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Abstract

Remote sensing image fusion plays important roles in numerous applications, including
monitoring, metrology, and agriculture. Image fusion gathers essential information from
several image sources and consolidates them into a single image called a fused image.
The fused image involves relevant data, and it is more informative than any other images
extracted from one source. This study proposed a pansharpening technique based on image
filtering utilising a bilateral filter to generate high-frequency details from panchromatic
image. The various types of side window guided filters are employed to enhance the mul-
tispectral band from panchromatic image and then used these filters to adjust spatial data
misfortune that happens when images are combined. Experimental results demonstrated
that the proposed method provides consistent results concise with reported by the previ-
ous research in terms of subjective and objective assessments on remote sensing data.

1 INTRODUCTION

Image fusion is the way toward integrating two or more images
into one image. It helps detectable human quality since it joins
correlative information of images. Pansharpening consolidates
high-spatial panchromatic (PAN) and multispectral (MS) images
to create high-resolution multispectral images (HRMS). Remote
sensing satellite images are broadly utilised in numerous appli-
cations, such as monitoring, metrology, agriculture, planning
applications, and military [1, 2], and so forth. Most of the satel-
lite sensors provide high spatial resolution PAN and several
MS bands, which lead to difficulty for having a high-resolution
multispectral image (HRMS). Along these lines, numerous tech-
niques for the fusion of (MS) and (PAN) images have been pro-
posed. To date, deep learning-based methods provide promising
results in many domains, such as image processing, image fusion
and computer vision [3, 4]. Recently, various pansharpening
techniques have been implemented [5–7] to fuse PAN and MS
images to acquire HRMS. The essential part of such strategies is
the extraction of the detailed information from the PAN image,
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thus, transferring the detailed information to the correspond-
ing MS image. The component substitution (CS) [8] methods
and multi-resolution-analysis (MRA) [9] methods are consid-
ered conventional methods. The conventional methods are used
for extracting detailed information from PAN image. Some of
the eminent CS-based strategies are IHS [10], PCA [11], GS [12],
and more recently developed methods belong to this class [13,
14] in which these techniques often provide fusion results that
suffers from spectral distortion [15]. In contrast, MRA based
methods, for example, Laplacian pyramid [16] and transforms
based on wavelets [17–19], can keep spectral information excel-
lently. The fusion result of these methods may suffer spatial
distortion. In the fields of image processing and fusion, numer-
ous applications including the idea of image filtering to denoise,
deblur, and image enhancement. In order to overcome some
of these previously mentioned shortcomings and to acquire a
high-resolution multispectral image, we extend the side window
filtering with three kinds of filters, namely, Guided filter (GF),
Gradient guided filter (GGF), and Weighted guided filter
(WGF). Particularly our work is focused on the use of a
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FIGURE 1 Flowchart of the proposed method, MS and PAN are the multispectral image and panchromatic image, respectively. BF is the bilateral filter. D is
the detailed map. Z is the filtered image (an approximation image of the input image). HRMS is the fused result

FIGURE 2 Detailed examination of parameter setting. (a–c) the impact of 𝜉 on fusion performance when r= 2, (d–f) the impact of 𝜉 on fusion performance
when r = 4 and (g–i) the impact of 𝜉 on fusion performance when r = 8
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FIGURE 3 Fusion results of QuickBird degraded dataset

side window, unlike traditional approaches which use full win-
dow regression. Therefore, the proposed techniques produced
improved results in terms of pansharpening.

At this stage, different filters have been introduced, for exam-
ple, box filters, Gaussian filters, and median filters etc. These
filters are utilised in image deblurring, honing edge discov-
ery and highlight extraction. Numerous applications require
image filtering, which can protect edges and provide image
enhancement. In recent years, the GF was elaborated as an
edge-preserving and smoothing operator. Lihua et al. [20] intro-
duced a pansharpening method (PDS) based on dual-scale detail
extraction using a GF.

