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Featured Application: This non-invasive methodology could be used to detect alterations in the
cerebrovasculature by analyzing MRA images, which would assist clinicians to optimize medical
treatment plans of HBP.

Abstract: Blood pressure (BP) changes with age are widespread, and systemic high blood pressure
(HBP) is a serious factor in developing strokes and cognitive impairment. A non-invasive methodol-
ogy to detect changes in human brain’s vasculature using Magnetic Resonance Angiography (MRA)
data and correlation of cerebrovascular changes to mean arterial pressure (MAP) is presented. MRA
data and systemic blood pressure measurements were gathered from patients (n = 15, M = 8, F = 7,
Age = 49.2 ± 7.3 years) over 700 days (an initial visit and then a follow-up period of 2 years with a
final visit.). A novel segmentation algorithm was developed to delineate brain blood vessels from
surrounding tissue. Vascular probability distribution function (PDF) was calculated from segmenta-
tion data to correlate the temporal changes in cerebral vasculature to MAP calculated from systemic
BP measurements. A 3D reconstruction of the cerebral vasculature was performed using a growing
tree model. Segmentation results recorded 99.9% specificity and 99.7% sensitivity in identifying and
delineating the brain’s vascular tree. The PDFs had a statistically significant correlation to MAP
changes below the circle of Willis (p-value = 0.0007). This non-invasive methodology could be used
to detect alterations in the cerebrovascular system by analyzing MRA images, which would assist
clinicians in optimizing medical treatment plans of HBP.

Keywords: magnetic resonance angiography (MRA); blood pressure (BP); systolic pressure; diastolic
pressure; arteries; cerebral; hypertension

1. Introduction

High blood pressure (HBP) affects approximately 1 in 3 adults in the USA. HBP is
a primary or a contributing cause of mortality in about 410,000 adults each year with
associated healthcare costs of $46 billion [1]. High sodium intake [2], chronic stress [3],
and renal dysfunction [4] are the primary causes for HBP. Clinical studies suggest that
hypertension development is correlated to changes in the vascular structure of human
brains [5]. These cerebrovascular changes are hypothesized to be a significant contributor
to strokes, brain lesions, cerebral ischemic injury, dementia and cognitive impairment [5–7].

Currently, HBP is diagnosed and medically managed when systemic BP measurements
using sphygmomanometer are greater than 140/90 mmHg. However, BP measurement via
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sphygmomanometer cannot quantify cerebrovascular structural changes that can increase
the risk of cerebral adverse events. Recently, some studies hypothesized that vascular
structural changes in human brains may occur prior to the elevation of systemic BP rather
than cerebrovascular damage due to sustained exposure to HBP [8–11]. Therefore, quantifi-
cation of cerebral vascular alterations could help identify and stratify patients who have
potential of cerebral adverse events, potentially enable managing appropriate medical
plans prior to the onset of systemic hypertension in conjunction with other cognitive tests
and optimize medical management of HBP patients.

Magnetic Resonance Imaging (MRI) technique has been traditionally used in the
quantification of organ structural changes. In the literature, MRI scanning has been used for
volumetric measurement of the ventricular cavities and myocardium [12] and to determine
intravascular pressures from magnetic resonance (MR) velocity data in large vessels like the
aorta or pulmonary artery [13]. MRA scanning has been used to quantify measurements
of the flow in the collateral arteries of patients that have occlusions in internal carotid
artery [14]. To the best of our knowledge, neither MRA nor MRI has been utilized for the
estimation of vascular pressure changes in the brain. Detection of cerebrovascular changes
in MRA images has not been accomplished due to the lack of accurate segmentation
algorithms that can extract tiny blood vessels in human brains (in comparison to aorta
or pulmonary arteries) from the surrounding soft tissue. Further, there are no methods
to quantify cerebrovascular structural changes or to correlate them to changes in mean
arterial pressure, MAP from MRI/MRA imaging.

The goal of this manuscript is to develop a new framework that detects the potential
changes in cerebrovascular structure by first introducing a novel automatic segmentation
algorithm that delineates the cerebrovascular system from MRA data, and then estimate
the change in cerebral vascular diameters to demonstrate proof-of-concept of correlation
between cerebrovascular structural changes to MAP.

2. Materials and Methods

In this section, patient demographics and details about the proposed methodology
and data analysis are presented.

