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Abstract: We introduce a new family of bivariate exponential distributions based on the counter-
monotonic shock model. This family of distribution is easy to simulate and includes the Fréchet lower
bound, which allows to span all degrees of negative dependence. The construction and distributional
properties of the proposed bivariate distribution are presented along with an estimation of the
parameters involved in our model based on the method of moments. A simulation study is carried
out to evaluate the performance of the suggested estimators. An extension to the general model
describing both negative and positive dependence is sketched in the last section of the paper.

Keywords: bivariate exponential distributions; common shock; counter-monotonic; dependence
modeling; Fréchet bound; negative dependence

1. Introduction

Exponential distributions are undoubtedly among the most popular and used distri-
butions in many areas of application. They play a prominent role in a variety of fields,
including reliability, hydrology, engineering, telecommunication, biological and environ-
mental sciences, among others.

However, the exponential distribution cannot be naturally extended to the bivariate
or the multivariate case in a unique way. As a result, the literature on bivariate exponential
distributions is vast, including many different classes and models that have been developed
in the past decades, for example, refs. [1–10], among others.

It is worth mentioning that most of the bivariate exponential models proposed in
the literature are restricted to the case of non-negative dependence. Very few models
have negative or both positive and negative correlation but do not fully complete the
range of correlation [1− π2

6 , 1] (see Moran [11]) and necessitate a complex structure in
their construction.

The main aim of this paper is to present a new bivariate exponential model that
fully covers the negative dependence. To that end, we will adopt a technique based on the
counter-monotonic shock model, which was introduced by Genet et al. [12]. This procedure
is quite different from the common shock method used by Marshal and Olkin [8] to define
a family of bivariate exponential distributions. Indeed, the latter is limited to model
the positive dependence and imposes restrictions on the correlation structure, especially
when the marginal are not identically distributed. In contrast, the counter-monotonic
shock technique provides a flexible framework for building negatively correlated bivariate
exponential distributions. Thanks to an appropriate parametrization, the resulting model
can be viewed as a family of bivariate exponential distributions with given marginals and
can be provided with a dependence parameter inducing the dependence in the model.
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In addition, this family of distribution is easy to simulate and includes the Fréchet lower
bound, which allows describing the full negative range of correlation, namely [1− π2

6 , 0].
We proceed as follows: We introduce our novel class of bivariate exponential distribu-

tions based on the counter-monotonic shock model in the next section. The derivation of
the probability density function of this distribution is given in Section 3. We also present in
this section the joint moment generating function, monotonicity, singularity, and scaling
properties. Estimation of the model parameters through the moment method is discussed
in Section 4. The proposed framework will be illustrated by simulations in Section 5.
Concluding comments and directions for further research are presented in Section 6.

2. The Model

In order to define the suggested bivariate distribution, let us first recall the notion
of a counter-monotonic random pair. Let K be a joint distribution with given marginal
distributions F and G. The next double inequalities are due to [13]:

sup[F(x) + G(y)− 1, 0] ≤ K(x, y) ≤ min[F(x), G(y)].

As pointed out by Fréchet, these bounds are themselves bivariate distributions with the
same marginals F and G. The counter-monotonic concept is related to the lower Fréchet
bound, and it is defined as follows.

Definition 1. The random pair (X, Y) with marginal distributions F and G, respectively, is
counter-monotonic if its joint distribution function is the lower Fréchet bound. Equivalently, there
exists a unit uniform random variable U such that X = F−1(U) and Y = G−1(1−U).

Note that the counter-monotonic notion describes the perfect negative dependence.

The New Bivariate Exponential Distribution

In the following, we introduce a new family of bivariate exponential distributions
with given marginals describing the negative dependence. The idea is based on the counter-
monotonic shock method introduced in [12]. The principle of this approach is to link
independent exponential random variables through counter-monotonic ones in order to
produce negative dependence. To this end, let λi > 0, i = 1, 2 be the marginal parameters
and let θ ∈ (0, 1) denote the dependence parameter.

Definition 2. Let (X1, X2) and (Y1, Y2) be independent random pairs such that Yi∼Exp(θλi) and
Xi∼Exp(λi(1− θ)), i = 1, 2. Denote by Gi the distribution functions of Yi, i = 1, 2, respectively.
Suppose further that

1. Y1 and Y2 are counter-monotonic, that is, Y1 = G−1
1 (U) and Y2 = G−1

2 (1−U), where U is
uniformly distributed over [0, 1].

2. X1, X2 and U are independent.

The distribution of the random pair (X, Y), defined by

X = min(X1, Y1) and Y = min(X2, Y2), (1)

is called the counter-monotonic shock bivariate exponential distribution.

Note that the set of all random pairs defined by (1) will be denoted BED−(θ, Λ), where
Λ = (λ1, λ2). Clearly, the latter is a family of bivariate exponential distributions with given
marginals, since by construction, X∼Exp(λ1) and Y∼Exp(λ2). The parameter θ ∈ (0, 1)
does not affect the marginal distributions; it can be interpreted as a dependence parameter.
In fact, one observes that this family reaches the independence case when θ goes to 0 and it
approaches the perfect negative dependence described by the Fréchet lower bound when θ
goes to 1, respectively.
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Thanks to the relations Y1 = G−1
1 (U) and Y2 = G−1

2 (1−U), one deduces an interesting
alternative representation of (1) given by

X = min
(

X1,
Z

λ1θ

)
and Y = min

(
X2,−

ln
{

1− e−Z}
λ2θ

)
(2)

where Z is an exponential random variable, with parameter 1, which is independent of X1
and X2. This presentation provides an easy way to simulate data from this model through
the next steps:

1. Consider λ1 > 0, λ2 > 0 and θ ∈ (0, 1).
2. Generate independent values x1, x2 and z from Exp(λ1(1− θ)), Exp(λ2(1− θ)) and

Exp(1), respectively.
3. Set x = min(x1, z/λ1θ) and y = min(x2,− ln{1− e−z}/λ2θ).
4. The desired pair is (x, y).