Xu et al. [21] proposed a pansharpening approach based
on a guided filter (EFM), which only used a PAN image for
detail extraction. In [6], the authors introduced a pansharpen-
ing method using multi-scale decomposition (PMSD). Thereby,
methods are focused on spatial details.

In view of the fact that the edge-preserving image filter-
ing can be categorised into [22] (1) Global optimisation-based
methods, for instance, weighted least square smoothing [23],
Nonlinear total variation [24]. (2) Local optimisation-based
techniques, for example, bilateral filter [25], GF [26]. Accord-
ingly, locally-based filters consistently endeavour to evaluate a
yield of a pixel that depends on its neighbours. Approximately
no matter what, the pixel being handled is situated at the focal
point of an activity window, and different pixels in the activ-
ity window are its neighbours. For example, side window filter-
ing (SWF) technique, that aligns the window’s side or corner
with the pixel being processed [27]. Inspired by side window fil-
tering, we extended the various types of guided-image-filtering
to exploit these filters benefits and performances. In the pro-
posed method, different types of GFs based on side windows
are implemented to acquire HRMS. The main contributions of
this paper can be outlined as:
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TABLE 1 Numerical evaluation for QuickBird degraded dataset

Method CC (1) RMSE (0) ERG (0) SAM (0) IndexQ (1) UIQI (1) SSIM↑ PSNR↑

GF 0.9361 0.2589 2.945 3.3152 0.8266 0.9344 0.8935 23.5953

SWGF 0.9384 0.2458 2.857 3.316 0.8370 0.9358 0.8936 24.062

WGF 0.9363 0.2586 2.9402 3.3153 0.8246 0.9332 0.8936 23.6049

SWWGF 0.9303 0.2703 3.0707 3.3147 0.8098 0.9288 0.8862 23.2208

GGF 0.8924 0.3337 3.7942 3.3152 0.7572 0.8784 0.861 21.3972

SWGGF 0.8948 0.3303 3.7591 3.3152 0.7697 0.8803 0.8651 21.4852

PDS 0.9320 0.2682 3.0413 3.3727 0.8067 0.928 0.8877 23.2837

EFM 0.9381 0.2495 2.8664 4.4523 0.8302 0.9356 0.8777 23.991

PMSD 0.9035 0.3608 4.2395 6.7113 0.7412 0.8983 0.7251 20.7272

MTF-GLP 0.92144 0.2554 2.9243 3.7878 0.8012 0.9348 0.8840 23.7242

Indusion 0.91806 0.2761 3.1483 3.5524 0.7395 0.9197 0.8608 23.0412

SFIM 0.9351 0.2622 2.9819 3.3046 0.7670 0.9298 0.8828 23.4853

Brovey 0.9299 0.2789 3.2003 3.3105 0.7801 0.9120 0.8959 22.9532

IHS 0.9298 0.2774 3.2015 3.4987 0.7864 0.9111 0.8963 23.0000

PCA 0.93743 0.2476 2.8855 3.6063 0.7998 0.9317 0.9040 23.8562

GS-GLP 0.9357 0.2572 2.9532 3.8289 0.7958 0.9327 0.8830 23.6586

SWT 0.9364 0.2541 2.9453 3.7847 0.8179 0.9355 0.8867 23.7551

Contourlet 0.9265 0.2731 3.1813 4.1396 0.8042 0.9260 0.8702 23.1196

FIGURE 4 Error maps indicate the structural uniformity and edges for degraded QuickBird dataset

∙ The bilateral filter is utilised to generate frequency compo-
nents from panchromatic image.

∙ Side window filtering is employed with different types of
GFs. Thus, we utilised these filters to minimise the differ-
ence between the intensity components image and the low-
pass filtered PAN image. And to perceive how these filters
are working.