2.1. Patient Demographics

This work has been approved by the Institutional Review board (IRB) at Pittsburgh
University. MRA scans and corresponding blood pressure measurements were acquired
from subjects (n = 15, M = 8, F = 7, age = 49.2 ± 7.3) during a 700 day study and were
analyzed retrospectively. Participants in this study were carefully selected to represent a
wide range of BP changes over the 700 day period and the MRA data were analyzed blinded
to the corresponding BP measurements. Participants were chosen in accordance to some
exclusion criteria: (1) The use of prescribed medication for hypertension and psychotropic;
(2) medical conditions including pregnancy, ischemic coronary artery disease, chronic
kidney disease (creatinine > 1.2 mg/dL), chronic liver disease, diabetes mellitus (fasting
blood glucose > 125 mg/dL), or cancer (treatment < 12 months); (3) neuropsychiatric
conditions including serious head injury, multiple sclerosis, epilepsy, stroke, major mental
illness, and brain tumor. A 3T Trio TIM whole-body (Siemens Medical Solutions, Erlangen,
Germany) scanner with a 12-channel phased-array head coil was used to acquire the MRA
imaging data. Blood pressure and MAP values were calculated from an average of four
sphygmomanometer readings taken during two visits before the MRA scanning [9]. First,
participants were asked to sit down with their back and arm supported for at least 5 min,
and then trained assistants measured BP twice, with 60 s separation time. Assistants used
the auscultatory technique with cuff size based on arm circumference to measure BP. An
average of the four readings across the two visits was calculated as the resting BP. Each
MRA scan consists of 3D multi-slab high resolution images with 160 slices, thickness of
0.5 mm, resolution of 384 × 448. Moreover, the voxel size is 0.6 × 0.6 × 1.0 mm, the flip
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angle is 15 degrees, the repetition time is 21 ms, and the echo time is 3.8 ms. The scan takes
7 min 39 s and did not require any contrast.

The subjects had an average day 0 systolic pressure of 122 ± 6.9 mmHg, an average
day 0 diastolic pressure of 82 ± 3.8 mmHg, at an average day 700 systolic pressure of
118.9 ± 12.4 mmHg, and an average day 700 diastolic pressure of 79.9 ± 11.0 mmHg (i.e.,
mean systolic pressure remained comparable over time though some individuals increased
in pressure and some decreased or stayed the same).

2.2. Data Analysis

The analysis of patient MRA data consists of five key steps (Figure 1): (1) manual
segmentation of training slices to identify ground truth, (2) automatic segmentation for all
slices to delineate the blood vessels from the surrounding soft tissue by combining the seg-
mented ground truths with the Linear Combination of Discrete Gaussians (LCDG) models
for grey level distribution, (3) voxel matching for obtaining temporal subtraction images to
enhance the ability to see cerebrovascular change via a distance map created to quantify the
change in patients between day 0 and day 700, (4) generation of a probability distribution
function (PDF) which describes the distribution of pixel distances from vascular edges and
is used to statistically correlate to BP and (5) estimation of cumulative distribution function
(CDF) to observe the summated probability of cerebrovascular changes in the same patient
from day 0 and day 700.
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Figure 1. Framework of the data analysis for quantifying cerebrovascular changes from MRA imaging data.

Manual Segmentation of Training Slices: MRA data from a patient consists of 160 MRA
slices. Every tenth slice was manually segmented to extract the blood vessels from sur-
rounding tissue using Adobe Photoshop (Adobe Systems, San Jose, CA, USA). This method-
ology allows for delineation of the in-plane blood vessel from the surrounding tissue at a
pixel level accuracy where the largest limitation is the resolution of the MRI machine itself.
The manually segmented training binary (black for surrounding tissue and white for target
vasculature) slices are referred to as ground truths (GT) as the images are correct and free
from artifacts or noise (Figure 2). The manual segmentation of select slices was used for
the initialization and optimization of the segmentation algorithm, which was subsequently
used for segmenting all obtained slices.