The following figure displays simulated data using the previous algorithm with θ = 0.5,
λ1 = 1 and λ2 = 2.

As illustrated in Figure 1, the proposed distribution seems to have both absolutely
continuous and singular components. This interesting property will be examined in
Proposition 2.

0 1 2 3 4

0
1

2
3

4
5

6

x

y

Figure 1. Simulated random pairs from BED−(θ, Λ).

3. Properties of the New Bivariate Exponential Distribution

The following section will be consecrated to investigating the properties of the new
family of bivariate exponential distribution based on the counter-monotonic shocks. We will
start with the joint survival function of the distribution and then derive the corresponding
joint probability density function. It will then be followed by an analysis of the product
moment of the distribution, the coefficient of correlation, and the moment generating
function. Monotonicity and scaling properties will also be discussed.

3.1. Survival and Density Functions

We now study the joint survival function associated with the new family BED−(θ, Λ)
and then deduce the corresponding joint probability density function.

Proposition 1. The survival function of (X, Y)∼BED−(θ, Λ) is given by

K̄θ(x, y) = e−λ1(1−θ)xe−λ2(1−θ)y
[
e−λ1θx + e−λ2θy − 1

]
+

, (3)
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where x+ = max(x, 0) for any x ∈ R.

Proof. Using the fact that the random variables X1, X2 and U are independent, one has
from (1), for all (x, y) ∈ R2

+,

K̄θ(x, y) = P(X ≥ x, Y ≥ y)

= P(X1 ≥ x, X2 ≥ y, G−1
1 (U) ≥ x, G−1

2 (1−U) ≥ y)

= P(X1 ≥ x, X2 ≥ y, G1(x) ≤ U ≤ 1− G2(y))

= P(X1 ≥ x)P(X2 ≥ y)P(G1(x) ≤ U ≤ 1− G2(y))

= P(X1 ≥ x)P(X2 ≥ y)[1− G1(x)− G2(y)]+

= e−λ1(1−θ)xe−λ2(1−θ)y
[
e−λ1θx + e−λ2θy − 1

]
+

which completes the proof of the proposition.

Corollary 1. The joint distribution of (X, Y)∼BED−(θ, Λ) is given by

Kθ(x, y) = 1− e−λ1x − e−λ2y + e−λ1(1−θ)xe−λ2(1−θ)y
[
e−λ1θx + e−λ2θy − 1

]
+

,

where x+ = max(x, 0) for any x ∈ R.

Proof. Using the relation between the Kθ and K̄θ

Kθ(x, y) = K̄θ(x, y) + F(x) + G(y)− 1,

the result can be immediately deduced.

Let us now recall the beta function and the incomplete beta function defined, respec-
tively, by

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt, x, y > 0,

B(x, a, b) =
∫ x

0
ta−1(1− t)b−1dt, a, b, x > 0.

These functions are linked to the beta distribution. In fact, a random variable Z follows
a beta distribution with parameters a > 0 and b > 0 if its distribution is defined, for
x ∈ [0, 1], by

Ga,b(x) =
B(x, a, b)
B(a, b)

.

3.2. Singularity and Density Function

As shown below, the proposed family of bivariate exponential distribution pos-
sesses both an absolutely continuous and singular part involving the beta distribution.
This property arises naturally in higher dimensions, as mentioned in [8].

Proposition 2. The survival function of (X, Y)∼BED−(θ, Λ) is of the form

K̄θ(x, y) = B
(

1
θ

,
1
θ

)
K̄s,θ(x, y) +

(
1− B

(
1
θ

,
1
θ

))
K̄c,θ(x, y), (4)

where

K̄s,θ(x, y) =


G 1

θ , 1
θ

(
e−λ1θx)− G 1

θ , 1
θ

(
1− e−λ2θy) if e−λ1θx + e−λ2θy − 1 > 0,

0 if e−λ1θx + e−λ2θy − 1 ≤ 0
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is a singular survival function, and

K̄c,θ(x, y) =
1

1− B
(

1
θ , 1

θ

) K̄θ(x, y)−
B
(

1
θ , 1

θ

)
1− B

(
1
θ , 1

θ

) K̄s,θ(x, y)

is an absolutely continuous survival function.

Proof. Let (u, v) ∈ (0, ∞[2 such that e−λ1θu + e−λ2θv − 1 > 0. Using (3), we get

∂2K̄θ

∂u∂v
(u, v) = λ1λ2(1− θ)e−λ1ue−λ2(1−θ)v + λ1λ2(1− θ)e−λ1(1−θ)ue−λ2v

− λ1λ2(1− θ)2e−λ1(1−θ)ue−λ2(1−θ)v.

Define for x > 0,

b1(x) = −
ln
(
1− e−λ2θx)

λ1θ
and b2(x) = −

ln
(
1− e−λ1θx)

λ2θ
. (5)

It follows that if e−λ1θx + e−λ2θy − 1 > 0,∫ ∞

x

∫ ∞

y

∂2K̄θ

∂u∂v
(u, v)dudv =

∫ b1(y)

x

(∫ b2(u)

y

∂2K̄θ

∂u∂v
(u, v)dv

)
du

= λ1λ2(1− θ)
∫ b1(y)

x
e−λ1u

(∫ b2(u)

y
e−λ2(1−θ)vdv

)
du

+ λ1λ2(1− θ)
∫ b1(y)

x
e−λ1(1−θ)u

(∫ b2(u)

y
e−λ2vdv

)
du

− λ1λ2(1− θ)2
∫ b1(y)

x
e−λ1(1−θ)u

(∫ b2(u)

y
e−λ2(1−θ)vdv

)
du

= J1 + J2 − J3.