2 RELATED WORK

2.1 Bilateral filter

A bilateral filter (BF) is defined as a nonlinear, edge-preserving,
noise decreasing and smoothing filters for images. The BF
takes into consideration the varying intensities in the neighbour

pixels for edge-preserving [25]. In a similar way, the BF replaces
every pixel’s intensity with a weighted average of intensity values
calculated from neighbour pixels. The BF can divide the image
into two parts; filtered image and residual image [28]. The BF
depends on two parameters which are 𝜎s, 𝜎r to measure the
amount of filtering for an input image [29]. Thus, the following
formulas represent the estimation of BF:

BF =
1

Wp

∑
xi∈w

G𝜎s(‖xi − x‖)G𝜎r
(‖‖Ixi

− Ix
‖‖)Ixi

(1)

Wp =
∑
xi∈w

G𝜎s(‖xi − x‖)G𝜎r
(‖‖Ixi

− Ix
‖‖) (2)

where w denotes the window centred in x, x represents the
coordinates of the current pixel to be filtered, xi is a pixel that
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FIGURE 5 Fusion results of Ikonos degraded dataset

belongs to w, I indicates the input image to be filtered, G𝜎s,
G𝜎r are a spatial Gaussian and a range Gaussian, respectively.
Wp indicates a normalisation factor.

2.2 Guided filter

The edge-preserving filters are witnessed an increased inter-
est by the researchers. They have been a hot topic in recent
years due to the applications of these filters in several areas,
including image denoising, scene improvement for additional
examination. The GF has been described as one of the most
popular edge-preserving filters used in many applications [30],
such as image enhancement and image matting. The GF uses a
guidance image to enhance the input image. However, the GF
depends on two parameters, a filter radius r and a regulation 𝜉
that is an important operator to obtain edge preserving. The

following equations illustrate the general function of guided
image filtering.

Oi = aiGi + bi , ∀i ∈ wi (3)

ai =
cov (Gi , Ii )

var (Gi ) + 𝜉
, bi = Īi − ai Ḡ (4)

where wi a square window of a filter radius (2r+1)(2r+1), ai and
bi are constant linear coefficients in the window wi , I is the input
image, and G denotes the guidance image.

In view of the GF instruction, the GF accomplishes filter-
ing utilising a local linear transform of a guidance image. Then
again, the GF has been appeared to create haloing artefacts
in some cases [26], which thus prompted the improvement of
increasingly versatile filters, for instance, WGF [31] and GGF
[32].
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FIGURE 6 Error maps indicate the structural uniformity and edges for degraded Ikonos dataset

FIGURE 7 Fusion results of degraded GeoEye dataset

2.3 Side window filtering

In numerous applications that utilise the type of filtering algo-
rithm, there has been noticeably a need to smooth out real noise,

save edges and other sign subtleties simultaneously. SWF cen-
tres around three kinds of ordinary edges, step edge, incline
edge, and rooftop edge. SWF focuses on the pixel as a potential
edge and produces several neighbourhood windows (named as
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TABLE 2 Numerical evaluation for Ikonos degraded dataset

