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Modelling customers credit card behaviour 
using bidirectional LSTM neural networks
Maher Ala’raj1* , Maysam F. Abbod2 and Munir Majdalawieh1 

Introduction
The case with many financial institutions such as banks is that credit lending products 
such as credit cards, personal loans and mortgages are the center of their dealings, and 
proper lending will yield huge gains. As a result, it is important for financial institutions 
and banks to get new customers and ensure to keep profitable ones. Banks have created 
a wide customer database over the years, which can be used to analyze a bank’s perfor-
mance and make progressive business decisions. It is not possible that all customers will 
act the same way when it comes to financial performance, therefore, there should be 
distinguishable treatment between customers who qualify for certain profitable require-
ments, based on their repayment and purchasing behaviour customers exhibiting such 
behaviour can be offered greater incentives and rewards [1]. Banks need to know their 

Abstract 

With the rapid growth of consumer credit and the huge amount of financial data 
developing effective credit scoring models is very crucial. Researchers have devel-
oped complex credit scoring models using statistical and artificial intelligence (AI) 
techniques to help banks and financial institutions to support their financial deci-
sions. Neural networks are considered as a mostly wide used technique in finance and 
business applications. Thus, the main aim of this paper is to help bank management 
in scoring credit card clients using machine learning by modelling and predicting the 
consumer behaviour with respect to two aspects: the probability of single and con-
secutive missed payments for credit card customers. The proposed model is based on 
the bidirectional Long-Short Term Memory (LSTM) model to give the probability of a 
missed payment during the next month for each customer. The model was trained 
on a real credit card dataset and the customer behavioural scores are analysed using 
classical measures such as accuracy, Area Under the Curve, Brier score, Kolmogorov–
Smirnov test, and H-measure. Calibration analysis of the LSTM model scores showed 
that they can be considered as probabilities of missed payments. The LSTM model was 
compared to four traditional machine learning algorithms: support vector machine, 
random forest, multi-layer perceptron neural network, and logistic regression. Experi-
mental results show that, compared with traditional methods, the consumer credit 
scoring method based on the LSTM neural network has significantly improved con-
sumer credit scoring.
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good or bad customers, and they will need credit scoring and behavioural scoring to do 
so. Article [2] defined credit scoring as the means of analyzing the likelihood of appli-
cant to falter in their repayments, or not. In Anderson [3] authors defined it by dividing 
the term into two parts: the first is ‘credit’, which means to buy an item and pay after-
wards, and the second is ‘scoring’, which is alike with the method used for credit cards.

There are two major kinds of credit scoring, and they are application credit scoring, 
where a score is applied to provide a decision on a new credit application; and behav-
ioural scoring, is where the score is used to address existing customers after they have 
been given a loan. Liu [4] banks use behavioural scoring to guide their decisions about 
lending in credit limit management strategies; managing debt collection and recovery; 
retaining future profitable customers; predicting accounts likely to close or settle early; 
offering new financial products and interest rates; managing dormant accounts; opti-
mizing telemarketing operations; and predicting fraudulent activity [3, 5–8], the number 
of risk payment and the future risk of payment [9].

Furthermore, Lim and Sohn [10] have emphasized the benefits of having multifaceted 
models that predict when customers will fail to pay or repay debts, as follows: (1) Cal-
culating the profitability over a customer’s lifetime and doing profit scoring; (2) Making 
available to the bank an average of default levels over time, which is beneficial for debt 
provisioning; (3) Assisting in arriving at the terms of the loan; and (4) Adapting more to 
changing economic conditions. Banks usually try to estimate a borrower’s credibility and 
give a safe probability when a customer may miss a payment generally, and subsequent 
payments particularly [11]. These models help the bank to take actions quickly against 
any risk that ends up in unfavorable behaviour by borrowers [12].

This paper focuses on behavioural scoring. According to Hsieh [13], behavioural scor-
ing is utilized to examine the behaviour of existing customers, considering their attitudi-
nal variables and estimate their payment behaviour or credit status. Behavioural scoring 
lets lenders to consistently monitor the changing behaviour or features of customers and 
help to direct customer level decision making.

Motivations

The primary origin of a credit card related risk for banks is client default, which is 
the inability to reimburse a debt on a loan or security. A default can happen when 
a borrower cannot make convenient payments, misses payments, or dodges or quits 
making payments. In the case of credit cards, no assets are securing the debt, but the 
lender still has legal recourse in the event of default. Credit card corporations regu-
larly give few months before an account goes into default. However, if after 6 months 
or more there have been no instalments, the account will get feed off, meaning the 
lender takes a loss on the account [14]. Consecutive missed payments for credit card 
debt are an early sign of customer bankruptcy. Following the Basel II convention, con-
sumer credit default is commonly defined as delinquency beyond a period of 90 days 
[15]. Therefore, the research of this paper is motivated by the necessity of automati-
cally scoring the customer’s behaviour on repayments to make risk decisions, and the 
use of credit card scores to make necessary financial security decisions. Using such 
scores, banks can classify customers into “risk groups”, which could help to detect 
potential bankruptcy early and block the customer’s card in time to limit losses. 
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Hence, the task of estimating the missed payment probability for clients who already 
have one or more missed payments turns out to be important for bank management.

The main drawback of existing automatic scoring solutions lies in the necessity for 
bank management to manually extract features from raw transactional data. This pro-
cess is subjective and can lead to the loss of information in the data. On the other 
hand, LSTM extracts features internally and in the way which is hidden from outside 
observers.

The main aim of this paper is to help bank management in scoring credit card cli-
ents using machine learning techniques. The main contributions and objectives of 
this paper, based on the above motivations, are:

(1) Introduce a deep learning neural network architecture based on Long-Short Term 
Memory (LSTM) bidirectional neural networks as a method of customer behaviour 
score estimation.

(2) Prove the feasibility of LSTM model and test it on the real credit cards dataset by 
comparison with other classifiers.

The developed LSTM model is compared to four classical machine learning algo-
rithms: Support Vector Machine (SVM), Random Forest (RF), Bagged Neural Net-
work (NN), and Logistic Regression (LOGR). The paper discusses the importance 
of performing a detailed comparison procedure while proving high accuracy using 
LSTM model that best fulfils the users’ interest.