Automatic Segmentation: One of the most challenging issues relating to common
computer-assisted diagnostics is the segmentation of accurate 3D cerebrovascular system
information from MRA images. Our approach was to rapidly and accurately extract the
blood vessel data by defining the probability models for all regions of interest within the
statistical approach and not predefining the probability models [15–17]. For each MRA
slice, the empirical gray level distribution was closely approximated with an LCDG. Then,
it was divided into three individual LCDGs, one for every region of interest associated
with each of the following dominant modes: gray brain tissues, bright blood vessels, and
darker bones and fat. The identified models specify an intensity threshold to extract blood
vessels in that slice. A 3D connectivity filter was then applied on the extracted voxels
(voxel = volume x element; a representation for a 3-D pixel) to select the desired vascular
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tree. This method results in higher precision region models with higher segmentation
accuracy compared to other methods [16].
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Adapting the Expectation-Maximization (EM) technique to the LCDG allows for
precise identification of the LCDG model which included the number of its components
(negative and positive) [18] and for identification of a continuous LCDG-model that con-
tains the probability distribution.

An expected log-likelihood was used as a criterion for model identification in [16].
Consider X = (Xs: s = 1, . . ., S) to be denoting a 3D MRA slice that contains S co-registered
2D slices Xs = (Xs (i,j): (i,j) ∈ R; Xs (i,j) +∈ Q). R and Q = {0, 1, . . ., Q − 1} represent a
rectangular arithmetic lattice that supports the 3D slice and a finite set of Q-ary intensities
(gray levels), respectively. Consider Fs = (fs (q): q ∈ Q; ∑q ∈Q fs (q) = 1), where q is the
gray level, to be an empirical marginal probability distribution for gray levels of the MRA
slice Xs.

As explained in [18], each slice is considered as a K-modal image with a known
number K of the dominant modes related to the regions of interest. For the segmentation
of the slice by modes separating, an estimation of the individual probability distributions
of the signals associating each mode from Fs is necessary. Fs is closely approximated
with LCDG opposing conventional mixture of Gaussians, one per region, or slightly more
flexible mixtures involving other simple distributions, one per region. The image LCDG is
then divided into sub-models that are related to each dominant mode [19–21].

A discrete Gaussian distribution is defined on the set of integers (gray levels)
Q = {0,1, . . ., Q − 1} by the probability mass function:

ψ(q|θ) =


Φ(0.5),
Φ(q + 0.5)−Φ(q− 0.5)
1−Φ(q− 0.5),

,
q = 0
1 ≤ q < Q− 1
q = Q− 1,

,

where the parameter θ = (µ, σ), and Φ is the CDF of a normal distribution with mean µ and
variance σ2. Then the LCDG with Cp positive components and Cn negative components,
such that Cp ≥ K, has the probability mass function

pw,Θ(q) = ∑Cp
r=1 wp,rψ

(
q
∣∣θp,r

)
− ∑Cn

l=1 wn,lψ(q|θn,l). (1)

The weights w = (wp,1, . . ., wp,Cp, wn,1, . . ., wn, Cn) are restricted to be all nonnegative
and to satisfy

∑Cp
r=1 wp,r − ∑Cn

l=1 wn,l = 1. (2)

In general, valid probabilities are nonnegative: pw,Θ(q) ≥ 0 for all q ∈ Q. This implies
that the probability distributions only make use of a valid subset of all the LCDGs in (1),
which can have negative components pw,Θ(q)< 0 for some q ∈ Q.
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Our aim is finding a K-modal probability model which approximates closely the
unknown marginal distribution of the gray level. Consider Fs, its Bayesian estimate F is as
follows [22]: f(q) = (|R|fs (q) + 1)/(|R| + Q), and the intended model should maximize the
expected log-likelihood of the statistically independent empirical data with the parameters
of the model:

L(w, Θ) = ∑
q∈Q

f(q) log pw,Θ (q). (3)

The segmentation algorithm basic steps are following [16]:

(1) For every slice Xs, s = 1,. . . . . ., S,

(a) First is to gather the marginal empirical probability distribution Fs of gray
levels.

(b) Find a starting LCDG model which is nearing Fs by using the initialization
algorithm to approximate the values of Cp−K, Cn, and the parameters w, Θ
(weights, means, and variances) of the negative and positive discrete Gaus-
sians (DG).

(c) Fixing Cp and Cn, refine the LCDG-model with the modified EM algorithm by
manipulating the other parameters.(See Appendix A for more details)

(d) Separate the final LCDG model into K sub models. Each dominant mode has a
corresponding sub model. This is done by minimizing the misclassification
predicted errors and selecting the LCDG-sub model that has the greatest
average value (corresponding to the pixels with highest brightness) to be the
model of the wanted vasculature.