Method CC (1) RMSE (0) ERG (0) SAM (0) IndexQ (1) UIQI (1) SSIM↑ PSNR↑

GF 0.9270 0.2800 6.2653 12.8257 0.8621 0.9230 0.8176 22.8934

SWGF 0.9262 0.2808 6.2818 12.3288 0.8618 0.9224 0.8199 22.8671

WGF 0.9401 0.2433 5.4253 11.6593 0.8698 0.9362 0.8288 24.0620

SWWGF 0.8148 0.4143 9.2297 11.967 0.7119 0.8087 0.7444 19.4813

GGF 0.9187 0.2800 6.2417 11.0938 0.8353 0.9138 0.8110 22.8784

SWGGF 0.9217 0.2751 6.1370 11.1013 0.8416 0.9172 0.8151 23.0348

PDS 0.9238 0.2836 6.3353 13.9839 0.8701 0.9191 0.8080 22.7649

EFM 0.8998 0.3225 7.3420 16.0964 0.8769 0.8917 0.7734 21.376

PMSD 0.8967 0.3351 7.4034 12.8148 0.8101 0.8872 0.7042 21.3093

MTF-GLP 0.9274 0.2554 5.7250 12.1920 0.8720 0.9318 0.8238 23.6422

Indusion 0.8927 0.3015 6.5607 12.0265 0.8286 0.9000 0.7925 22.5083

SFIM 0.9329 0.2603 5.8328 10.6116 0.8600 0.9305 0.8244 23.5230

Brovey 0.9012 0.3115 6.9436 10.7899 0.8206 0.8760 0.7860 21.9636

IHS 0.8740 0.3284 7.2999 11.7035 0.8183 0.8653 0.7697 21.4841

PCA 0.9014 0.3127 6.9530 11.3104 0.8229 0.8773 0.7850 21.9070

GS-GLP 0.9318 0.2623 5.9530 12.6899 0.8764 0.9283 0.8239 23.4217

SWT 0.9066 0.3177 7.3049 15.9003 0.8696 0.8972 0.7939 21.7311

Contourlet 0.8956 0.3354 7.7282 16.6019 0.8602 0.8856 0.7796 21.2538

TABLE 3 Numerical evaluation for GeoEye degraded dataset

Method CC (1) RMSE (0) ERG (0) SAM (0) IndexQ (1) UIQI (1) SSIM↑ PSNR↑

GF 0.9192 0.3691 5.2684 7.2381 0.7326 0.9189 0.8615 20.4301

SWGF 0.9191 0.3698 5.2793 7.2498 0.7326 0.9187 0.8615 20.4135

WGF 0.9313 0.3399 4.8624 7.1320 0.7295 0.9274 0.8725 21.1617

SWWGF 0.7222 0.6503 9.6274 8.1282 0.5491 0.7003 0.7519 15.316

GGF 0.9161 0.3873 5.5752 7.1182 0.6779 0.8952 0.8456 20.0829

SWGGF 0.9222 0.3718 5.3454 7.1182 0.6911 0.9050 0.8541 20.4283

PDS 0.9223 0.3578 5.1455 7.8224 0.7299 0.9197 0.8627 20.7775

EFM 0.8557 0.4748 6.8131 12.414 0.7507 0.8424 0.7405 18.1640

PMSD 0.8651 0.4944 7.005 10.760 0.7009 0.8374 0.7272 18.0366

MTF-GLP 0.9274 0.3494 4.9895 7.9831 0.7513 0.924 0.8715 20.8655

Indusion 0.9019 0.4007 5.723 8.2434 0.6933 0.8977 0.8464 19.6895

SFIM 0.9300 0.3508 5.0149 7.2426 0.7323 0.9243 0.8679 20.8851

Brovey 0.9271 0.3915 5.6459 7.2196 0.6642 0.8974 0.8471 19.9960

IHS 0.9259 0.3996 5.7706 7.6827 0.6697 0.8784 0.8408 19.8207

PCA 0.8638 0.4810 6.9996 9.9914 0.6644 0.8245 0.7891 18.2215

GS-GLP 0.9262 0.3666 5.2490 8.4755 0.7511 0.9233 0.8704 20.5260

SWT 0.9126 0.3776 5.4212 9.2655 0.7547 0.9112 0.8467 20.1819

Contourlet 0.8807 0.4381 6.2853 11.1329 0.7420 0.8786 0.7957 18.8685

side windows) around it, every one of which adjusts the objec-
tive pixel to a side or a corner (rather than the focal point) of
the window. The yield of SWF is a direct blend of the neigh-
bours in one of the side windows, which can be best inexact
the objective pixels. SWF technique is an effective and practical

edge-preserving filtering solution. Hui Yin et al. [27, 33] defined
the SW in the continuous case, starting from the flat line then,
changing 𝜃 which represents the edge between flat line and win-
dow while fixing the position of target pixel i (x, y), therefore,
we able to alter the course of the window while adjusting its side
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FIGURE 8 Error maps indicate the structural uniformity and edges for degraded GeoEye dataset

to i. In view of that, we had eight possible filter kernels which
are, down, right, up, left, southwest, southeast, northeast, and
northwest. Furthermore, the main explicit prerequisite is that
the target pixel is set on the side or corner of the window. The
following equations illustrate the operation of SWF.