It could be readily seen that

J1 = e−λ2(1−θ)ye−λ1x − e−λ2(1−θ)y
(

1− e−λ2θy
) 1

θ

−1
θ

{
B
(

e−λ1θx,
1
θ

,
1
θ

)
− B

(
1− e−λ2θy,

1
θ

,
1
θ

)}
,

J2 = e−λ1(1−θ)xe−λ2y − e−λ2y
(

1− e−λ2θy
) 1

θ−1

−1− θ

θ

{
B
(

e−λ1θx,
1
θ
− 1,

1
θ
+ 1
)
− B

(
1− e−λ2θy,

1
θ
− 1,

1
θ
+ 1
)}

and

J3 = e−λ1(1−θ)xe−λ2(1−θ)y − e−λ2(1−θ)y
(

1− e−λ2θy
) 1

θ−1

−1− θ

θ

{
B
(

e−λ1θx,
1
θ
− 1,

1
θ

)
− B

(
1− e−λ2θy,

1
θ
− 1,

1
θ

)}
.

By virtue of the identity,

B(x, a + 1, b) + B(x, a, b + 1) = B(x, a, b),
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the quantity J1 + J2 − J3 reduces to

∫ ∞

x

∫ ∞

y

∂2K̄θ

∂u∂v
(u, v)dudv =

K̄θ(x, y)−
{

B
(

e−λ1θx,
1
θ

,
1
θ

)
− B

(
1− e−λ2θy,

1
θ

,
1
θ

)}
. (6)

The singular component of the survival function is then given by

αK̄s(x, y) = B
(

e−λ1θx,
1
θ

,
1
θ

)
− B

(
1− e−λ2θy,

1
θ

,
1
θ

)
(7)

where the normalized constant α is obtained by tending (x, y) to (0, 0) in the previous
formula. This leads to α = B

(
1
θ , 1

θ

)
.

Similarly, the continuous part of the survival function is given by

K̄c(x, y) =
{

1− B
(

1
θ

,
1
θ

)} ∫ ∞

x

∫ ∞

y

∂2K̄θ

∂u∂v
(u, v)dudv. (8)

Putting (6)–(8) together, we have the desired decomposition. This ends the proof of
Proposition 2.

The density function of the proposed family of distribution can be obtained immedi-
ately from the previous result.

Corollary 2. The density function of (X, Y)∼BED−(θ, Λ) is expressed by,

fθ(x, y) =


f1(x, y) if e−λ1θx + e−λ2θy − 1 > 0,

f0(x) in the curve {(x, y) ∈ R2
+ : e−λ1θx + e−λ2θy − 1 = 0},

where

f1(x, y) =
∂2K̄θ

∂x∂y
(x, y)

= λ1λ2(1− θ)e−λ1(1−θ)xe−λ2(1−θ)y(e−λ1θx + e−λ2θy − 1 + θ) (9)

and
f0(x) = λ1θe−λ1x(1− e−λ1θx)

1
θ−1.

Proof. It is easily seen that f1 is the density function corresponding to the continuous part
of the survival function K̄s,θ described by (9).
Next, from Proposition 2, the singular component of the survival function of (X, Y) is
given by

P(X > x, Y > y) = K̄s,θ(x, y) = G 1
θ , 1

θ

(
e−λ1θx

)
− G 1

θ , 1
θ

(
1− e−λ2θy

)
.

This ensures that the survival function of X in the singular part is F̄0(x) = P(X > x) =
G 1

θ , 1
θ

(
e−λ1θx). Consequently, the density function in the curve A = {(x, y) ∈ R2

+ : e−λ1θx +

e−λ2θy − 1 = 0} is

f0(x) = −F̄′0(x) = λ1θe−λ1θxG′1
θ , 1

θ

(
e−λ1θx

)
= λ1θe−λ1x(1− e−λ1θx)

1
θ−1.

This ends the proof of Corollary 2.
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One can check that∫ ∞

0

∫ ∞

0
fθ(x, y)dxdy =

∫
e−λ1θx+e−λ2θy−1>0

f1(x, y)dxdy +
∫ ∞

0
f0(x)dx = 1

which guarantees that fθ is a density function. In addition, one observes that the probability
that (X, Y) lies in the singular part represented by the curve A = {(x, y) ∈ R2

+ : e−λ1θx +
e−λ2θy − 1 = 0} is given by:∫ ∞

0
f0(x)dx =

∫ ∞

0
λ1θe−λ1x(1− e−λ1θx)

1
θ−1dx

=
∫ 1

0
u

1
θ−1(1− u)

1
θ−1du

= B
(

1
θ

,
1
θ

)
.

3.3. Monotonicity

In the following, we show that the family BED−(θ, Λ) is ordered in terms of θ in
the negative quadrant dependence ordering. This means that the parameter θ can be
considered as a dependence parameter for the family BED−(θ, Λ).

Proposition 3. For (θ1, θ2) ∈ [0, 1]2, one has

θ1 ≤ θ2 =⇒ K̄θ1(x, y) ≥ K̄θ2(x, y) ∀(x, y) ∈ R2.

Proof. We remark that the survival function can be rewritten as

K̄θ(x, y) = e−λ1xe−λ2y
[
eλ1θx + eλ2θy − eλ1θxeλ2θy

]
+

= e−λ1xe−λ2y
[
1− (eλ1θx − 1)(eλ2θy − 1)

]
+

.