The remainder of the paper is organized as follows: Section “Machine learn-
ing approaches in behavioural scoring” gives a preview of the relevant literature on 
machine learning models in credit and behavioural scoring. Section “Methodology” 
describes the proposed methodology that is used in this paper. Section “Experimen-
tal design” explains the experimental setup, whereas Section “Results and discussion” 
presents the experimental results and analysis. Finally, in Section “Conclusion”, con-
clusions are drawn, and future work prospects are discussed.

Machine learning approaches in behavioural scoring
The field of credit scoring has become a broadly investigated subject by researchers 
and the financial industry [16], with numerous models having been proposed and 
created utilizing measurable methodologies, for example, LOGR [6] and Linear Dis-
criminant Analysis (LDA) [17, 18]. Because of the financial crisis, the Basel Commit-
tee on Banking Supervision demanded all banks to apply thorough credit assessment 
models in their frameworks while conceding a loan to an individual customer or a 
company. Appropriately, research have shown that Artificial Intelligence (AI) proce-
dures (e.g., neural networks, SVM, and RF) can be a decent exchange for measurable 
methodologies in building credit scoring models [19–21].

Behavioural scoring applies characteristics of customers’ ongoing behaviour to pre-
dict whether they are prone to default during a specific outcome period. Often the 
outcome period and fixed performance period are subjectively selected, which causes 
instability in the prediction-making process.
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Most papers in the literature were centred on behavioural scoring with respect to cus-
tomer loans [22–24]. However, behavioural scoring of client’s credit card payments has 
not been appropriately investigated. Behavioural scoring models support to analyse pur-
chasing behaviour of existing customers [25]. Only a few works have studied the mining 
of bank databases from the viewpoint of customer behavioural scoring [26]. To alleviate 
this, Hsieh et  al. [27] have used a Taiwanese bank credit card dataset to demonstrate 
the effectiveness of behavioural scoring. The authors use three commonly discussed data 
mining techniques: LDA, SVM, and Back Propagation Neural Networks (BPNN).

In recent years, loan and credit card transactions information has become significantly 
larger. Therefore, it is often difficult to use traditional mathematical and statistical mod-
els for such types of problems. To construct behavioural scoring models, profession-
als must think about a few significant issues, such as the extensiveness of the dataset 
to model, the planning horizon, and drivers of unwanted behaviour [6]. The literature 
does not contain solid suggestions on the most proficient method to respond to these 
questions.

One of the approaches is to use feature selection on features, generated from raw 
transactional data. Feature selection was used in credit scoring problems [28]. In gen-
eral, feature selection is very important to use such as for knowledge discovery in data-
bases (KDDs). Some of the applications are for Colorectal Cancer Cases Phenotype [29], 
breast cancer identification [30], household poverty [31], air pollution [32]. Meanwhile, 
the extended version of SVM-DHGLM increased the accuracy, precision, recall, for fea-
ture selection and classification [33].

Hence, this paper explores a portion of the issues influencing the structure of a behav-
ioural scoring model using machine learning by investigating the performance of a large 
pool of credit card transactions dataset.

Pereira [34] examined the conduct of a credit card purchaser relying upon whether 
they do payments involving a tremendous measure of cash. In Alborzi and Khanbabaei 
[35], a new hybrid model of behavioural scoring and credit scoring based on data mining 
and neural network techniques is introduced for both banking and marketing purposes. 
A two-stage scoring approach with wide and deep learning usage suggested in Bastani 
et  al. [36] is an integration of credit scoring and profit scoring. Stage 1 was designed 
to identify non-default loans, which were then moved to stage 2 for probability predic-
tion, wide and deep learning were used to build the predictive models in both stages to 
achieve both memorization and generalization. In the study by Akkoç [37], the author 
has proposed a three-stage hybrid Adaptive Neuro Fuzzy Inference System credit scor-
ing model, which is based on statistical and neuro-fuzzy techniques. Addo et  al. [38] 
have built binary classifiers based on machine and deep learning models were built on 
real data to predict loan-default probability. In Gui [39], the author intends to apply mul-
tiple machine learning algorithms to analyse the default payment of credit cards. Based 
on the user operation behaviour data of the P2P lending industry, a consumer credit 
scoring method based on the attention mechanism LSTM was offered by Wang [21].

Considering the relevant literature and to the best of our knowledge, there are 
no studies which apply LSTM neural networks to the task of predicting consecu-
tive missed payments and defaults for customers’ credit cards. For example, in [21] 
an LSTM neural network was used, but the application differs from the field of this 
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research; in Heryadi and Warnars [40] and Graves et al. [41] various architectures of 
neural networks was used, but research topic was credit card fraud detection, which 
is different from ours. Also, we show that scores of the model can be treated as prob-
abilities, which is significant fact.

This paper discovery is contributing to the literature of credit and behavioural scor-
ing since as the application of LSTM neural networks to missed payment analysis 
with concurrent use of customer information has not be studied previously.

Methodology
Recureent and LSTM nueral networks

Recurrent neural networks (RNNs) are a special class of supervised machine learning 
models. They are made of a sequence of cells with hidden states which have non-linear 
dynamics. RNNs are used mostly with time series data, for example, speech recognition 
[42], unsupervised anomaly detection [43], and automated translation [44]. LSTM is also 
used in economics to forecast time series data as an alternative to the ARIMA model 
[45]. As transactional data in credit cards has a temporal nature, it is advisable to use 
RNNs instead of other types such as fully connected or convolutional neural networks.

In a recurrent neural network, connections between cells form directed cycles. 
Each cell contains a hidden state, which is updated on each iteration using its previ-
ous values. Such a structure creates an internal network state and works as a memory. 
The RNN equations are:

where x is an input vector, s is a hidden vector of RNN layer values, h is an output vec-
tor of RNN layer values, U is a weight matrix of the input layer to the hidden layer, V  is a 
weight matrix of the hidden layer to the output layer, W  is a weight matrix for the previ-
ous time point to the current time point of the hidden layer, and g and f  are activation 
functions for output and hidden layers respectively. The structure of a standard RNN 
model is shown in Fig. 1.