(e) Use intensity threshold t to extract the voxels of the blood vessels in the MRA
slice, which separates their LCDG-sub model from the background.

(2) Remove the artifacts from the extracted voxels whole set with a connection filter
which chooses the greatest connected tree system built by a 3D growing algorithm [23].
Algorithm 1 summarizes the adopted segmentation approach.

Algorithm 1. Segmentation Approach Main Steps.

For every slice Xs, the following steps were completed:

1. LCDG Initialization:

• Find the marginal empirical probability distribution of gray levels Fs.
• Estimate Cp − K, Cn, W, and Θ of the positive and negative DGs.
• Find the initial LCDG-model that approximates Fs.

2. LCDG Refinement:

• Fixing Cp and Cn, refine the LCDG-model with the modified EM algorithm by
manipulating other parameters.

3. Initial Segmentation:

• Divide the final LCDG-model into K sub models by minimizing the expected errors of
misclassification.

• Select the LCDG-sub model that has the largest mean value to be the model of the
wanted vasculature.

• Use the intensity threshold t to extract the voxels of the blood vessels in the MRA slice,
separating their LCDG-sub model from the background.

4. Final Segmentation:

• Remove the artifacts from the extracted voxels whole set with a connection filter which
chooses the greatest connected tree system built by a 3D growing algorithm.

This procedure aims to decipher threshold for every MRA image which will enable the
complete extraction of the bright blood vessels while removing the darker unwanted tissue
and also separating surrounding non-vasculature tissue that may be of similar brightness
and along the same boundaries. Step 1b’s initialization creates the LCDG with the non-
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negative starting probabilities pw,θ (q).The refinement in 1c increases the likelihood, but
the probabilities continue to be non-negative. The experiments presented in [16] show the
opposite situations were never met.

Accuracy of the automatic segmentation is evaluated by calculating total error com-
pared to the ground truths. True positive (TP), false positive (FP), true negative (TN), and
false negative (FN) segmentations are measured for evaluation.

In Figure 3, if C is the segmented region, G is the ground truth, and R represents the
entire image frame, then the TP = |C ∩ G|, the TN = |R − C ∪ G|, the FP = |C − C ∩ G|;
and the FN = |G − C ∩ G|. The total error ε is given in [24] as ε = (FN + FP)/(TP + FN) =
(FN + FP)/G.
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(C) by comparing to the ground truth (G) [5].

Voxel Matching: A voxel is an array of volume elements that constitute a notional 3D
space. A 3D affine registration is used to handle the pose, orientation, and the data spacing
changes and other scanning parameter changes between day 0 and day 700 [25]. In this
step, the determined Euclidian radii are converted into diameter values. The output is then
converted into a distance map.

Generation of Probability Distribution Function and Validation: The EM-based tech-
nique is adapted to the LCDG-model and the distribution of pixel distances is extracted
from the distance map to calculate the probability distribution of the cerebrovascular
changes. The PDF marks the distribution of white pixels as a true value and black pixels
being ignored for the data set. The diameters of the blood vessels are determined by
estimating Euclidian center point distances from the edge of a vessel. The data points in
the generated PDFs are then extracted and compared to the blood pressure data using
statistical analysis.

Calculation of Cumulative Distribution Function: The integral of the PDF is used to
generate the CDF as follows: CDF (FX) of a random variable (X) is determined from its
PDF (fX) using FX(x) =

∫ x
−∞ fx(t)dt. CDF shows the summation of the probability that a

blood vessel will take a value less than or equal to a vascular diameter value, that defines
the blood vessel diameter average in every slice. It shows the cumulative distribution of
the PDF with an upper limit of 1. The more quickly the CDF line approaches 1, the more
certain that the diameter of the blood vessel is smaller compared to a CDF that takes longer
to approach 1. This is illustrated in the results section.