Hence, the result is in force since θ 7−→ 1− (eλ1θx − 1)(eλ2θy − 1)) is a decreasing function
in θ ∈ [0, 1] for all (x, y) ∈ R2

+ and u 7−→ u+ is an increasing function in u ∈ R.

The above result shows that the strength of the dependence of the pair (X, Y) in
BED−(θ, Λ) decreases with θ ∈ [0, 1]. Hence, the covariance as well as the correlation of
random pairs in BED−(θ, Λ) decrease with respect to θ. In addition, one sees that, for all
(x, y) ∈ R2,

K̄θ(x, y) ≤ K̄0(x, y) = F̄(x)Ḡ(x).

The latter outlines that the components of (X, Y) ∈ BED−(θ, Λ) are negatively quadrant
dependent. In particular, the correlation of any (X, Y) ∈ BED−(θ, Λ) is negative.

3.4. Product Moment and Correlation Structure

Recall the partial derivatives of the Beta function for x > 0 and y > 0

Bp,q(x, y) =
∂p+qB
∂xp∂yq (x, y) =

∫ 1

0
tx−1(1− t)y−1 lnp(t) lnq(1− t)dt.
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Proposition 4. For θ ∈ (0, 1), the product moment of (X, Y)∼BED−(θ, Λ) is given, for any
positive integers i and j, by

E
(

XiY j
)
=

i!j!

λi
1λ

j
2(1− θ)j

+
i!j!

λi
1λ

j
2(1− θ)i

− i!j!

λi
1λ

j
2(1− θ)i+j

− i!j

λi
1λ

j
2

i−1

∑
s=0

(−1)s+j+1

θ j+ss!
Bj−1,s

(
1
θ
− 1,

1
θ
+ 1
)

− ij!

λi
1λ

j
2

j−1

∑
s=0

(−1)s+i+1

θi+ss!
Bi−1,s

(
1
θ
− 1,

1
θ
+ 1
)

+
i!j

λi
1λ

j
2(1− θ)i

i−1

∑
s=0

(1− θ)s(−1)s+j+1

s!θs+j Bj−1,s

(
1
θ
− 1,

1
θ

)
. (10)

Proof. Set A = {(x, y) ∈ R2
+ : e−θx + e−θy − 1 > 0}, one can observe that

E
(

XiY j
)

=
∫ ∞

0

∫ ∞

0
ijxi−1yj−1K̄θ(x, y)dxdy

=
ij

λi
1λ

j
2

∫ ∞

0

∫ ∞

0
xi−1yj−1e−(1−θ)xe−(1−θ)y

[
e−θx + e−θy − 1

]
+

dxdy

=
ij

λi
1λ

j
2

∫∫
A

xi−1yj−1e−xe−(1−θ)ydxdy

+
ij

λi
1λ

j
2

∫∫
A

xi−1yj−1e−(1−θ)xe−ydxdy

− ij

λi
1λ

j
2

∫∫
A

xi−1yj−1e−(1−θ)xe−(1−θ)ydxdy

= I1 + I2 − I3.

Define a(x) = −θ−1 ln(1− e−θx). Hence,

I1 =
ij

λi
1λ

j
2

∫ ∞

0
yj−1e−(1−θ)y

(∫ a(y)

0
xi−1e−xdx

)
dy

=
i!j

λi
1λ

j
2

∫ ∞

0
yj−1e−(1−θ)y

(
1− e−a(y)

i−1

∑
s=0

a(y)s

s!

)
dy

=
i!j!

λi
1λ

j
2(1− θ)j

− i!j

λi
1λ

j
2

i−1

∑
s=0

1
s!

∫ ∞

0
yj−1e−(1−θ)ye−a(y)a(y)sdy

=
i!j!

λi
1λ

j
2(1− θ)j

− i!j

λi
1λ

j
2

i−1

∑
s=0

(−1)s+j+1

θ j+ss!

∫ 1

0
u

1
θ−2(1− u)

1
θ [ln(u)]j−1[ln(1− u)]sdu

=
i!j!

λi
1λ

j
2(1− θ)j

− i!j

λi
1λ

j
2

i−1

∑
s=0

(−1)s+j+1

θ j+ss!
Bj−1,s

(
1
θ
− 1,

1
θ
+ 1
)

,

where the second line follows from the fact that

∫ t

0
yj−1e−ydy = (j− 1)!

(
1− e−t

j−1

∑
s=0

ts

s!

)
.
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Similarly, one has

I2 =
i!j!

λi
1λ

j
2(1− θ)i

− ij!

λi
1λ

j
2

j−1

∑
s=0

(−1)s+i+1

θi+ss!
Bi−1,s

(
1
θ
− 1,

1
θ
+ 1
)

.

Finally, we have

I3 =
ij

λi
1λ

j
2

∫ ∫
A

xi−1yj−1e−(1−θ)xe−(1−θ)ydxdy

=
ij

λi
1λ

j
2(1− θ)i

∫ ∞

0
yj−1e−(1−θ)y

(∫ (1−θ)a(y)

0
zi−1e−zdz

)
dx

=
i!j

λi
1λ

j
2(1− θ)i

∫ ∞

0
yj−1e−(1−θ)y

(
1− e−(1−θ)a(y)

i−1

∑
s=0

((1− θ)a(y))s

s!

)
dy

=
i!j!

λi
1λ

j
2(1− θ)i+j

− i!j

λi
1λ

j
2(1− θ)i

i−1

∑
s=0

1
s!

∫ ∞

0
yj−1e−(1−θ)ye−(1−θ)a(y)((1− θ)a(y))sdy

=
i!j!