In Fig. 1, the work of one RNN cell is illustrated. We feed time series signal X to the 
cell element by element. The vector X can be an input vector or output from other 

(1)
{

st = f (U · xt + W · st−1),

ht = g(V · st),

Fig. 1 RNN model structure [21]
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RNN cell from the previous layer. The RNN cell holds its state s . At each iteration 
t , the state st and output ht are calculated by Eq.  (1). Because of their architecture, 
RNNs can [21]:

(1) Recognize patterns, characteristics, and dependencies in sequential and time series 
data;

(2) Store, remember, and process past complex signals for long time periods;
(3) Map an input sequence to the output sequence at the current timestep and predict 

the sequence in the next timestep; and
(4) Replicate any target dynamics after the training process, even with adjusted accu-

racy.

However, there are issues with learning long-term dependencies. Because RNN 
is prone to vanishing gradients during training, it is difficult to learn long-term 
dependencies [46, 47]. To solve this problem, Hochreiter and Schmidhuber [48] have 
proposed an LSTM based on RNN. As with RNNs, LSTM predictions are always con-
ditioned by the experience of the network’s inputs. Its distinguishing feature is the 
existence of special units called memory blocks in the recurrent hidden layer, which 
perform like accumulators of the state information. Every memory block has memory 
cells with self-connections, which store the temporal network state, and special mul-
tiplicative units called gates, which can control the stream of information. These cells 
and gates allow the LSTM to trap the gradient in the cell (also known as constant 
error carousels) and prevent it from vanishing. The gate activation functions are sig-
moid, thus output value ranges from 0 to 1, and denotes how much information can 
be allowed to pass outside. The structure of a single LSTM cell is shown in Fig. 2.

As seen in Fig. 2, an LSTM cell consists of three gates, namely an input gate, that con-
trols how many cell states need to be stored an output gate that controls how many cell 
states are sent to the next cell have to, and a forget gate, that controls how much infor-
mation needs to be removed [49, 50]. Two of these gates contain internal states. It can 
be seen that on each iteration t , the LSTM cell is using the previous values of the candi-
date vector Ct−1 and output vector ht−1 to calculate their next values. The output of each 
gate is post-processed using activation functions. The shape of the activation function is 
important and can significantly affect the efficiency of the neural network [43].

Fig. 2 LSTM model structure [21]
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By default, the activation function of the recurrent gates is a sigmoid function [48], 
which is a non-linear activation function that is used mostly in feedforward neural net-
works. It is a bounded monotonically increasing differentiable real function, defined for 
all real input values, as given by the following sigmoid function equation:

The sigmoid function is applied to the output layers of the deep learning architectures 
in binary classification problems, modelling logistic regression tasks as well as other 
neural network domains. However, the sigmoid activation function suffers major draw-
backs which include sharp damp gradients during back propagation from deeper hidden 
layers to the input layers, gradient saturation, slow convergence, and non-zero-centred 
output, thereby causing the gradient updates to propagate in different directions [28].

The hyperbolic tangent function is the default activation function for an LSTM cell’s 
output gate [48]. The hyperbolic tangent function, tanh, is a smooth antisymmetric 
function with the range of values [− 1,1]. The output of the tanh function is given by:

The main advantage provided by tanh is that it produces zero-centred output, 
thereby aiding the back-propagation process. The detailed procedure of an LSTM cell is 
explained as follows:

On the first step, LSTM should decide which information to forget. For this purpose, 
the information of the previous memory state is processed through the forget gate ft:

On the second step, input gates it decide which information should be updated, and 
the tanh layer updates the candidate vector C̃t:

On the next step, memory states Ct are updated as a combination of the two parts 
above:

Finally, output gates ot are used for controlling the output ht:

Therefore, each LSTM layer is characterized by [48]:

(1) Matrix Wf  andbf  , vector, which are parameters of the forget gate;

(2)σ(x) =
1

1+ e−x

(3)tanh(x) =
ex − e−x

ex + e−x

(4)ft = σ
(

Wf · [ht−1, xt ]+ bf
)

(5)it = σ(Wi · [ht−1, xt ]+ bi)

(6)C̃t = tanh (WC · [ht−1, xt ]+ bC)

(7)Ct = ft · Ct−1 + it · C̃t

(8)ot = σ(Wo · [ht−1, xt ]+ bo)

(9)ht = ot × tanh (Ct)
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(2) matrix WC and vector bC , which are parameters of the input gate; and
(3) matrix Wo and bo , vector, which are parameters of the output gate.

To increase the performance and learning speed of LSTM neural networks, in the 
research [51] bidirectional LSTM neural networks were proposed. According to Schus-
ter and Paliwal [51], bidirectional LSTMs are an extension of traditional LSTMs that can 
improve model performance on sequence classification problems. In problems where all 
time steps of the input sequence are available, bidirectional LSTMs train two instead of 
one LSTMs on the input sequence. The first on the input sequence as-is and the second 
on a reversed copy of the input sequence. This can provide additional context to the net-
work and result in faster and even fuller learning on the problem.

According to Fig. 3, the forward layer output sequence, h, is iteratively calculated 
using inputs in a positive sequence from time t = 0 to time t = T, while the back-
ward layer output sequence, 

←

h  , is calculated using the reversed inputs from time 
t = T to t = 0. Both the forward and backward layer outputs are calculated by using 
the standard LSTM updating equations, Eqs.  (2–7). The Bidirectional LSTM layer 
generates an output vector, Yt, in which each element is calculated by using the fol-
lowing equation:

One more extension of stacked LSTM neural networks is the “Attention” mecha-
nism. The Attention Mechanism in the deep learning model is a model that simu-
lates the attention of the human brain. When people observe images, they do not 
carefully look at every pixel of the image. Instead, they focus their attention selec-
tively on some important parts of the image, ignoring other unimportant parts. Ini-
tially, attention mechanism was developed for automatic translation challenges [52], 
but then its usage was enhanced to image recognition and classification problems.

