the capacity of the latter. The 
resulting variable N̂  i indicates the modified road ca-
pacity (i.e. number of lanes). Constraint (7) modifies 
the transition probability matrix P by eliminating all 
transition probabilities for reversed flow roads (via 
XdPXd), while maintaining the stochastic property 
of the resulting matrix (via multiplying by Sd). The 
factor diagonal matrix Sd is defined using Constraint 
(8). The result is a modified network transition prob-
ability matrix P̂   . Constraint (6) produces the station-
ary distribution vector, and Constraint (5) defines the 
networks’ maximum road traffic density value, which 
is the objective of this NDP model.

 Minimize Dmax  (4)

Subject to:

       ^       ≤ Dmax   (5)

    
^

 πP = π    (6)
       

  
^

 P = Sd Xd PXd   (7)

2.2 Modeling the Network Design Problem

2.2.1 Single Objective Model:  
Maximum Traffic Density

ti - 1
ti

Vπi

Li Ni
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Sdi
={    (8)

 ^ 

Nd = Xdi Ni + (1 - Xdri
)Nri  (9)

Xdi + Xdri  
≥ 1   (10)

Where  Xdi ∈ {0,1},  
  πi ≥ 0,  
  |π |= 1,  
  i = 1, ... ,n,
  j = 1, ... ,n.

The resulting Dmax value can be compared to lev-
el of service (LoS) values published in the Highway 
Capacity Manual [18]. For example, a traffic density 
higher than 28 vehicles/km . lane indicates a break-
down in traffic conditions resulting in unstable net-
work flow.

There are several methods used in practice as 
well as in research for estimating vehicle’s emissions. 
The methods vary widely depending on available 
input data, method complexity, and desired output 
detail-level. Readers are referred to Smit [19] for a 
review of the different methods used for emissions 
estimation.

MCTA is a macroscopic transportation model 
that represents vehicles’ collective behavior in a net-
work, rather than an individual vehicle’s behavior 
as represented in microscopic models. This means 
that vehicle instantaneous operating conditions such 
as instantaneous fuel consumption, vehicle acceler-
ation, and engine rotational speed at various points 
of the vehicle’s journeys are not available. However, 
traffic congestion conditions at any given road in a 
network can be easily produced using MCTA’s out-

put via traffic density calculated at road level. The 
macroscopic property of the MCTA model narrows 
down the categories of emissions estimation methods 
that can be utilized in this application.

Vehicle emissions estimation in macroscopic 
transportation models is typically carried out using 
a category of estimation methods known as average 
speed emission models. In this paper, we utilize the 
widely cited TRANSYT-7F estimation model [20], 
which was used in many literature studies [21]–[25]. 
Equation (11) shows the TRANSYT-7F general for-
mula for road i and pollutant p. Values for the coef-
ficients Ap, Bp, and Cp for each pollutant used in this 
study are listed in Table 1. Here, Si is the average 
vehicles speed on road i measured in ft/s. The result-
ing estimated emission Qi

p is expressed in g/ft.veh, 
which requires conversion to kg/km . veh for use in 
subsequent steps.

 Qi
p 

=     (11)

Since there are several GHGs resulting from fuel 
combustion in vehicles, we focus in this study on the 
most commonly reported GHG in similar studies: 
carbon monoxide (CO), nitrogen oxides (NOx), and 
volatile organic compounds (VOC). These three 
emissions are typically selected due to their high 
share of total vehicular emissions and significant im-
pact on human health. We also combine the impact 
of the three selected emissions into a single cost mea-
sure using monetization factors deduced from [26], 
after adjusting for inflation; see Mp in Table 1. A sim-
ilar approach was taken by Szeto et al. [27] and Wang 
and Szeto [5]. Total road emissions cost ECi for road 
i can be calculated via (12), expressed in $/veh. Road 
emissions can be summarized on a network level by 
multiplying ECi by the road’s vehicle flow rate vi, 
which in turn can be calculated via the fundamental 
flow relation vi = Di . Si, and then totaling all roads’ 
emissions costs. Equation (13) shows the final formu-
la for total network emissions costs (TEC), expressed 
in $/hr. In the equation, Di is the traffic density result-
ing from vehicles using road i.