2.3. Statistical Analysis

Data were statistically analyzed using R-software (version 3.30) by The R Foundation
for Statistical Computing, Vienna, Austria. A mixed effects linear model was used to test
the relationship of MRA data with clinical BP measurements. Brain slices were separated
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into upper compartment (above circle of Willis) and lower compartment (below circle of
Willis) to determine correlation with clinical BP readings. Circle of Willis, near the brain
base, is where the intracranial cerebral arteries take off from and give rise to progressively
smaller vessels [5]. The BP measurements were combined into a single value, the estimated
mean arterial pressure (MAP = (2 × DBP + SBP)/3), which was a covariate in the model.
Also included in the model were patient’s gender, age, and a random intercept. The
dependent variable was the mean of Euclidean distance map over the whole vascular
tree within each compartment. (Two separate models were fit to the upper and lower
compartments.) Statistical significance of fixed effects in the fitted models was determined
using likelihood ratio chi-square tests.

2.4. 3D Reconstruction of the Cerebral Vasculature

A growing tree model that eliminates any unwanted segmented voxels by choosing
the greatest connected vascular tree system, coupled with a smoothing algorithm, was
used to generate a 3-D model based on segmented slices [23]. An example for the resultant
vascular system is visualized and illustrated in the results section.

3. Results

Table 1 shows the specificity and sensitivity of the segmentation algorithm. The auto-
matically segmented slices for all 15 patients were compared to GTs (manually segmented)
to calculate accuracy of the algorithm (Figure 4). A cumulative sensitivity of 0.997 ± 0.008
(sensitivity range = 0.969 to 1) and the cumulative specificity of 0.9998 ± 0.0001 (specificity
range = 0.9994 to 1) were recorded. The manually segmented training slices (every 10th
slice) were excluded in the accuracy calculations of the proposed segmentation approach.

Table 1. Sensitivity and specificity values for automatically segmented images at day 0, day 700,
and cumulative.

Time Sensitivity Specificity

Day 0 0.997 ± 0.006 0.9998 ± 0.0001
Day 700 0.996 ± 0.008 0.9998 ± 0.0001

Cumulative 0.997 ± 0.008 0.9998 ± 0.0001
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Figure 4. Example of segmentation algorithm output. (a) Sample image slices of a patient at day 0.
(b) Sample 3D reconstruction of the segmented cerebrovascular system using a growing tree model.

The results of the analysis of the linear mixed effects models (Table 2) revealed that
MAP is inversely related to the mean vessel diameter below the circle of Willis (p = 0.0007).
The mean diameter of vessels below the circle of Willis was not found to vary significantly
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with age of the patient or the gender of the patient. Above the circle of Willis, the mean
diameters of vessels showed statistically significant decrease with age (p = 0.0005).

Table 2. Statistical evaluation mixed effects linear model, where p-values < 0.05 were considered
statistically significant. Diameter denotes size of vasculature in segmentation images. Age, gender,
and timepoints are clinically acquired data.

Mean Vascular Diameter below Circle of Willis

Effect χ2 p-Value

Age 3.2 µm/y 0.356 0.551

Gender F > M by 12.8 µm 0.026 0.872

Mean Arterial Pressure −5.3 µm/mmHg 11.63 0.0007

Mean Vascular Diameter above Circle of Willis

Effect χ2 p-Value

Age −16.5 µm/y 12.29 0.0005

Gender F > M by 16.0 µm 0.199 0.655

Mean Arterial Pressure 1.6 µm/mmHg 0.402 0.525

In the analysis, 13 out of 15 patients showed significant correlation between MAP
and the diameters indicated via CDF. Out of the 13 patients that showed CDF correlation
with MAP, two example patients (A and B) are shown with the two patients (C and D)
where the correlation between CDF and MAP was not found (Figure 5). Patient C had a
shift in CDF in opposition to the MAP change, and patient D had a larger shift in CDF
compared to the MAP change (Figure 5C,D, Table 3). The 3D cerebrovascular model
reconstruction of patients C and D indicated significant vascular changes between day
0 and day 700 (Figure 6).
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Table 3. BP measurements of patients A, B, C, and D.

Patient Day 0 Day 700

Systolic BP Diastolic BP MAP Systolic BP Diastolic BP MAP

A 120 80.5 93.7 103.5 66.5 78.8
B 130.5 83 98.8 143.5 94 110.5
C 118 80.5 93 105.3 69 81.1
D 114 84.5 94.3 120 88 98.7

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 14 
 

 
Figure 5. Sample patient CDFs demonstrating the temporal changes from day 0 to 700. The graphs 
indicate the probability that blood vessels may be of a certain diameter or less. (A–D) represents 4 
different patients from our dateset. 

Table 3. BP measurements of patients A, B, C, and D. 