(10)yt = ω

(

→

h
t
,
←

h
t

)

,

Fig. 3 Bidirectional LSTM architecture [53]
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Proposed model

Even though the LSTM neural network principles are already well studied, choosing the 
architecture is often up to the researcher [21, 45, 53]. This includes choosing the number 
and type of layers, number of cells in each layer, activation functions, etc. In order to 
use the LSTM architecture in the behavioural scoring task, it must be modified to make 
it possible to use not only transactional data but also other customer data (age, salary, 
country of origin, etc.).

Usually neural network architecture is chosen with respect to data used for training. 
That’s why it is important to use spatial structure and order of input data to make it pos-
sible to build efficient model with low number of parameters (weights). For temporal 
input usually RNN’s and LSTM’s neural networks are used. However, for mixed tem-
poral and non-temporal data LSTM network is not applicable. One solution is to feed 
non-temporal data into dense layers at the top of LSTM, but in this case non-temporal 
features are used only in final stage of model.

Attention layer require optional query input which is used as a context of temporal 
input. We use non-temporal data as a query input to this layer to add a context of cus-
tomer good or bad payment behaviour. Hence, such layer is able to distinguish financial 
behaviour of customers with taking into account their educational and marital status, as 
well as gender and age.

As it is seen from Fig. 4, the first two layers are bidirectional LSTM, next layer is Atten-
tion. The two last layers are the concatenation of output of Attention layer and the non-
temporal client data. The last layer consists of only one neuron.

Table 1 shows the hyperparameters for the developed models. As it can be seen, the 
model for monthly purchase estimation is more complex than the one for missed pay-
ment prediction. This can be explained by the fact that, in general, regression problems 
are more complex than the classification ones. Number of neurons in each layer was 
selected using grid search, activation functions were selected by adopting the most used 
from similar research [21, 40, 53].

Time window parameter is important, but it belongs to the input data rather than 
model, so it will be defined in Section “Data description”.

Experimental design
The aim of the LSTM model is to automate credit card behaviour scoring for custom-
ers as well as to trigger an early alert for credit card default. The framework of the pro-
posed model is presented in Fig. 5. The workflow presented will let us fully investigate 
the model performance to make reliable conclusions.

The proposed framework consists of several steps. Firstly, the dataset is pre-processed 
and formatted to be used by Bidirectional LSTM classifier. As a next step, fivefold vali-
dation technique is used to get prediction for all customers in dataset. Then the perfor-
mance measures are calculated for different groups of customers which is of financial 
interest to the bank institutions (banks are especially interested in customers with unsat-
isfactory history of payments). To outline performance of the model it is compared to 
benchmark models using various performance measures. Results are discussed in the 
final section.
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Dataset

There are only few open source transactional datasets that can be used to test efficiency 
of proposed model. Majority of datasets are either non-temporal or they are from differ-
ent field of research. To verify the practicality and effectiveness of the proposed LSTM 

Fig. 4 The data processing flow in LSTM Neural Network model

Table 1 Hyperparameters for the developed models

Model task Parameter value

Number of transactional features 3

Number of additional features 8

Number of bidirectional LSTM layers 2

Number of cells in each LSTM layer 4

Number of attention layers 1

Activation function of hidden LSTM layers Hyperbolic tangent

Number of fully connected layers (dense) 1

Activation function for all dense layers except the output one Sigmoid

Activation function of the output layer Sigmoid

Loss function Binary cross-entropy

Optimizer Adam
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model we use a public1 real credit cards dataset used in Bahdanau et al. [52] and can be 
easily converted to temporal form.

Dataset description

The dataset used in this paper is a public non-transactional credit cards dataset that 
reflects customer’s default payments in Taiwan [54]. It has been widely used in validat-
ing credit and behavioural scoring models [55–57], also in deep learning models [58, 59]. 
Usually, banks do not disclose transactional databases in raw form, and thus majority of 
datasets in the open access are in processed form. Hence, we used this dataset because 
this is the only publicly available dataset which can be converted into temporal form 
(customer payment statistics for each month rather than aggregated values).

The size of the data set is 30,000 records, which is large enough to test the efficiency of 
the proposed model. The number of non-default payments is 23,364, while the number 
of default payments is 6636 (proportion of default payments in dataset is 22%). There 
were no missing values in dataset.

In the dataset the following 23 variables are used as explanatory:

(1) X1: Amount of the given credit, which includes both the individual consumer 
credit and his/her family (supplementary) credit.

(2) X2: Gender (1 = male; 2 = female).
(3) X3: Education (1 = graduate school; 2 = university; 3 = high school; 4 = others).
(4) X4: Marital status (1 = married; 2 = single; 3 = others).
(5) X5: Age (year).
(6) X6–X11: History of past payment. Tracked payment records are denoted from 

September to April 2005 by X6–X11, respectively. The measurement scale for 

Fig. 5 Model framework

1 The dataset is available at https:// archi ve. ics. uci. edu/ ml/ datas ets/ defau lt+ of+ credit+ card+ clien ts.

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
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the repayment status is: −  1 = pay duly; 1 = payment delay for 1 month; 2 = pay-
ment delay for 2 months; ...; 8 = payment delay for 8 months; 9 = payment delay for 
9 months and above.

(7) X12–X17: Amount of bill statement. The amount of bill statement is denoted from 
September to April 2005 by X12–X17, respectively.

(8) Amount of previous payment (NT dollar). X18 = amount paid in September 2005; 
X19 = amount paid in August 2005; ...; X23 = amount paid in April 2005.

The variables can be divided into two groups: numerical and categorical. The examples 
of the first are: X1 (amount of given credits), X5 (age), X6–X11 (history of past pay-
ment), etc. The second group contains such variables: X2 (gender), X3 (education), X4 
(marital status).

Dataset pre‑processing and partitioning

Before feeding into a neural network, it was split into two parts: temporal data and 
non-temporal data. Columns X6–X23 as temporal data that reflect customer behaviour 
in time were reshaped into a three-dimensional array of shape (number of customers, 
number of months, number of features). According to the data set description, for each 
customer we have information about his payment behaviour during 6 previous months. 
Therefore, the second dimension of the array is equal to six. The number of temporal 
features available for each customer is equal to three, namely:

(1) Payment delay by the end of each past month;
(2) Amount of bill statement by the end of each past month;
(3) Amount of the payment in each month.