I
𝜃,𝜌,r
i = F (qi , 𝜃, 𝜌, r ), ∀𝜃 = k ×

Π

2
, k ∈ [0, 3] and 𝜌 ∈ {0, r}

(5)

By minimising the distance between the input and output, espe-
cially at the edge, the minimum L2 distance is being chosen.

I ′SWF = arg min
∀I ′

i
,𝜌,r

‖‖‖qi − I
𝜃,𝜌,r
i

‖‖‖2

2
(6)

where r indicates the radius of the window and F represents the
kernel filter.

3 MATERIALS AND METHODS

In this study, we proposed a pansharpening technique based
on side window image filtering, which is an effective edge-
preserving filter. The pipeline of the proposed scheme is shown
in Figure 1. The proposed scheme consists of a series of steps
as follows.

∙ Firstly, generate the high-frequency component of PAN
image by utilising the bilateral filter BF.

∙ Secondly, utilise an adaptive intensity hue saturation (AIHS)
[34] to generate the MS image’s Intensity component.

∙ Thirdly, employ various types of side window filtering
to filter the high-frequency PAN image to obtain the
approximation image by using I component as a guided
image.

∙ Fourthly, compute injection gain for each band of MS, which
is defined by the quantity of the panchromatic image spatial
detail information, which is being injected into the MS image.

∙ Finally, the high-resolution MS image is generated.

3.1 Generating high frequency components

In order to obtain a high-frequency component of PAN image,
the bilateral filter is utilised as it performs better in holding edge
subtleties. Therefore, by subtracting the original image from the
filtered image, the high-frequency component is acquired.

PANL = BF(PANL ,G𝜎s ,G𝜎r ) (7)

PANH = PAN − PANL (8)

where BF denotes the bilateral filter function, PANL , PANH

indicate the low-frequency components and high-frequency
components of PAN image, respectively.

3.2 Generating intensity component from
MS image

The intensity hue saturation IHS strategy produces an image
with a high spatial resolution while suffers from spectral distor-
tions. The general formula for generating an intensity compo-
nent is illustrated as follows:

I =

N∑
i=1

𝛼iMSi′th (9)

where 𝛼i represents the weight coefficients, and N represents
the number of spectral bands. The Optimal weights can be
obtained by solving the following optimisation problem [34]:

𝛼∗i = arg min
𝛼i

‖‖‖‖‖‖PAN −

N∑
i=1

𝛼iMSi′th

‖‖‖‖‖‖
2

(10)

3.3 Implementing different types of guided
filter

In this step, three different types of the guided filter were
used. Namely, guided filter GF weighted guided filter WGF and
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FIGURE 9 Fusion result of QuickBird real dataset

gradient guided filter GGF to obtain detailed information
from high-frequency PAN image by estimating the difference
between high-frequency PAN and its filtered version in which
I component is used as a guidance image. The side window fil-
tering was employed along with these filters. These filters can
be used to minimise the difference between the I component
and the low-pass filtered PAN image. Firstly, the difference
between the filtered image Z1 and the input image PANH is
the detailed image D1; secondly, the difference between the out-
put filtering Z1 and the output filtering Z2 is the detailed image
D2, the final detailed information image D is estimated by the
summation of D1 and D2. Note that, two stages of the filter
are employed in order to acquire more details from the input
image.

Z1 = F
(
PANH , I , r , 𝜉

)
,D1 = PANH − Z1 (11)

where F represents the kernel filter type.