λi
1λ

j
2(1− θ)i+j

− i!j

λi
1λ

j
2(1− θ)i

i−1

∑
s=0

(1− θ)s(−1)s+j+1

s!θs+j Bj−1,s

(
1
θ
− 1,

1
θ

)
.

This completes the proof of Proposition 4.

Next, we derive the correlation coefficient of (X, Y)∼BED−(θ, Λ).

Corollary 3. The correlation coefficient of (X, Y)∼BED−(θ, Λ) is given by

corr(X, Y) =
1

(1− θ)2

[
B
(

1
θ

,
1
θ

)
− θ2

]
.

Proof. Using Equation (10), one has for i = j = 1,

E(XY) =
2

λ1λ2(1− θ)
− 1

λ1λ2(1− θ)2

− 2
λ1λ2θ

B
(

1
θ
− 1,

1
θ
+ 1
)
+

1
λ1λ2θ(1− θ)

B
(

1
θ
− 1,

1
θ

)
. (11)

To complete the proof of the corollary, we will make use of the following properties of the
beta function

B(x + 1, y) =
x

x + y
B(x, y) and B(x, y + 1) =

y
x + y

B(x, y).

It results that

B
(

1
θ
− 1,

1
θ

)
=

2− θ

1− θ
B
(

1
θ

,
1
θ

)
,

(12)

B
(

1
θ
− 1,

1
θ
+ 1
)

=
1

1− θ
B
(

1
θ

,
1
θ

)
.
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Substituting (12) in (11), we get the following expression for the covariance of (X, Y),

cov(X, Y) = E(XY)− 1
λ1λ2

=
1

λ1λ2(1− θ)2

{
B
(

1
θ

,
1
θ

)
− θ2

}
. (13)

The result follows by using the fact that corr(X, Y) = λ1λ2cov(X, Y).

Let Γ(F, G) be the space of all bivariate random variables with given exponential
marginal distributions F and G with parameters λ1 and λ2, respectively. The minimal
correlation in the space Γ(F, G) is calculated by using the lower Fréchet bound. This means
that, for all (X, Y) ∈ Γ(F, G), one has,

ρmin = corr(F−1(U), G−1(1−U)) ≤ corr(X, Y),

where U is a random variable uniformly distributed over [0, 1]. The above minimal correla-
tion is given by

ρmin = E[ln(U) ln(1−U)]− 1 = 1− π2

6
.

Hence, the full correlation range of negative dependence in the space Γ(F, G) is [1−π2/6, 0].
Note the proposed family of distribution BED−(θ, Λ) describes this full negative range of
correlation since it includes the Fréchet lower bound. In particular, one has

lim
θ→1

{
1

(1− θ)2

[
B
(

1
θ

,
1
θ

)
− θ2

]}
= ρmin = 1− π2

6
≈ −0.6449341.

Figure 2 illustrates the behavior of the correlation coefficient in terms of the dependence
parameter θ ∈ [0, 1]. Note that the expression of the covariance described in (13) will be
useful to estimate the dependence parameter using the method of moments.

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

θ

ρ

Figure 2. Coefficient of correlation in terms of the dependence parameter.

3.5. Scaling Property

Analogously to the univariate case, the proposed family of distributions enjoys the
scaling property.

Proposition 5. For any a = (a1, a2) ∈ (0, ∞)× (0, ∞), one has

(X, Y) ∼ BED−(θ, Λ) ⇐⇒ (a1X, a2Y) ∼ BED−(θ, a−1Λ),
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where a−1Λ = (λ1/a1, λ2/a2).

Proof. The proof is straightforward, and therefore, it is omitted.

3.6. Moment Generating Function

Here, we derive an explicit expression for the moment generating function of the
family (X, Y)∼BED−(θ, Λ) in terms of the beta function.

Proposition 6. The moment generating function of (X, Y)∼BED−(θ, Λ) is given, for all (t, s) ∈
[0, λ1]× [0, λ2], by

ψ(t, s) =
λ1λ2(1− θ)(

t− λ1(1− θ)
)(

s− λ2(1− θ)
)[α1B

(
λ1 − t

λ1θ
,

λ2 − s
λ2θ

)
− α2 + 1

]
,

where α1 =
st

λ1λ2(1− θ)
and α2 =

θ(λ1λ2 − ts)
(λ1 − t)(λ2 − s)

Proof. For the sake of easy reference, we restate b1(x) and b2(x) introduced earlier in (5)

b1(x) = −
ln
(
1− e−λ2θx)

λ1θ
and b2(x) = −

ln
(
1− e−λ1θx)

λ2θ
.

Set A1 = {(x, y) ∈ R2
+ : e−λ1θx + e−λ2θy − 1 > 0} and A2 = {(x, y) ∈ R2

+ : e−λ1θx +
e−λ2θy − 1 = 0}. Hence,

ψ(t, s) = E
(

etX+sY
)

=
∫
A1

etx+sy fθ(x, y)dxdy +
∫
A2

etx+sy fθ(x, y)dx

= C1 + C2 − C3 + C4 (14)

where

C1 = λ1λ2(1− θ)
∫ ∞

0
e(t−λ1)x

(∫ b2(x)

0
e(s−λ2(1−θ))ydy

)
dx

=
λ2(1− θ)

θ
(
s− λ2(1− θ)

)B
(

λ1 − t
λ1θ

,
λ2 − s

λ2θ

)
(15)

− λ1λ2(1− θ)

(λ1 − t)
(
s− λ2(1− θ)

) ,

C2 = λ1λ2(1− θ)
∫ ∞

0
e(s−λ2)y

(∫ b1(y)