Non-temporal categorical data was split into binary, thus for each customer there are 
eight non-temporal features:

(1) Amount of given credit.
(2) Gender.
(3) Education—graduate school.
(4) Education—university.
(5) Education—high school.
(6) Education—others.
(7) Marital status.
(8) Age.

To properly test the performance of the model we use fivefold cross validation as par-
titioning technique. All customers were randomly split into five groups, and during each 
fold each group become testing once.

As it can be seen, most of the information in the dataset is stored in temporal features 
of past credit card activity and payments. On the other hand, non-temporal features are 
too general and are, in fact, categorical features. That is why without using temporal fea-
tures it is impossible to predict future missed payment probability.
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Attention mechanism is used to provide a context. Hence, age and gender provide 
such context for temporal financial information. It means that similar payment behav-
iour for young and old customers can lead to different payment outcomes (e.g., young 
customers can forget or skip to pay in some month and have bad payment history, but 
they would pay eventually).

Benchmark models development

To measure how well the proposed approach has performed, the results of the proposed 
model are compared to five benchmark models, namely, GB, BNN, RF, SVM and LOGR. 
The latter model is the industry standard for developing credit scoring models [60, 61]. 
However, [61] has stated that it is beneficial to compare a new method with the standard 
one as well as other established techniques. MLP, RF, and SVM have been used in sev-
eral studies as a benchmark model [62]. The theoretical backgrounds of the models are 
described in the following sections.

Gradient boosting

Gradient Boosting (GB) machines are a group of powerful machine learning techniques 
that have demonstrated impressive accomplishment in a wide scope of practical applica-
tions. They are highly customizable to the particular needs of the application, like being 
learned with respect to different loss functions. The fundamental thought of boosting 
is to add new models to the ensemble consecutively. At each particular iteration, a new 
weak, base-learner model is trained with respect to the error of the full ensemble learnt 
up to the last iteration [63].

Bagging neural network

Neural Networks (NN) are machine learning frameworks motivated by the scheme of 
the biological neuron [64]. These are shown so as to have the option to copy the human 
brain capacities regarding discovering complex connections between the inputs and 
outputs [65]. One of the most well-known designs for NNs is the multi-layer percep-
tron, which comprises of one input layer, at least one hidden layer, and one output layer. 
As per [66], central points of contention waiting be tended to in building NNs are their 
topology, structure, and learning algorithm. The most used MLP topology for credit 
scoring is three-layer feedforward back propagation network. Consider the input of a 
credit scoring training set x = {x1, x2, . . . , xn} ; the MLP model works in one direction, 
starting from feeding the data x to the input layer ( x includes the customer’s attributes 
or characteristics). These inputs are then sent to a hidden layer through links, or syn-
apses, associated with the random initial weight for every input. The hidden layer will 
process what it has received from the input layer and, accordingly, will apply an activa-
tion function to it. The result is worked as a weighted input to the output layer, which 
will further process weighted inputs and apply the activation function, take the lead to a 
final decision [67]. In recent years ensemble models became more popular, so instead of 
a single NN, Bagging NN is used with 10 neural networks.
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Support vector machines

A SVM is another ground-breaking machine learning method utilized in order and 
credit scoring issues. SVMs are used for binary classification to make the best sepa-
ration that splits the input data into two classes (good and bad credit). SVMs were 
first proposed by Cortes and Vapnik [68], adapting the form of a linear classifier. 
The primary distinction of the SVM model from the linear one is the occurrence of 
a function that is used to map the data into a higher dimensional space. To achieve 
this, linear, polynomial, radial basis, and sigmoid kernel functions were suggested. An 
SVM maps non-linear data of two classes to a high-dimensional feature space, with a 
linear model then being used to implement the non-linear classes. The linear model 
in the new feature space will denote the non-linear decision margin in the original 
space. Consequently, the SVM will build an optimal line or hyperplane that can per-
fectly separate the two classes in the space. SVMs are being widely used in credit 
scoring and other fields owing to the method’s exceptional results [69, 70].

Random forests

A random forest (RF), as proposed by Breiman [71], is considered an innovative deci-
sion tree (DT) technique which consists of a large number of trees that are created 
by generating n subsets from the core dataset, with each subset being a tree created 
based on randomly selected variables, therefore the name “random forest”. After 
all the DTs are generated and trained, the final decision class is based on a voting 
method, where the most popular class decided by the trees is selected as the final out-
put class by the RF.

Logistic regression

Logistic Regression (LOGR) has been considered until now to be the industry stand-
ard for credit scoring model development [68]. It is a broadly used statistical tech-
nique that is popular for solving classification and regression problems. LOGR is used 
to model a binary outcome variable, usually characterized by 0 or 1 (good and bad 
loans). The LOGR formula is expressed in Atiya and Parlos [19].

Performance measure metrics

To validate the proposed model and in order to reach a reliable and strong conclusion 
on the predictive accuracy of the proposed method, five performance indicator meas-
ures are implemented, specifically: (1) accuracy, (2) Area Under the Curve (AUC), (3) 
H-measure, (4) Kolmogorov–Smirnov (KS) chart, and (5) Brier’s score. These are cho-
sen because they are popular in credit scoring and they give a comprehensive view on 
all facets of model performance. The accuracy stands for the proportion of correctly 
classified good and bad loans, which measures the predictive power of the model. As 
such, this is a standard that measures the discriminating ability of the model [68]. The 
accuracy can be defined as the percentage of correctly classified instances

TP + TN

TP + TN + FP + FN
,
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where TP, FN, FP and TN represent the number of true positives, false negatives, false 
positives and true negatives, respectively.

AUC is a tool used in binary classification analysis to determine which of the mod-
els used predicts the classes the best. According to Hand [72], the AUC can be used 
to estimate the model’s performance without any preceding evidence about the error 
costs. However, it assumes different cost distributions among classifiers depending on 
their actual score distribution, which prevents them from being compared effectively. 
As a result, Hand [72] proposed the H-measure as an alternative to AUC for meas-
uring classification performance, which assumes different cost distributions between 
classifiers without depending on their scores. In other words, this measure finds a sin-
gle threshold distribution for all classifiers. AUC is evaluated as area under the ROC-
curve for measured classifier.