Z2 = F
(
Z1, I , r , 𝜉

)
,D2 = Z1 − Z2 (12)

D = D1 + D2 (13)

3.4 Generating the fusion image

In this section, before generating the fusion image, the injection
gain for each MS band is computed, which is defined by the
quantity of the panchromatic image spatial detail information
[35], which is being injected into the MS image.

gi′th =
MSi′th

1∕N
∑N

1 MSi′th

(
(1 − 𝛽i′th )wPAN + 𝛽i′thwMSi′th

)
(14)
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FIGURE 10 Fusion result of Gaofen real dataset

where gi′th, 𝛽i′th, and wMSi′th
indicate injection gain, trade-off

parameter, and the edge detecting weighting matrix for i′th
band, respectively. The edge detecting weighting matrix can be
computed as follows:

wimg = exp

(
−

𝜆|∇img|4 + 𝜀

)
(15)

where |∇img| represents a gradient of an image, 𝜆, 𝜀 are the
tuning parameters. Then, the fusion image can be estimated by
the following equation

HRMS = MSi′th + (D × gi′th ) (16)

4 EXPERIMENTAL RESULTS

In order to provide solid results and to evaluate the pro-
posed technique, different types of remote sensing datasets
were evaluated. In total, five datasets have been selected for
implementation purposes, three degraded datasets, and two real
datasets. These datasets were acquired from different sensors.
Namely, Ikonos, Quick-Bird, GeoEye for degraded datasets,
and Gaofen, Quick-Bird for real datasets. However, the pro-
posed model is compared with some existing fusion mod-
els whose codes are publicly available [5] such as PCA [11],
IHS [10], Brovey [36], SFIM [37], GS-GLP [38, 39], Indusion
[40], and MTF-GLP [41]. Furthermore, it is compared with
SWT [42], Contourlet [19], and three state-of-the-art methods,
includes PDS [20], EFM [21], and PMSD [6].
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4.1 Analysis of parameters setting

Before the implementation step, the parameters setting is anal-
ysed, the half-size of the Gaussian bilateral filter window w is set
to 5, G𝜎s, G𝜎r are 10, 0.3, respectively. Other filters used were
based on two critical parameters, r , and 𝜉. Figure 2 illustrates
the detailed examination of parameter sets. The first column in
Figure 2 shows the performance of four quality indexes related
to 𝜉 including CC, IndexQ, UIQI, and SSIM. Considering that,
the highest value means better performance. However, it can be
seen that the performances of CC, IndexQ, and UIQI have all
slightly increased associated with the increased value of r and 𝜉.
The changing trend of the SSIM index has remained fairly stable
in the first column of Figure 2 but in the last sub-Figure 2 of the
first column at the bottom, there is a slight rise. The changing
trends of ERG and SAM indexes are shown in the second col-
umn in Figure 2. Noticeably, there is a slight fluctuation but the
smallest value for both indexes has illustrated when r is 8 and 𝜉
is 0.42. The third column in Figure 2 illustrates the performance
of PSNR, the changing trend has climbed in Figure 2, whereas
it has remained stable when r is 4, and 𝜉 is 0.22. Clearly, the best
performance of the PSNR index is shown in Figure 2 when r is
8 and 𝜉 is 0.42.

4.2 Experiments on degraded data

Regarding the degraded datasets, the Ikonos satellite provides a
four-band multispectral image with size 512×512 and a PAN
image with 2048×2048. According to Wald’s protocol [43],
we degraded the original multispectral image by a factor of 4
using MTF filtering and decimation. The Quick-Bird and Geo-
Eye satellites provide four multispectral image bands with size
64×64 and a PAN image with size 256×256. The fusion results
of degraded datasets are shown in Figures 3, 5, and 7. We
evaluate the fusion results based on eight quality metrics [5,
44]. Correlation coefficients CC, image quality indexes UIQI,
Index Q, PSNR, and structural similarity index SSIM measures
the similarity and the relevant information between a reference
image and a fusion image. The highest value means better per-
formance. Besides, the root means square error RMSE, error
relative global adimensionnelle ERGAS, and the spectral angle
mapper SAM, the lower value indicates better understanding.