Patient Day 0 Day 700 
 Systolic BP Diastolic BP MAP Systolic BP Diastolic BP MAP 

A 120 80.5 93.7 103.5 66.5 78.8 
B 130.5 83 98.8 143.5 94 110.5 
C 118 80.5 93 105.3 69 81.1 
D 114 84.5 94.3 120 88 98.7 

 
Figure 6. Applying a 3D growing algorithm to the volume of binary segmented images allows for 
visualization of the automatically segmented MRA data. Day 0 of patient C (top left). Day 700 of 
patient C (top right). Day 0 of patient D (bottom left). Day 700 of patient D (bottom right). The 
correlation between the CDF and MAP was not found in these patients. Some apparent differences 
between vascular constructions in areas below the circle of Willis are highlighted. 

  

Figure 6. Applying a 3D growing algorithm to the volume of binary segmented images allows for
visualization of the automatically segmented MRA data. Day 0 of patient C (top left). Day 700 of
patient C (top right). Day 0 of patient D (bottom left). Day 700 of patient D (bottom right). The
correlation between the CDF and MAP was not found in these patients. Some apparent differences
between vascular constructions in areas below the circle of Willis are highlighted.

4. Discussion

The average cumulative segmentation algorithm had a sensitivity of 0.997 ± 0.008 and
a specificity of 0.9998 ± 0.001. This high level of accuracy demonstrates the benefit of using
a manual input to initialize automatic segmentation. Using manual segmentation alone
would be too time intensive to be used in a practical healthcare setting, while utilizing only
an automatic segmentation approach would not provide sufficient segmentation accuracy
to delineate and quantify the diameters of the smaller arteriolar (<10 micrometers) cerebral
blood vessels. The proposed segmentation algorithm combines the accuracy of manual
segmentation with the benefit of automated and less time intensive approach and provides
segmentation with a high degree of accuracy while also minimizing the required time and
effort. Almost all the state-of-the-art algorithms that were used to detect blood vessels were
only suitable for healthy blood vessels as they usually assume the vascular linearity and/or
circular cross-sections which is not the case in pathological vessels [23]. The proposed
segmentation algorithm, however, did not impose any assumptions on blood vessels, and
it can delineate both healthy and pathological vessels efficiently. However, the focus in
this study was the investigation of the correlation between hypertension development and
changes in cerebral vascular diameter. So, the change in a vessel diameter was the only
studied diagnostic factor so far. In future work, we would introduce more investigation on
more diagnostic factors which in turn would help in diagnosing various vascular-based
disease such as strokes.

The high degree of sensitivity and specificity of our approach in accurately delineating
blood vessels from surrounding brain tissue enables the quantification of cerebrovascular
changes. The PDFs indicate the total blood vessel diameter change in time from day 0 and
day 700. Below the circle of Willis, there is a statistical correlation between PDFs and
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systemic BP (p-value = 0.0007), demonstrating that increased MAP is related to decreased
average vessel diameter and PDF. The BP and MAP measurements correlate well with
most patients’ non-invasive mean PDF diameter measurements below the circle of Willis.
Since cerebral changes have been hypothesized to precede systemic hypertension [9,10,26],
our methodology may present a tool for potentially initiating early treatment to prevent or
optimize management of systemic HBP in conjunction with other approaches including
cognitive testing. This finding is important as it suggests that the remodeling of vessels due
to increasing blood pressure occurs prior to the onset of diagnosed essential hypertension.
Individuals in the current study were explicitly selected to have pre-hypertensive values
of blood pressure. Of equal importance, the methodology can determine the relationship
of cerebrovascular remodeling to cortical small vessel disease and lacunar lesions known
to occur with advanced hypertensive disease and with implications for stroke and de-
mentia [27,28]. The correlation of PDF to MAP was independent of patient gender. The
difference in PDF of vessels above circle of Willis was statistically significant with age,
which indicates that older patients have constricted cerebral vessels, which may put them
at a higher risk of strokes.

In some patients (C and D) the change in CDF did not correlate to changes in MAP,
which may indicate impaired auto regulation of cerebral blood flow potentially due to
cerebrovascular remodeling [5,26]. The 3D cerebrovascular model reconstruction of these
patients demonstrated significant vascular changes between day 0 and day 700. These
results may indicate that drug therapies prescribed using systemic BP alone may not
provide optimal medical management. Lack of correlation between CDF and MAP may
indicate cerebrovascular changes and a higher risk of cerebrovascular adverse events
which necessitates more frequent monitoring and/or optimization of medical management,
despite having normal systemic BP and MAP. Using a combination of BP and CDF changes
may help minimize the occurrence of adverse events.