1

A
p . e(Bp. Si)

Cp . Si

if Xdi = 0

if Xdi = 1,

1 ,

Σn
j=1PijXdj

2.2.2 Bi-Objective Model: Accounting for  
Environmental Impact via Total Vehicles’  
Emissions Cost

Pollutants Ap (g/ft • veh) Bp (s/ft) Cp (s/ft) Mp ($/kg)

CO 3.3963 0.014561 1,000 0.93070

NOx 1.5718 0.040732 10,000 1.89719

VOC 2.7843 0.015062 10,000 2.50572

*partially adapted from [5] and [26]

Table 1. TRANSYT-7F coefficients and monetization factors*
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ECi = Σp Qi
p . Li . M

p 
, ∀p  (12)

TEC= Σi ECi
 . Di . Si

  
, ∀p  (13)

A closer look at Equations (11), (12), and (13) 
reveals that all terms used in calculating TEC are 
constants except for Di and Si, and while Di is a di-
rect result of MCTA, Di is not and requires estima-
tion based on traffic conditions associated with Di. 
To achieve this, we utilized the well-known Bureau 
of Public Roads (BPR) formula shown in (14). The 
formula defines a relationship between flow rate and 
travel time as experienced by vehicles using the road, 
given its maximum flow capacity c and free flow travel 
time tf. The Highway Capacity Manual [18] lists dif-
ferent c values depending on road type and free flow 
speed. Similarly, a and b are constants determined by 
road type but are often deployed in literature with the 
generalized values of a=0.15 and b=4.

 t = tf ( 1 + a (    )b )  (14)

It is possible to use the fundamental flow rela-
tion and the BPR formula to derive a relationship 
between traffic density D and vehicle speed S. This 
results in the polynomial relationship defined in (15), 
where Sf is the average vehicles speed in free flow 
conditions, and Dc is traffic density at road’s capacity 
(when v=c). However, deriving a closed form general 
solution to this polynomial relationship is not possi-
ble due to the resulting quintic  polynomial function.

 -        - a(1+a)b (    )b           = 0    (15)

We overcame this obstacle by evaluating the BPR 
formula at many v values covering the range of pos-
sible flow values needed in the optimization mod-
el. The resulting travel times at various flow values 
were used to calculate corresponding D and S values. 

These corresponding values were then used to define 
a speed estimation function S ≅ f(D, Sf ) where inter-
polation was used to fill-in any missing values in the 
relationship. Figure 1 shows the resulting relation-
ship for four types of roads defined by their free flow 
speeds Sf : 60, 80, 100, and 120 km/h.

Finally, we inserted the TEC objective into the 
NDP model as a second objective. Its insertion did 
not introduce any additional constraints over the sin-
gle-objective NDP model, however, it resulted in the 
inclusion of the speed estimation function described 
above, as shown in (18). The NSGA-II solution meth-
od described in the following section is well suited for 
handling such complexity. The resulting bi-objective 
NDP model is as follows:

Minimize Dmax  and TEC  (16)

Subject to Constraints (5) 
trough (10)    (17)

Where Si ≅ f (Di, Sf)  (18)

The NDP model presented in section 2.2.2 in-
cludes several complexities that reduce the choice of 
solution methods capable of handling their require-
ments. These complexities include binary decision 
variables, nonlinearity, and the use of a piece-wise 
approximation function. In addition, the problem’s 
solution space (3n/2 where n is the number roads in a 
network) is quite large even for medium sized cities 
when modeling only arterial roads.

For these reasons, we selected GA and NSGA-II 
as solution approaches for the single- and bi-objective 
NDP models, respectively. NSGA-II is a GA with a 

v

D1 1

c

DcSb+1 Sf
 .Sb

1
Sf

b+1

Figure 1. Vehicles’ average speed vs. road density relationship

3. Solving the Network Design Problem
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fast non-dominant sorting algorithm of fitness values 
enabling it to handle multi-objective optimization 
problems similar to the one at hand. The reader is 
referred to Konak et al. [28] for a good tutorial on 
multi-objective GA optimization.

The solution encoding and general heuristic setup 
deployed here, which we summarize below, are simi-
lar to those used in [9]. Each gene in the solution en-
coding represents a pair of opposing direction roads. 
The gene can indicate one of three states: reversed 
flow direction in the first road, reversed flow direc-
tion in the second road, or both roads have unaltered 
flow direction. Here, the firstroad refers to the road 
with lower index value of the pair. In this approach, 
a solution is simply a sequence of genes representing 
direction reversal states of all roads in the network. 
The encoding scheme deliberately excludes the case 
in which both roads are revered in traffic direction, 
as such cases do not change network traffic. It also 
reduces solution space significantly (from 2n to 3n/2) 
and eliminates the need for the constraint listed in 
(10) in the optimization model due to the use of road 
pairs in its gene representation instead of individual 
roads.