The KS distribution was originally formulated as an observance hypothesis test for 
distribution-fitting to data. In binary classification problems, it has been used as a 
divergence metric for assessing the classifier’s discriminant power by measuring the 
distance that its score produces between the cumulative distribution functions of the 
two data classes [73].

Lastly, the Brier score, which is also known as the mean squared error [74], meas-
ures the accuracy of the probability predictions of the classifier by taking the mean 
squared error of the probability. In other words, it shows the average quadratic pos-
sibility of a mistake. The main difference between the Brier score and accuracy is that 
it directly takes the probabilities into the account, while accuracy transforms these 
probabilities into zero or one based on a predetermined threshold or cut-off score. 
The lower the Brier score, the better the classifier performance. The most common 
formulation of the Brier score is:

in which ft is the probability that was forecast, σt the actual outcome of the event at 
instance t (zero if it does not happen and one if it does happen) and N is the number of 
forecasting instances.

To check whether a model’s behavioural score can be considered as the likeli-
hood of missed payment, calibration curves are used. Well-known as reliability dia-
grams, they can be applied to classifiers which predictand obtain a probability of the 
respective class. Reliability diagrams offer a diagnostic to check whether the scores 
are trustworthy. Thus, a prediction is considered as trustworthy if the event happens 
with an observed relative frequency consistent with the forecast value [75]. A calibra-
tion curve works by sorting the output scores of the classifier. In Particular, the fore-
casts are apportioned into a fixed number of buckets along the x-axis. The number of 
classes or labels are then counted for each bin (e.g., the relative observed frequency). 
After All, the counts are normalized. The results are then plotted as a line plot. If the 
classifier is forecasting accurately, then it is expected that the percentage of dominant 
class classifications and the mean probabilities assigned to the dominant classes in 
each bin to be close to one another. If it is not doing so accurately, these two values 

BS =
1

N

N
∑

i=1

(

ft − σt
)2
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diverge. The point positions on the curve relative to the diagonal help to interpret the 
forecasts, for example:

(1) Below the diagonal: the model has over-forecast; the probabilities are too large.
(2) Above the diagonal: the model has under-forecast; the probabilities are too small.

Statistical significance tests

As indicated by Witten et  al. [76], it is not adequate to demonstrate that one model 
accomplishes results in a way that is better than another, because of the different per-
formance measures or splitting techniques used. For complete performance evaluation, 
it would appear to be proper to actualize some some hypothesis testing to stress that the 
experimental differences in performance are statistically significant and not just due to 
random splitting influences. Selecting the right test for detailed experiments depends 
on factors such as the number of datasets and the number of classifiers to be contrasted.

According to Demšar [77], statistical tests can be parametric (e.g., paired t-test) and 
non-parametric (e.g., Wilcoxon, McNemar). However, the author recommended that 
non-parametric tests are desirable to parametric tests as the last can be conceptually 
unsuitable and statistically unsafe. Non-parametric tests may be more applicable and 
safer than parametric tests since they do not presume the normality of data or homo-
geneity of variance [77]. Accordingly, in this study, the McNemar test to compare the 
ranking performance of all the models measured across a unique dataset is adopted [78]. 
According to Kavzoglu [79], the McNemar test investigates the statistical significance of 
the differences in classifiers’ performances. The test is a Chi-square (χ2) test for goodness 
of fit, comparing the distribution of counts expected under the null hypothesis to the 
observed counts. It is applied to a 2 × 2 contingency table, the cells of which include the 
number of cases correctly and incorrectly classified by both models and the number of 
samples classified correctly by only one model.

The aim of the McNemar test is to check the null hypothesis, which says that neither 
of the two models performs better than the other. The alternative hypothesis asserts that 
the performance of the two models are not equal. The McNemar statistic is as illustrated 
in Eq. (11):

where nij indicates the number of cases misclassified by model i but classified correctly 
by model j , and nji indicates the number of cases misclassified by model j but not by 
model i.

The computed statistic is thought as a value from the χ2 distribution with 1 degree of 
freedom. Based on this assumption, the p-value is calculated. If this p-value is smaller 
than predefined significance level α, then we fail to reject the null hypothesis. Other-
wise, we reject the null hypothesis, and accept the alternative hypothesis. For example, 
if the value of test statistic is greater than 3.84, then (according to the χ2 table at 95% 
confidence interval) it can be stated that the two methods differ in their performances. 

(11)χ2 =

(∣

∣nij − nji
∣

∣− 1
)2

nij − nji
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In other words, the difference in performance between the methods i and j is said to be 
statistically significant [78, 79].

Results and discussion
In this section, the results of the proposed LSTM model are presented along with com-
parisons to the benchmark classifiers. The model is validated over the above-described 
dataset across five performance measure metrics. In addition, several tables and figures 
regarding the proposed model results and comparison to traditional models are pro-
vided and discussed. All the experiments for this study were performed using Python 
3.8 × 64 on a PC with an AMD 8-core Ryzen™ 7 3700X 3.6–4.4  GHz processor and 
32 GB RAM, running Microsoft Windows 10 operating system.

To outline the discrimination power of the Bidirectional LSTM model performance 
measures are calculated not only for all active customers, but for different subsets of 
them:

(1) Customers with one missed payment during the last 2 months are the group that 
generally have a low risk of default, but the recent missed payment is a reason to 
look at those in this group more closely.

(2) Customers with a missed payment during the last month is a subset of the first 
group. Whilst one missed payment can be made by chance, here there is a need to 
look at this group to distinguish riskier customers from other ones.

(3) Customers with two consecutive missed payments form a group in which most 
customers might have financial problems because it is unlikely to forget to pay dur-
ing more than 1 month.

(4) Customers with three consecutive missed payments are those on a verge of default. 
For this group, a fourth missed payment is equivalent to default, so a Bidirectional 
LSTM prediction of the fourth missed payment is a prediction of default.