The proposed approach uses MRA, which directly visualizes overall cerebrovascular
anatomy and provides a higher resolution for small blood vessels compared to Doppler
Ultrasound which primarily assesses blood flow or the characteristics of a single or small
number of vessels within its field of view. MRA is required for visualization of small
cerebral blood vessels to obtain an accurate 3D vascular structure. Routine screening
using the proposed MRA-based method would be expensive. The clinical application of
importance would be treatment of resistant hypertension, which is now poorly under-
stood [29]. A recent study presents convincing data suggesting that such patients may
have abnormalities of the vasculature, e.g., of the circle of Willis, that could be detected
readily with our technique [30]. Other work has suggested that such hypertension may be
due to impingement of the cerebral vasculature on brain stem blood pressure regulatory
areas [31]. These abnormalities could be detected with our technique. These vascular
bases of hypertension, once identified, would guide clinical treatment in these cases which
have not be remedied by currently used pharmacological dosing. Additionally, patients
at a higher risk of developing hypertension due to familial or clinical history may be
screened using the proposed approach despite the higher cost to detect vascular changes
and manage high blood pressure before disease onset.

The segmentation algorithm and metrics for vascular and blood pressure changes
(CDF, PDF) are not limited to cerebral vasculature. These methodologies may also be
used to quantify vascular changes in other end organs that are sensitive to blood pressure
(e.g., kidneys).

5. Limitations

While our segmentation algorithm significantly improves on automatic segmentation
methodologies, it is limited by the resolution limit of the MRI machine performing the
MRA scanning. The CDF diameters (Figure 5) start at 0.5 mm because the distance map
calculations determine radius from the edge of a blood vessel and a pixel in the MRA
imaging represented 0.25 mm. Any value less than 0.5 mm would not be accurately
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represented due to the resolution limit. Subsequently, the accuracy of the statistical analysis
decreases with decreasing blood vessel size (smaller blood vessels < 10 micrometers) above
the circle of Willis).

Various over-the-counter medications and supplements were used by the subjects
over the time period of this study; however, the BP changes caused by these medications
should be minimal. Nonetheless, larger sample sizes are required to establish definitive
relationship with progression to HBP. Despite these limitations, our method is relevant to
understanding brain pathology relevant to hypertension whether such pathology precedes
or follows the establishment of clinical hypertension.

Although it is hard to ask participants in a study that lasts for more than two years
to visit the lab periodically to get their blood pressure measured, we suggest that taking
blood pressure readings more frequently (maybe every three months) could provide more
accurate observation of the MAP while excluding its possible temporal fluctuations, which
could enhance the accuracy of this study.

6. Conclusions

Alterations in the cerebral vascular tree could be non-invasively detected by the
analysis of MRA imaging data. Cerebrovascular changes are correlated to MAP below the
circle of Willis. The improved segmentation algorithm coupled with the CDF and PDF
estimations could indicate cerebral vascular alterations, which could assist clinicians to
propose appropriate medical plans of hypertension.
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Appendix A

I. Initialization sequentially using EM Algorithm

Consider F being the marginal distribution of gray level, EM algorithm [22,32] is used
to initially build an LCDG model that approximates F as explained in the following steps:

A mixture PK of dominant mode K positive discrete Gaussians (DG) is used to approx-
imate F.

Subordinate components of the LCDG alternatingly approximate the deviations be-
tween F and PK as follows:

Separating and scaling up the positive and the negative deviations to get the two
probability distributions, Dp and Dn.

Iteratively finding subordinate mixtures of positive and negative DGs using the same
EM algorithm. These mixtures should best approximate Dp and Dn. The mixtures sizes,
Cp − K and Cn are found by sequentially minimizing the error between each distribution
(Dp or Dn) and its corresponding mixture model with the components number.

Scaling down the positive and negative subordinate mixtures and adding them to the
dominant mixture, which gives the initial LCDG model whose size is C = Cp + Cn.
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The initial LCDG has K dominant weights wp,r, where r = 1,2, . . . ,K. The sum of these
weights is equal to 1 ∑K

r=1 wp,r = 1 . In addition, there are several lower valued subordinate

weights that fulfill ∑
Cp
r=K+1 wp,r −∑Cn

l=1 wn,l = 0 .