0
e(t−λ1(1−θ))xdx

)
dy

=
λ1(1− θ)

θ
(
t− λ1(1− θ)

)B
(

λ1 − t
λ1θ

,
λ2 − s

λ2θ

)
(16)

− λ1λ2(1− θ)

(λ2 − s)
(
t− λ1(1− θ)

) ,

C3 = λ1λ2(1− θ)2
∫ ∞

0
e(t−λ1(1−θ))x

(∫ b2(x)

0
e(s−λ2(1−θ))ydy

)
dx

=
λ2(1− θ)2

θ
(
s− λ2(1− θ)

)B
(

λ1 − t
λ1θ

− 1,
λ2 − s

λ2θ

)
+

λ1λ2(1− θ)2(
t− λ1(1− θ)

)(
s− λ2(1− θ)

) .
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Using the fact that

B(x− 1, y) =
x− 1 + y

x− 1
B(x, y),

it follows that

B
(

λ1 − t
λ1θ

− 1,
λ2 − s

λ2θ

)
=

λ1s + λ2t− (2− θ)λ1λ2

λ2[t− λ1(1− θ)]
B
(

λ1 − t
λ1θ

,
λ2 − s

λ2θ

)
.

Consequently, one gets

C3 =
(1− θ)2[λ1s + λ2t− (2− θ)λ1λ2]

θ
(
s− λ2(1− θ)

)(
t− λ1(1− θ)

) B
(

λ1 − t
λ1θ

,
λ2 − s

λ2θ

)
(17)

+
λ1λ2(1− θ)2(

t− λ1(1− θ)
)(

s− λ2(1− θ)
) .

Finally,

C4 = λ1θ
∫ ∞

0
e(t−λ1)x+sb2(x)(1− e−λ1θx)

1
θ−1dx = B

(
λ1 − t

λ1θ
,

λ2 − s
λ2θ

)
. (18)

The result follows by inserting (15)–(18) in (14).

4. Parameters Estimation

In the following, we estimate the parameters of the model Λ = (λ1, λ2) in (0, ∞)2 and
θ ∈ [0, 1] using the method of moments. To this end, let (X1, Y1), . . . , (Xn, Yn) be mutually
independent copies of (X, Y)∼BED−(θ, Λ) and denote

X̄ = n−1
n

∑
i=1

Xi, Ȳ = n−1
n

∑
i=1

Yi and S12 =
1

n− 1

n

∑
i=1

(Xi − X̄)(Yi − Ȳ).

The sample means X̄ and Ȳ provide consistent estimators of the marginal parameters λ1
and λ2, respectively, given by

λ̂1 = 1/X̄ and λ̂2 = 1/Ȳ.

The dependence parameter θ will be estimated using the expression of the covariance
hλ1,λ2(θ) = cov(X, Y) described by (13). In fact, a consistent estimator of θ can be deter-
mined from the next equation

hλ̂1,λ̂2
(θ) =

1
λ̂1λ̂2(1− θ)2

{
B
(

1
θ

,
1
θ

)
− θ2

}
= S12.

Since the function hλ̂1,λ̂2
(θ) is strictly decreasing in terms of θ ∈ [0, 1], the desired estimator

is uniquely determined by
θ̂ = h−1

λ̂1,λ̂2
(S12).

Observe that the lower bound of hλ̂1,λ̂2
(θ) is

(
λ̂1λ̂2

)−1
(1− π2/6). Therefore, if the sample

covariance S12 is smaller than this lower bound, then θ̂ = 1. In addition, if S12 > 0, then
θ̂ = 0.
Furthermore, the asymptotic behavior of the estimator of θ can be derived from the asymp-
totic law of S12, as stated below.
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Proposition 7. For all θ ∈ (0, 1), one has

√
n
(
θ̂ − θ

)
 N

(
0,
{

h′λ1,λ2
(θ)
}−2

σ2(θ, λ1, λ2)

)
,

with σ2(θ, λ1, λ2) = var
{(

X− 1
λ1

)(
Y− 1

λ2

)}
.

Proof. In fact, it is well known (see, e.g., Theorem 8 on p. 52 of [14]) that S12 is a consistent
and asymptotic Gaussian estimator of population covariance hλ1,λ2(θ), namely

√
n
(
S12 − hλ1,λ2(θ)

)
 N (0, σ2(θ, λ1, λ2)),

where σ2(θ, λ1, λ2) = var
{(

X− 1
λ1

)(
Y− 1

λ2

)}
. The result is then derived from the Delta

method and Slutsky’s lemma applied to θ̂ = h−1
λ1,λ2

(S12).

The previous proposition will be useful to establish a confidence interval for θ. To this
end, let us first compute

σ2(θ, λ1, λ2) = var{(X− λ−1
1 )(Y− λ−1

2 )}
= E{(X− λ−1

1 )2(Y− λ−1
2 )2} − cov2(X, Y)

= E(X2Y2)− 2
λ2

E(X2Y)− 2
λ1

E(XY2) +
4

λ1λ2
E(XY)

+
1

λ2
1λ2

2
− cov2(X, Y). (19)

The mixed moments E(XiY j), i, j = 1, 2 involved in the previous formula can be obtained
from Proposition 4 as follows

E(X2Y) =
2θ2 − 6θ + 2
λ2

1λ2(1− θ)3

− 2
λ2

1λ2

{
1
θ

B
(

1
θ
− 1,

1
θ
+ 1
)
− 1

θ2 B0,1

(
1
θ
− 1,

1
θ
+ 1
)}

+
2

λ2
1λ2(1− θ)2

{
1
θ

B
(

1
θ
− 1,

1
θ

)
− 1− θ

θ2 B0,1

(
1
θ
− 1,

1
θ

)}
+

2
λ2

1λ2θ2
B1,0

(
1
θ
− 1,

1
θ
+ 1
)