From Figure 3, we can observe that the PMSD method
produced unnatural colours in the obtained fused image and
there are distortions in the spatial resolution. The fusion results
of PCA, IHS, and Brovey methods produced better spatial
enhancement results but still suffer from spatial distortions. The
Indusion, SFIM, GS-GLP methods can perform better as com-
pared to the spectral enhancement than the traditional methods,
but the fused images have remarkable spatial distortions. There
are some blurring areas in the fusion result of the SWGGF
method. Although the PDS, EFM, SWT, and Contourlet meth-
ods preferably preserved details such as the edges, however,
the colour information changed slightly. The effects of the pro-
posed approach have large advantages at retaining the detailed
information, and the detail contrast enhancement effect is high.

TABLE 4 Numerical evaluation for QickBird real dataset

Method QNR (1) Ds D𝝀

GF 0.9472 0.1124 0.078

SWGF 0.9476 0.1134 0.0783

WGF 0.9548 0.1010 0.0649

SWWGF 0.9552 0.0868 0.0733

GGF 0.9717 0.0639 0.0410

SWGGF 0.9585 0.0869 0.0621

PDS 0.9460 0.1146 0.0811

EFM 0.8816 0.2545 0.1653

PMSD 0.9215 0.1629 0.1179

MTF-GLP 0.93708 0.13929 0.09278

Indusion 0.96348 0.03066 0.08704

SFIM 0.93699 0.06634 0.14364

Brovey 0.9512 0.17315 0.05659

IHS 0.91008 0.2534 0.10823

PCA 0.90127 0.28645 0.13137

GS-GLP 0.94533 0.12337 0.07886

SWT 0.9314 0.1516 0.0974

Contourlet 0.9290 0.1499 0.1057

The numerical evaluation of fusion QuickBird degraded data
is reported in Table 1. From the table, we can see that the
SWGF method can provide the best values in most indexes.
The fusion results of the Ikonos satellite dataset are shown in
Figure 5. Considering both the spatial and spectral details, it
can be observed that the proposed technique using WGF filter
performed better than the comparative approaches, particularly
spatial fidelity. Figure 7 shows the fusion results of the degraded
GeoEye satellite dataset. It can be seen that the fusion results of
PMSD, Brovey, IHS, PCA achieved severe spectral distortion.
The other methods performed well, but there are some blurred
areas at some places. Besides, the spatial and spectral distortions
are obvious in the fusion result of SWWGF for Ikonos and
GeoEye datasets. The numerical evaluation of fusion results for
Figures 5 and 7 are given in Tables 2 and 3, respectively. It shows
that the WGF method provides the best values in most evalua-
tion indexes.

4.3 Experiments on real data

In terms of real data (No reference image), two kinds were
selected, QuickBird and Gaofen. The size of the MS image and
PAN image is 256×265, 1024×1024, respectively. The fusion
results of real datasets are shown in Figures 9 and 10. The
real data is evaluated based on the QNR index, which depends
on a spatial distortion index Ds and a spectral distortion index
D𝜆. Overall, by the subjective comparison of fusion results in
Figures 9 and 10, the Brovey, IHS, PCA, and PMSD techniques
suffered from spectral distortion. The other methods per-
formed well but have insufficient ability to extract the detailed
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TABLE 5 Numerical evaluation for Gaofen real dataset

Method QNR (1) Ds D𝝀

GF 0.8720 0.3272 0.1278

SWGF 0.8716 0.3378 0.1283

WGF 0.8757 0.3269 0.1265

SWWGF 0.8738 0.3294 0.1308

GGF 0.8803 0.3027 0.0877

SWGGF 0.8782 0.3446 0.1041

PDS 0.8794 0.3440 0.1388

EFM 0.8512 0.3938 0.2898

PMSD 0.8566 0.3685 0.1472

MTF-GLP 0.52872 0.36999 0.16077

Indusion 0.67597 0.19653 0.15868

SFIM 0.62588 0.29534 0.1118

Brovey 0.2967 0.64891 0.15492

IHS 0.24905 0.68984 0.19702

PCA 0.36387 0.64878 0.14299

GS-GLP 0.70576 0.2519 0.05658

SWT 0.8289 0.4154 0.1924

Contourlet 0.8173 0.4302 0.2168

information. Therefore, the objective numerical evaluation of
Figures 9 and 10 are given in Tables 4 and 5, respectively.