II. Refining LCDGs using Modified EM Algorithm

The initial LCDG was refined by estimating the local maximum of the log-likelihood
in (3) using the DGs adapted EM algorithm in [18], which extends the conventional EM
algorithm in [22,32] to handle the alternating components.

Consider p[m]
w,θ(q) = ∑

Cp
r−1 w[p]

p,rψ(q|θ
[m]
p,r )−∑Cn

l=1 w[m]
n,l ψ

(
q|θ [m]

n,l

)
to be the LCDG at the

iteration m. Each signal q ∈ Q contribute relatively to each positive and negative DG at
iteration m as specified by the corresponding conditional weights:

π
[m]
p (r|q) =

w[m]
p,rψ(q

∣∣∣θ[m]
p,r )

p[m]
w,Θ(q)

; π[m]
n (l|q) =

w[m]
n,l ψ(q

∣∣∣θ[m]
n,l )

p[m]
w,θ(q)

, (A1)

taking into consideration that the following constraints apply:

∑Cp
r=1 π

[m]
p (r|q)−∑Cn

l=1 π
[m]
n (l|q) = 1; q = 0, . . . , Q− 1. (A2)

Two main steps are repeated iteratively until the log-likelihood is maximized, the
E-step[m] and the M-step[m] which are summarized as follows:

E-step[m]: fixing parameters w[m−1], Θ[m−1], calculate the weights in (A1) from the
iteration m − 1.

M-step[m]: maximize L (w, Θ) fixing the weights of (A1) to get the conditional maxi-
mum likelihood estimates (MLEs) w[m], Θ[m].

The described process was shown to be converging to a local log-likelihood maximum,
using similar considerations as in [22,32]. Moreover, it was demonstrated in [18] that this
process is a block relaxation minimization-maximization.

Considering unit factor constraints in (A2), the log-likelihood in (3) can be equivalently
given as:

L
(

w[m], Θ[m]
)

= ∑Q
q=0 f (q)

[
∑Cp

r=1 π
[m]
p (r|q) log p[m](q)−∑Cn

l=1 π
[m]
n (l|q) log p[m](q)

]
. (A3)

Using (4), consider replacing log p[m](q) in the first summation with log w[m]
p,r +

logψ
(

q |θ [m]
p,r

)
− logπ[m]

p (r|q) and log p[m](q) in the second summation with log w[m]
n,l +

logψ
(

q |θ [m]
n,l

)
− logπ[m]

n (l|q). During the E-step, the conditional Lagrange maximization

of the log-likelihood of (A3) under the restrictions of (A2) yields the weights π[m+1]
p (r|q)

and π
[m+1]
n (l|q) of (A1) for all r = 1, . . . , Cp; l = 1, . . . , Cn and q ∈ Q. During the

M-step, the conditional Lagrange maximization of the loglikelihood in (A3) under the
restriction of (2) and the fixed conditional weights of (A1) results in the DG weights
w[m+1]

p,r = ∑q∈Q f (q)π[m+1]
p (r|q) and w[m+1]

n,l = ∑q∈Q f (q)π[m+1]
n (l|q) . For each DG, the con-

ventional MLEs of the parameters originating from maximizing the loglikelihood after each
difference of the cumulative Gaussians can be approximated with the Gaussian density:

µ
[m+1]
c,r =

1

w[m+1]
c,r

∑q ∈ Q (q · f (q)µ[m+1]
c (r|q)

(
σ
[m+1]
c,r

)2
=

1

w[m+1]
c,r

∑q ∈ Q

(
q− µ[m+1]

c,i

)2
· f (q)µ[m+1]

c (r|q)
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where c can be either p or n. The modified EM-algorithm is true till the weights w become
strictly positive. The iterations must be ended if the log-likelihood of (3) becomes almost
constant or starts decreasing resulting from rounding errors accumulation.

Associating the subordinate DGs with the dominant terms, the final mixed LCDG-
model pC(q) is divided into the K LCDG-submodels P[K] = [p(q|k) : q ∈ Q], one per class
k = 1, . . . , K, and hence the misclassification rate becomes minimal.
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