The solution approach utilized standard cross-
over and mutation GA operators. The crossover op-
erator was designed to randomly select two solutions 
and two crossover points on their gene sequence 
and swap genes between the two points across the 
two solutions. Similarly, the mutation operator was 
designed to randomly select a solution and then a 
gene within its sequence to be randomly mutated to 
one of the two other possible states. The remaining 
GA setup parameters wereset as follows: population 
size of 192, top 56 solutions kept between genera-
tions (about 29% of population), 50% probability of 
deploying crossover, and 18% probability of deploy-
ing mutation. Furthermore, the starting population 
was initialized to include 182 random solutions and 

10 solutions which represented the existing network 
state (approximately 95% and 5% of the population, 
respectively). A stopping criteria of 1000 generations 
was used.

The Abu Dhabi island road network was used 
to demonstrate the application of the proposed ap-
proach to a realistic city scenario. The selected area 
includes 360 arterial road segments covering the is-
land portion of the city. The city’s road network data, 
such as network structure, number of lanes, and 
speed limits were obtained from OpenStreetMap.
org. To facilitate the scenario, turning probabilities 
were set as follows: U-turns 5%, left-turn 10%, right-
turn 10%, and forward 75%. Turn probabilities were 
adjusted to maintain proportionality where certain 
turns are not permitted by network design or road 
nature.

To illustrate the advantage of optimizing NDP us-
ing bi-objective optimization rather than single objec-
tive optimization, we first applied the single-objective 
GA approach to the Abu Dhabi road network using 
the model described in section 2.2.1. While Dmax 
was the objective used in optimization, the algorithm 
was modified to passively report total emissions cost 
for every generation best solution (TECDmax) with no 
impact to the optimization process. For this experi-
ment, we used an estimated 15,000 vehicles travers-
ing the city road network to illustrate the optimization 
impact on a highly congested network.

Figure 2 shows that although the GA progressive-
ly produced lower congestion network setups (Dmax: 
51.23 → 31.96 vehicles/km . lane, or 37.6% reduc-
tion), the produced solutions ultimately led to high-
er total network emissions (TECDmax: $213.06/hr → 
$215.01/hr, or 0.9% increase). While the increase in 
total emissions cost may not seem significant, it is an 
hourly rate where the difference in emissions accu-
mulates over long periods of time exasperating an 
undesirable environmental trend. This finding sup-

Figure 2. Single objective GA optimization results: minimizing Dmax, while tracing its impact on TEC
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ports recent literature indicating that the relationship 
between the two objective functions is generally an in-
verse relationship, where optimizing network design 
for congestion minimization often adversely impacts 
total vehicles’ emissions[2]–[4].

In comparison, optimizing the same network us-
ing bi-objective NSGA-II produced the results shown 
in Figure 3. While the final generation solution pro-
duced substantially lower network emissions (TEC: 
$213.06/hr → $136.78/hr, or 35.8% reduction), it 
also resulted in increased network congestion in 
comparison to the initial network state(Dmax: 51.23  
→ 55.26 vehicles/km . lane, or 7.9% increase). This 
renders the final solution undesirable.

On the other hand, solutions found between gen-
erations 600 and 700 of the GArun produced both 
lower network congestion (Dmax = 40.99 vehicles/
km . lane, or 20% reduction) and emissions (TEC= 
$189.27/hr, or 11% reduction) compared to the ini-
tial network state.

Plotting the pareto-front of non-dominated solu-
tions found throughout the GA run provides a clear-
er view on the inverse relationship between Dmax and 
TEC. Figure 4 shows the pareto-front and indicates 
the current network state (highlighted using a red 

marker). The curve also serves as a decision sup-
port tool for decision makers to select compromise 
solutions that fit different network scenarios and ur-
ban planning needs. For example, the compromise 
solution at generation 650 is highlighted using green 
marker in Figure 4.

While NDP literature includes several studies 
with multi-objective models, to our knowledge, there 
are no studies that use the MCTA approach to op-
timize models with emissions and congestion ob-
jectives. Nevertheless, we compared general trends 
identified here to that of similar studies to validate 
our findings. In contrast to MCTA, UE is frequently 
used with a total system travel time (TSTT) objective. 
Realizing that both Dmax and TSTT are used as in-
dicators of network congestion, trends between each 
of them and total emissions should be directionally 
comparable. To that end, we compared our emis-
sions to congestion trend (i.e. TEC vs. Dmax in Figure 
4) to those reported in the literature (emissions vs. 
TSTT) [5], [23]. The comparison revealed a similar 
inverse and nonlinear relationship, however differing 
in shape and scale due to the differing measurements 
used (density vs. TSTT and emissions mass vs. emis-
sions cost).