As a next step, the model was compared with five classical classifiers: Gradient Boost-
ing, Bidirectional Neural Network, Logistic Regression, SVM, and Random Forest. 
Comparisons were made not only using the performance measures but also using the 
statistical McNemar test.

The LSTM model provides probability of missed payment for next month for each 
customer based on previous 6 months, and it does not use future data to predict past.

Bidirectional LSTM model results

To prove that the results obtained on the testing set are sound and to make the results of 
Bidirectional LSTM significant, different measures need to be evaluated, each of which 
reflect different aspects of the model performance:

(1) Accuracy is the simplest method of evaluating the model preciseness. It does not 
consider any misclassification loss and simply displays the proportion of correctly 
classified missed payments for the default score threshold, which is equal to 0.5.

(2) Specificity measures the proportion of missed payments that are correctly identi-
fied.



Page 18 of 27Ala’raj et al. J Big Data            (2021) 8:69 

(3) Specificity measures the proportion of payments made on time that are correctly 
identified.

(4) The balanced accuracy in binary and multiclass classification problems to deal with 
imbalanced datasets. It is defined as the average of recall obtained on each class. 
For binary classification problems, balanced accuracy is evaluated using Eq. (12).

(5) AUC tells us how the model will perform for different selected thresholds.
(6) Brier score reflects the discriminatory power of the model (i.e., how certain the 

model is about the customer’s predicted missed payment).
(7) KS reflects the maximum difference between the fraction of correctly classified cus-

tomers, those who missed a payment, and incorrectly classified customers, those 
who did not miss a payment. The value tells us that model correctly classifies not 
only the presence of a missed payment, but also absence of it.

(8) H-measure is an integral measure over all misclassification costs. A high H-meas-
ure value tells us that, regardless of actual cost of misclassification, the total loss 
cost of model is low.

As shown in Table 2, the correctness of the LSTM model prediction ability is shown in 
“Accuracy” column. Performance measures for the customers with three or more con-
secutive missed payments is much lower than for other groups. It could be explained by 
the fact, that some proportion of customers drastically change its behaviour in the risk 
of bankruptcy and trial. So, based on its past behaviour they should have fourth missed 
payment, but pressure from the bank forces them to pay. The table shows that that the 
model considers consumers with payment problems as those who are more prone to 
them in the future. The classifier accuracy is lower than for the transactional dataset, 
which can be explained by initial data pre-processing which might lead to information 
loss.

Sensitivity (ability of model of identifying missed payments) is around 40% for first 
two groups of customers rise to 90% for the last one. On other hand, specificity for all 
groups except the last one is more than 90%. It tells us that if model identifies customer 
as “low risk”, bank management should not worry about future payments from him. As 
mentioned earlier, the higher the AUC value, the better the classifier is capable of dis-
tinguishing between classes. The proposed model shows similar prediction ability on all 
subsets of active customers except the last one. For those except the last it is higher than 
77%, which proves good classifier separability. The lower the Brier score is, the better 
classifier performs. an increase can be seen in the Brier score for the customers with 
three missed payments. The higher the Kolmogorov–Smirnov chart statistics, the better 
the discriminative power of the model. As was mentioned before, for all subsets except 
the last one, this value is sufficiently high to prove good discriminative model ability.

As was mentioned before, the H-measure is a measure of the misclassification loss, 
and this depends on the relative proportion of objects belonging to each class. The influ-
ence of the different number of customers with missed payment fee can be seen from 
the table. But generally, the higher H-measure, the better the classifier is in terms of 

(12)Balanced accuracy =
Sensitivity+ Specificity

2
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performance over different misclassification costs. For all subsets of customers that are 
investigated, this value is good enough.

As it can be seen from Fig.  6, the AUC value for the Bidirectional LSTM model is 
high for all customers as well as for specific risk groups except the last one (with three 
consecutive missed payments), despite the fact that proportion of missed payments for 
all customers and for customers with missed payment differs greatly (see Table 2). The 
shape of the ROC curve is round for all customer groups. The highest AUC is for the 
customers with two consecutive missed payments. Bank can use this group to early put 
pressure on such customers and prevent third missed payment.

Figure  7 represents the behaviour score distribution for different customer groups 
along with the observed behaviour. The splitting process into ten buckets along the 
x-axis was based on the customer missed payment prediction. Thus, it is expected that 
the number of customers without a missed payment will decrease along the axis, while 

Fig. 6 ROC and AUC values for different customer groups

Fig. 7 Distribution of scores for different customer groups
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the number of customers with missed payment will increase, and the histogram reflects 
this tendency. So, whilst there are, of course, misclassified clients in every group, their 
percentage is significantly less than correctly classified. Thus, the proposed model can be 
considered as reliable.

Figure  8 compares how well the probabilistic predictions of Bidirectional LSTM for 
the different client groups are calibrated using 10 bins. The calibration curve for all cli-
ents shows that it is the best calibrated among the others. It fits the line almost perfectly, 
which means that missed payment scores can be considered as probabilities. The only 
group with the curve far from the central line is customers with three or more consecu-
tive missed payments. This curve has small over-forecast for low scores, but in general it 
also lies close enough to other curves.

Benchmark model results and comparison

To verify the strength and discriminative power of proposed model, its performance 
was compared to five benchmark models, namely GB, BNN, RF, SVM and LOGR. As 
all benchmark classifiers do not accept temporal input, all temporal data was flattened 

Fig. 8 Calibration curves for different customer groups

Table 3 Comparison of performance measures for all classifiers for the non-transactional dataset

Classifier Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

Balanced 
accuracy 
(%)

AUC (%) Brier score 
(%)

KS H‑measure

GB 82.07 36.47 95.02 65.75 78.03 13.43 0.43 0.29

BNN 81.78 37.07 94.48 65.77 77.53 13.58 0.42 0.28

SVM 81.46 28.56 96.49 62.52 69.57 14.33 0.37 0.23

RF 80.18 17.01 98.12 57.57 76.54 14.38 0.41 0.27

LOGR 80.88 22.56 97.44 60 71.82 14.55 0.37 0.24

Bidirec-
tional 
LSTM

82.4 37.51 95.15 66.33 78.47 13.28 0.43 0.3
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before feeding into each classifier. The comparison results are show in Table 3 which 
represents the performance indicator measures for the different classifiers on the 
same input data.