Table 4 shows that the GGF method can provide the best
values in terms of QNR, D𝜆 metrics. The Indusion method
has the best value in terms of spatial fidelity, followed by the
GGF method. Table 5 illustrates that the GGF method can pro-
vide the best values in the QNR metric. The GS-GLP method
has the best value in terms of spectral fidelity, followed by the
GGF method.

5 DISCUSSION

In this study, we proposed a pansharpening method that
uses different kinds of filters for image fusion. The per-
formance of pansharpening methods was evaluated using
various standard quality measures. The remarkable exhibi-
tions of those filters can be plausibly explained by the way
that the techniques used depend on the same criteria and
utilise comparative instruments to accomplish the objective of
pansharpening.

The size of filter window r , which determines the huge dis-
tinction of the guided image in neighbourhood windows, and
normalised parameter 𝜉, which determines the haze level of
the filter are set as 8, 0.42, respectively. Given the estimations
of assessment indexes, which are discussed previously. In this
manner, we exploit the PAN image to accomplish the spa-
tial upgradation. Our goal is to limit the spectral distortion by
infusing a point-by-point vector corresponding to the resam-
pled MS vector. In this way, colours are preserved in terms

TABLE 6 Time comparison (in second)

Method Time

PCA 0.06

IHS 0.01

Brovey 0.01

SFIM 0.04

Indusion 0.07

MTF-GLP 0.22

GS-GLP 0.19

SWT 0.78

Contourlet 0.40

PDS 7.52

EFM 0.07

PMSD 0.31

GF 1.88

SWGF 4.51

GGF 1.59

SWGGF 4.99

WGF 1.69

SWWGF 4.47

of hue, while saturation might be changed. In this study, three
degraded datasets were implemented. The spatial subtleties in
the combination images of all techniques were upgraded, yet
some spatial data were improved unduly. In visual comparison,
it was observed that most pansharpening techniques performed
well in terms of spatial fidelity. The PDS, EFM, and PMSD
methods show some colour changes compared with a refer-
ence image, especially the PMSD method because these meth-
ods are more focused on spatial details than spectral details.
Due to the difficulties of visual evaluation for humans, we esti-
mated error maps (A difference between fused image and ref-
erence image), as illustrated in Figures 4, 6, and 8. The results
were evaluated based on some quality metrics. The SWGF
method performs a significant objective effect in ERGAS, SAM,
RMSE, UIQI, and PSNR. Thereby, SWGF still ranks in the
top range for QuickBird data and balances spectral and spatial
fidelity.

Overall, for Ikonos and GeoEye degraded datasets, the WGF
performs a significant objective effect among the quality met-
rics. Despite this, applying the side window kernel with the
weighted guided filter SWWGF does not perform well as com-
pared to other filters regrading. The Experiments were also con-
ducted on two groups of real datasets. The QNR and D𝜆 val-
ues of the GGF method are better than those of the other
methods, indicating that the GGF method produces a higher
quality fusion result. Furthermore, in terms of D𝜆 index for
real Gaofen data, the GS-GLP method performed the best
value, followed by the GGF. Thus, the GGF method per-
formed better concerning real datasets as compared to other
techniques.
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6 CONCLUSIONS

This study proposed an image fusion technique based on differ-
ent kinds of guided filter to acquire the high-resolution multi-
spectral image. The study aimed at enhancing the spatial reso-
lution of the MS image corresponding to the PAN image while
preserving the spectral resolution. The elaborated simulations
for different kinds of images and the experimental comparison
results indicated that the proposed model had performed effi-
ciently for image fusion tasks supported with higher computa-
tional efficiencies. The technique was tested on several remote
sensing datasets, and the experimental evaluation results indi-
cated different filters’ decent performance for different datasets
used in this study.

To sum up, the proposed method performs well as compared
to other techniques. We have indicated that the side window
local linear filters may have the potential to be used excellently
for image fusion.
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