Figure 3. Bi-objective GA optimization results: minimizing Dmax and TEC

Figure 4. Pareto-front for non-dominated solutions generated in bi-objective NSGA-II (red marker indicates current network state, 
and green marker indicates compromise solution at generation 650)
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Plotting the pareto-front of non-dominated solu-
tions found throughout the GA run provides a clear-
er view on the inverse relationship between Dmax and 
TEC. Figure 4 shows the pareto-front and indicates 
the current network state (highlighted using a red 
marker). The curve also serves as a decision sup-
port tool for decision makers to select compromise 
solutions that fit different network scenarios and ur-
ban planning needs. For example, the compromise 
solution at generation 650 is highlighted using green 
marker in Figure 4.

While NDP literature includes several studies 
with multi-objective models, to our knowledge, there 
are no studies that use the MCTA approach to op-
timize models with emissions and congestion ob-
jectives. Nevertheless, we compared general trends 
identified here to that of similar studies to validate 
our findings. In contrast to MCTA, UE is frequently 
used with a total system travel time (TSTT) objective. 
Realizing that both Dmax and TSTT are used as in-
dicators of network congestion, trends between each 
of them and total emissions should be directionally 
comparable. To that end, we compared our emis-
sions to congestion trend (i.e. TEC vs. Dmax in Figure 
4) to those reported in the literature (emissions vs. 
TSTT) [5], [23]. The comparison revealed a similar 
inverse and nonlinear relationship, however differing 
in shape and scale due to the differing measurements 
used (density vs. TSTT and emissions mass vs. emis-
sions cost).

The compromise solution is illustrated in Figure 
5, where 34 out of the 360 network roads were identi-
fied by the optimization for traffic flow reversal. The 
affected roads are highlighted in red. The effects of 
this solution on network’s congestion and emissions 
are illustrated in Figures 6 and 7 below. Figure 6 
shows that the solution reduces congestion in roads 
in the western outer rim of the city road network. 

This was accomplished through redistribution of traf-
fic density on the less trafficked parts of the network, 
while still maintaining lower congestion levels (i.e. 
Dmax value). Figure 7 illustrates the emissions impact 
of the solution, where TEC reduced for some of the 
most polluted roads and the network as a whole.

The GA and NSGA-II optimization consumed 
84 and 87 minutes, respectively, on an Intel Core i7 
(i7-6700K) processor taking advantage of all cores. 
Both heuristics were coded using Python and uti-
lized the DEAP evolutionary computational frame-
work [29] and Python’s scientific environment library 
SciPy [30].

In this paper, we proposed a bi-objective NDP 
model utilizing Markov chains for traffic assignment. 
The model incorporated traffic congestion and envi-
ronmental objectives to help decision makers under-
stand and leverage the trade-offs involved in traffic 
pattern optimization. While recent literature pointed 
to the inverse relationship between traffic congestion 
and vehicle emissions, the contribution of this work 
laid in the application of the MCTA modeling ap-
proach to demonstrate this phenomenon. It also pro-
vided a decision support tool to help traffic planners 
optimize traffic patterns while taking into consider-
ation the environmental impact of their decision. 
The reduced data requirements and the relatively 
short run time required for modeling a real-size city 
scenario using this approach is conducive to its adop-
tion in practice. 

In particular, the Pareto-Front results demonstrat-
ed the inverse relationship between network conges-
tion measured via traffic density and total network 
emissions costs. While current network performance 

Figure 5. Network modifications for the compromise solution;
road direction reversals highlighted in red

4. Conclusion
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can be improved upon in both objectives (see Figure 
4; green marker solution; 7.9% and 11% reductions 
in Dmax and TEC, respectively), it is clear that a cri-
terion must be set by decision makers for prioritiz-
ing network congestion and emissions objectives to 
achieve better overall network traffic performance. 
Relying on the traditional approach of minimizing 
congestion only in the presented example resulted in 
37.6% reduction in congestion, however at the cost 
of increased emissions (0.9% TEC increase). One 
possible approach would be to select solutions that 
minimize congestion without adversely impacting 
network emissions or setting bounds on acceptable 
emission levels to find best congestion traffic patterns 
based on these bounds.

 The presented approach can be extended to in-
clude multi-objective optimization by adding an ob-
jective function to measure network’s service level to 
road users. In addition, new heuristics such as the 
bee colony optimization and the chemical reaction 
optimization may provide improved solution search-
performance. These extension ideas are left as future 
directions for this work.
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