On the first sight, the correctness of the predictions is similar and high enough for 
all the models. The closest by performance model to proposed bidirectional LSTM 
model is the GB model. The reason why performance of all classifiers is so close to 
each other lies in lower dimensionality of the input data. For each customer there 
is only 23 features instead of hundreds of transactions in previous data set. So, sim-
ple classifiers have less problems in extraction useful information from feature space. 
Threshold changes can improve classifier accuracy; maximum accuracy can be 
achieved by applying the optimal threshold. So, as it can be seen, there is a slight 
increase for all of them when applying the optimal threshold, but the highest value 
still belongs to proposed model. It is obvious that bidirectional LSTM and GB have 
similar KS value, which is slightly higher than corresponding value for other classi-
fiers. Similar pattern can be observed with H-measure. Brier score for bidirectional 
LSTM model is the lowest, which proves the quality of this model.

Proposed model has the highest sensitivity among all other models. Its specificity 
is equal to 95%. Despite some other classifiers like Random Forest, SVM and LOGR 
have higher specificity, their sensitivity is much lower. That is why balanced accuracy 
for Bidirectional LSTM classifier is the highest among other classifiers. Therefore, 
from the Fig.  9 it can be conducted that performance of Bidirectional LSTM is the 
best among all considered classifiers. The worst AUC value is from the SVM classifier 
(especially in the second part of the plot), which means that it is acceptable to use it 
to increase the True Positive Rate value.

For such complex problem even half of the percent of increase in accuracy or AUC 
of classifier leads to significant loss decrease for bank due to missed payments and 
bankruptcies of customers. That’s why we think that results are significant.

Fig. 9 ROC and AUC values for all classifiers
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Figure 10 compares how well the probabilistic predictions of the different classifiers 
are calibrated, using a calibration curve with ten bins. The plot shows that there are 
two perfectly calibrated classifiers: Bidirectional LSTM and Bagging NN. That is why 
scores of this classifier can be used as probabilities. The worst curves have RF and 
LOGR classifiers. To make sure that the difference in performance measures are sta-
tistically significant and are not caused by chance, the McNemar test is used.

Table 4 represents the results of applying the McNemar test for pairwise compari-
son of the LSTM model and the other classifiers. During the application of McNe-
mar test the same value of significance threshold is used for the transactional data 
set α = 0.05. According to the results above, every classifier pair shows a statistically 
significant performance difference. The closest to Bidirectional LSTM classifier is GB, 
which has p-value equal to 3.62× 10−5 . Current results of McNemar test combined 
with the previously mentioned performance indicator measures prove that all the 
traditional classifiers show worse prediction ability in contrast with the Bidirectional 
LSTM model.

As a last step, we provide auxiliary table with standard deviations of the most impor-
tant measures across all folds was measured. In the last column we provide training time 
of each model.

Fig. 10 Calibration curves for all classifiers

Table 4 McNemar test for Bidirectional LSTM pairwise comparison with other classifiers

p‑value Statistic

GB 3.62× 10
−5 17

BNN 8.01× 10
−11 42

SVM 2.77× 10
−18 76

RF 1.02× 10
−47 211

LOGR 1.15× 10
−29 128
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As we can see from Table 5, LSTM neural network has the lowest values for accuracy 
and AUC, and third lowest for Brier Score. Despite LSTM is more complex model than 
others, it takes comparable time for training and because it utilizes GPU capabilities of 
testing PC, which makes training process much faster comparing to CPU-driven models. 

The LSTM model can deal with real time data in addition, evaluation of LSTM model 
is very fast (seconds of computational time).

Conclusion
The paper emphasizes the importance of credit card scoring for assessing and decreas-
ing bank losses. By conducting a detailed comparison procedure it was proven that the 
LSTM model is the one that gives the highest accuracy in predicting late fees and mis-
payments, and that is why it is the best for banks’ interests. In this paper, Bidirectional 
LSTM model was presented and validated on non-transactional open dataset.

To prove the effectiveness of the proposed model, it was compared to five other tra-
ditional classification models. The following performance measures were used for the 
comparison, specifically: accuracy, AUC, H-measure, Kolmogorov–Smirnov test, Brier 
score, calibration curves, and the McNemar test. On Taiwanese bank credit card dataset, 
it has 82.4% accuracy, whilst the best of other models has 81.8%. It seems not so much, 
however in banking business even 1% of difference in bad credit card behaviour predic-
tion makes huge difference in terms of bank losses.

All measures prove outperformance by the Bidirectional LSTM model. Therefore, it 
can be concluded that Bidirectional LSTM performs statistically better than other clas-
sifiers. Its calibration curve shows that the output of the model can be considered as the 
probability of default without any additional improvements.

Banks can use outcome of the model not only as a binary output (whether customer 
will have missed payment in each next month), but also can make use of scores of each 
client.

LSTM gives the probability of user to be insolvent in next month. It is up to man-
agement to set up thresholds above which bank moves this user into group of high or 
medium risk with corresponding consequences to the user (decreasing credit card limit, 
blocking card etc.).

In other words, the scores provided by LSTM model can be used to group custom-
ers into different risk groups. Thus, bank can use different security and service level 
for each of these risk groups. Moreover, such scores can be used as missing payment 

Table 5 Comparison of performance measures standard deviation

Classifier Accuracy STD (%) AUC STD (%) Brier score STD Time of 
training 
in s

GB 0.41 0.52 0.25 7.4

BNN 0.47 0.42 0.22 306

SVM 0.46 1.03 0.29 84

RF 0.47 0.47 0.18 8.5

LOGR 0.41 0.71 0.19 0.2

Bidirectional LSTM 0.37 0.41 0.2 127
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probabilities, so bank management can calculate potential losses of each customer and 
even credit portfolios. This will allow management to efficiently assess financial risks 
and make bold financial decisions.

In future work, the model will be tested on other datasets that are transactional and 
non-transactional in nature to prove its efficiency. Moreover, the proposed model will be 
extended to customer credit scoring for consumer loans.
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