, (20)

E(XY2) =
2θ2 − 6θ + 2
λ1λ2

2(1− θ)3

− 2
λ1λ2

2

{
1
θ

B
(

1
θ
− 1,

1
θ
+ 1
)
− 1

θ2 B0,1

(
1
θ
− 1,

1
θ
+ 1
)}

+
2

λ1λ2
2θ2

B1,0

(
1
θ
− 1,

1
θ
+ 1
)
− 2

λ1λ2
2(1− θ)θ2

B1,0

(
1
θ
− 1,

1
θ

)
(21)
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and

E(X2Y2) =
8θ2 − 16θ + 4
λ2

1λ2
2(1− θ)4

− 8
λ2

1λ2
2

{
− 1

θ2 B1,0

(
1
θ
− 1,

1
θ
+ 1
)
+

1
θ3 B1,1

(
1
θ
− 1,

1
θ
+ 1
)}

+
4

λ2
1λ2

2(1− θ)2

{
− 1

θ2 B1,0

(
1
θ
− 1,

1
θ

)
+

1− θ

θ3 B1,1

(
1
θ
− 1,

1
θ

)}
. (22)

Using the properties of the partial derivatives of the beta function (see Appendix A) and
putting (11), (13), (19)–(22) and together, it follows that

σ2(θ, λ1, λ2) = a1B2
(

1
θ

,
1
θ

)
+ a2B

(
1
θ

,
1
θ

)
+ a3, (23)

where

• a1 = − 1
λ2

1λ2
2(1− θ)4

,

• a2 =

−4(1− θ)2ψ
′
(

2
θ

)
+ 4
(
(1− θ)ψ

(
2
θ

)
− (1− θ)ψ

(
1
θ

)
+ θ2

)2

λ2
1λ2

2(1− θ)4θ2

+
2θ2

λ2
1λ2

2(1− θ)4
,

• a3 =
−4θ3 + 2θ2 − 4θ + 1

(1− θ)4λ2
1λ2

2
,

with ψ
′
(x) is the derivative of the Digamma function ψ(x).

From Proposition 7, one can build an asymptotic confidence interval for the dependence
parameter θ. Thus, the (1− α)× 100% confidence interval for θ is given by the follow-
ing formula:

θ̂ ± zα/2
h′(θ̂)−1σ(θ̂, λ̂1, λ̂2)√

n
.

5. Simulation Study

In this section, we will illustrate the performance of θ̂, the estimator of the dependence
parameter θ. We will be examining the finite-sample accuracy of our estimates for different
sample sizes. An asymptotic confidence interval for θ will also be provided.

More specifically, let (X11, X12), . . . , (Xn1, Xn2) be mutually independent copies of
the random vector (X1, X2)∼BED−(θ, Λ). Consistent estimators of λ1, λ2 and θ can be
obtained by the method of moments in accordance with the previous section.

To assess the performance of the moment-based estimators, the marginal parameters
were held fixed at Λ = (2, 4), and various values of θ were chosen to cover a broader range
of negative dependence. Different sample sizes, n, are considered, and each scenario was
replicated 500 times. As estimation of the parameters λ1 and λ2 is standard, we focus on
the results of estimating θ.

Recall that the method of moments, used to estimate the model parameters λ1 and
λ2, requires estimation of the dependence parameter θ ∈ (0, 1) by solving for the unique
root of

hλ̂1,λ̂2
(θ) =

1
λ̂1λ̂2(1− θ)2

{
B
(

1
θ

,
1
θ

)
− θ2

}
= S12.

Table 1 exhibits the estimate θ̂ of the dependence parameter θ, bias, mean squared error
(MSE), and confidence interval estimations for θ. It illustrates that simulation results
obtained by the method of moments are consistent. In fact, θ̂ provides a good estimator for
the dependence parameter θ, bias, and MSE of θ̂ decrease as the sample size increases. As
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expected, the confidence intervals get narrower as the sample size grows. Moreover, we
observed from many more simulations, not presented here, that the estimator θ̂ performs
very well regardless of the choice of λ1 and λ2.

Table 1. Moment-based estimation for θ.

n θ̂ Bias(θ̂) MSE(θ̂) 95% C.I

θ = 0.2

50 0.2544 0.0544 0.0123 (0.0009, 0.5215)
100 0.2291 0.0291 0.0071 (0.0212, 0.4371)
200 0.2056 0.0056 0.0040 (0.0378, 0.3735)
300 0.2012 0.0012 0.0039 (0.0602, 0.3423)
400 0.2009 0.0009 0.0031 (0.0785, 0.3233)
500 0.1992 −0.0007 0.0027 (0.0885, 0.3111)
1000 0.1994 −0.0006 0.0016 (0.1211, 0.2776)

θ = 0.4

50 0.3921 −0.0079 0.0097 (0.1510, 0.6331)
100 0.3978 −0.0022 0.0051 (0.2263, 0.5693)
200 0.3982 −0.0018 0.0022 (0.2769, 0.5195)
300 0.3987 −0.0013 0.0014 (0.2995, 0.4978)
400 0.3991 −0.0009 0.0012 (0.3133, 0.4850)
500 0.3995 −0.0004 0.0004 (0.3211, 0.4779)
1000 0.4003 0.0003 0.0004 (0.3460, 0.4547)

θ = 0.5

50 0.4967 −0.0032 0.0095 (0.2152, 0.7782)
100 0.5014 0.0014 0.0053 (0.3007, 0.7021)
200 0.5010 0.0009 0.0024 (0.3592, 0.6427)
300 0.5007 0.0007 0.0015 (0.3850, 0.6165)
400 0.4994 0.0005 0.0011 (0.3994, 0.5994)
500 0.4995 −0.0004 0.0010 (0.4101, 0.5889)
1000 0.5002 0.0002 0.0004 (0.4369, 0.5635)

θ = 0.6

50 0.5976 −0.0024 0.0113 (0.2594, 0.9357)
100 0.6018 0.0019 0.0055 (0.3608, 0.8428)
200 0.5984 −0.0016 0.0024 (0.4290, 0.7677)
300 0.6009 0.0009 0.0020 (0.4620, 0.7398)
400 0.6007 0.0007 0.0012 (0.4798, 0.7215)
500 0.6004 0.0005 0.0011 (0.4930, 0.7080)
1000 0.5999 −0.0001 0.0005 (0.5240, 0.6757)

θ = 0.8

50 0.7912 −0.0087 0.01249 (0.3130, 1.2500)
100 0.7983 −0.0016 0.0068 (0.4576, 1.1390)
200 0.8008 0.0008 0.0039 (0.5589, 1.0427)
300 0.7992 −0.0007 0.0026 (0.6022, 0.9962)
400 0.8007 0.0007 0.0019 (0.6297, 0.9718)
500 0.8004 0.0004 0.0015 (0.6475, 0.9533)
1000 0.8002 0.0002 0.0008 (0.6921, 0.9083)

6. Conclusions

The main purpose of this paper was to introduce a new class of bivariate exponential
distribution that fully covers the negative dependence. The concept of counter-monotonic
shock was used to create the negative dependence among the exponential components of
the model. The basic features of this class were studied, and moment-based estimators of
model parameters were derived. This family of distributions could be easily interpreted
and simulated. Moreover, the proposed method can be adapted to derive a general model
describing both negative and positive dependence. The Fréchet family of distribution can
be a good candidate to construct such a model. In this direction, provided exponential
marginal distributions F and G, this family of distributions is defined, for any θ0 ∈ [0, 1], by

HF (x, y) = θ0M(x, y) + (1− θ0)W(x, y),
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where
M(x, y) = min[F(x), G(y)]

and
W(x, y) = sup[F(x) + G(y)− 1, 0].

Let us consider independent random variables U, Y1, Y2, and Z such that U∼U[0,1],
Yi∼Exp(λi(1 − θ)), i = 1, 2 and Z∼Bernoulli(θ0) with (θ0, θ) ∈ [0, 1]2. The key idea
allowing to build such a model is based on the fact that(

G−1
1 (U), ZG−1

2 (U) + (1− Z)G−1
2 (1−U)

)
∼ HF .

Indeed, one can construct a bivariate exponential random variable by

X = min
{

Y1, G−1
1 (U)

}
,

Y = min
{

Y2, ZG−1
2 (U) + (1− Z)G−1

2 (1−U)
}

.

It can be verified that the marginal distributions of (X, Y) are fixed, namely, X∼Exp(λ1)
and Y∼Exp(λ2). This general model will be explored in a forthcoming paper.
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Appendix A

Recall the beta function defined for x > 0, y > 0

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt.

Furthermore, the partial derivatives of the beta function are given, for x, y > 0, by

Bp,q(x, y) =
∂p+qB
∂xp∂yq (x, y) =

∫ 1

0
tx−1(1− t)y−1 lnp(t) lnq(1− t)dt.

The application of some algebra yields

• B0,1

(
1
θ
− 1,

1
θ

)
=

θ

1− θ
B
(

1
θ

,
1
θ

)
+

2− θ

1− θ
B0,1

(
1
θ

,
1
θ

)
.

• B0,1

(
1
θ
− 1,

1
θ
+ 1
)
=

θ

1− θ
B
(

1
θ

,
1
θ

)
+

1
1− θ

B0,1

(
1
θ

,
1
θ

)
.

• B1,0

(
1
θ
− 1,

1
θ

)
= − θ

(1− θ)2 B
(

1
θ

,
1
θ

)
+

2− θ

1− θ
B1,0

(
1
θ

,
1
θ

)
.

• B1,0

(
1
θ
− 1,

1
θ
+ 1
)
= − θ

(1− θ)2 B
(

1
θ

,
1
θ

)
+

1
1− θ

B1,0

(
1
θ

,
1
θ

)
.

• B1,1

(
1
θ
− 1,

1
θ

)
= − θ2

(1− θ)2 B
(

1
θ

,
1
θ

)
+

θ

1− θ
B1,0

(
1
θ

,
1
θ

)
− θ

(1− θ)2 B0,1

(
1
θ

,
1
θ

)
+

2− θ

1− θ
B1,1

(
1
θ

,
1
θ

)
.
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• B1,1

(
1
θ
− 1,

1
θ
+ 1
)
= − θ2

(1− θ)2 B
(

1
θ

,
1
θ

)
+

θ

1− θ
B1,0

(
1
θ

,
1
θ

)
− θ

(1− θ)2 B0,1

(
1
θ

,
1
θ

)
+

1
1− θ

B1,1

(
1
θ

,
1
θ

)
.

• B0,1

(
1
θ

,
1
θ

)
= B1,0

(
1
θ

,
1
θ

)
= B

(
1
θ

,
1
θ

){
ψ

(
1
θ

)
− ψ

(
2
θ

)}
.

• B1,1

(
1
θ

,
1
θ

)
= B

(
1
θ

,
1
θ

){(
ψ

(
1
θ

)
− ψ

(
2
θ

))2
+ ψ

′
(

2
θ

)}
,

where ψ
′
(x) is the derivative of the Digamma function ψ(x).
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