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Abstract

Keeping an eye on pedestrians as they navigate through a scene, surveillance cameras are
everywhere. With this context, our paper addresses the problem of pedestrian attribute rec-
ognition (PAR). This problem entails recognizing attributes such as age-group, clothing
style, accessories, footwear style etc. This multi-label problem is extremely challenging
even for human observers and has rightly garnered attention from the computer vision com-
munity. Towards a solution to this problem, in this paper, we adopt trainable Gabor wavelets
(TGW) layers and cascade them with a convolution neural network (CNN). Whereas other
researchers are using fixed Gabor filters with the CNN, the proposed layers are learnable
and adapt to the dataset for a better recognition. We propose a two-branch neural network
where mixed layers, a combination of the TGW and convolutional layers, make up the build-
ing block of our deep neural network. We test our method on twoo challenging publicly avail-
able datasets and compare our results with state of the art.

Introduction

Pedestrian attribute recognition (PAR) is one of the active areas of research in computer
vision. PAR problem deals with identifying a number of visual attributes from a pedestrian
image data. The identified attributes can belong to different classes, e.g. clothing style, foot-
wear, gender, age group etc. A successful outcome of this research can be applied to various
domains. It can be employed for motion analysis [1], where it can be used to identify crowd
behavior attributes. Another important area of application is image-based surveillance or
visual features extractions for person identification [2, 3]. Other applications include video
analytics for business intelligence, or searching a criminal database for suspects using the iden-
tified visual attributes. One of the main factors that makes this problem very difficult is the
varying lighting conditions. Attributes of the same type of clothing can appear completely dif-
ferent under dynamic lighting conditions. For example, distinguishing black color from a dark
blue colors is very difficult in certain weather conditions. These colors will appear very similar
to the camera in a darker environment. Occlusion also complicates the visual attribution iden-
tification and recognition. These occlusions can be either complete or partial and can result
from camera orientation or from object self occlusions. Thus if a person wears a hat, it might
appear partially in an image, or its shape might be completely different in another image.
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Similarly, the orientation of a person or a camera can hide a backpack, for example, partially
or completely from a particular view. These examples clearly show that the setup of an acquisi-
tion environment for image or video capture results in a high intra-class variations for the
same visual attributes.

The distance of an object from the camera affects how that object appears in an image. If
the object is very far from the camera, or if the image resolution is very low, any visual attri-
bute, e.g. dress, hat, backpack, scarf, shoes etc. will only occupy a few pixels in the image. The
combination of low image resolution, in addition to the self-occlusions or view-oriented occlu-
sions, makes visual attribute identification a very challenging problem. Many of these issues
can be seen in the most widely used pedestrian datasets. Fig 1 shows some of the samples from
the PEdesTrian Attribute (PETA) [4] and A Richly Annotated Pedestrian (RAP) [5] datasets.
PETA is the largest benchmark dataset. It comprises of 19000 images of different resolution
that cover more than 60 attributes. The dataset is acquired from real-world surveillance camera
systems and includes images of 8, 705 persons. It is a very challenging dataset because of the
acquisition setup and scene settings. As can be seen in Fig 1, the quality of images is very low
as well. This is due to a number of factors: images are very low resolution, acquisition problem
results in a significant blur, and many of the attributes are hidden due to severe occlusions.
RAP dataset comprises of 41 thousand images covering 72 attributes and is acquired from
multiple viewpoints. The dataset shows a large variation in the attributes due to pedestrian
appearance, viewpoints and severe occlusions. After analyzing these datasets, it is observed
that visual attributes identification from these images is a difficult task due to the very low
quality of the images. Many of the attributes are not completely visible due to occlusions.
Moreover, due to the fast motion or acquisition problems, some of the objects appear quite
blurred thus making it a very challenging problem.

Visual attribute recognition problem can be solved in different ways, but the predominant
solutions involve a two step process. In the first step, a feature extraction algorithm is
employed to find a feature representation of the attributes. A large number of feature extrac-
tion solutions are discussed in the computer vision literature. Most of these techniques require
a very expert domain knowledge, and also needs a very high level of fine tuning for an accurate
representation of visual attributes. For feature representation, methods like SIFT [6], HoG [7]
or Haar-like features [8] have been employed in the field rigorously over the past many years.
Feature extraction is followed by the attributes classification step. For classification, Support
Vector Machines (SVM) [4] has been the most widely used technique in the last decade.

In recent years, the convolutional neural networks (CNNs) have almost completely replaced
SVMs for classification tasks. Compared to earlier attribute learning or image classification
methods, CNNs are more effective and robust. In this work, for PAR, we introduce the use of
the Gabor wavelets, which have been used in the computer vision literature extensively over
the last few decades. However, there have been only few works that use the Gabor wavelets in
conjunction with the CNNs. For majority of the works that do employ these wavelets, the fil-
ters are pre-constructed and then fed to the convolutional network. However, we adopt an
approach where the convolutional network is employed to learn the wavelet parameters along
with learning the dataset. These Trainable Gabor wavelets (TGW) [9] make up for the back-
bone of our network. Each TGW accepts a single channel input, with a multi-channel output,
and learns the best parameters to generate a set of Gabor filters. TGW layer containsa 1 x 1
convolution layer that uses the steerability of Gabor wavelets to address orientation issues. We
also use a regular convolutional layer to extract features from the input as well. These outputs
from TGW and convolution layers are stacked together, refer to as mixed-layer, and make up
the building blocks of our network. The proposed network, shown in Fig 3, takes a color image
as input and passes it through two branches of the network. Both the top and the bottom
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Fig 1. (a) PETA [4] dataset Samples. (b) RAP [5] dataset samples.
https://doi.org/10.1371/journal.pone.0251667.g001
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branch contains equal number of mixed-layers. The set of parameters for each mixed-layer are
different. Each branch consists of three mixed-layers. The output of these layers are stacked
and passed through a series of convolution layers. A fully connected (fc) layer connects to the
final network output layer. The proposed network architecture is simple and is trainable with a
standard gradient-decent method.

Our main contributions are:

o We for the first time introduce the use of trainable Gabor wavelets to the problem of pedes-
trian attribute recognition.

o We propose a novel two-branch network that, while learning the Gabor wavelets parameters,
combines the wavelet features with the regular convolution layers.

o The proposed method is demonstrated to have better recognition results than state of the art
on two of the most challenging public datasets.

The remainder of the paper is organized as follows: a detailed discussion on the state of the
art is presented in the Related Work section, and the section Main Approach presents the
main content of our proposed method. We report on the various datasets and the associated
results are mentioned in the section Evaluation, before our final remarks in the Conclusion.

Related work

In this section we will discuss the works that are related most closely to our method, a detailed
survey can be found here [10]. PETA [4] is one of the most widely used pedestrian datasets.
While introducing the dataset, the Deng et al. [4] used the luminance channel and applied
Ensemble of Localized Features (ELF) and Gabor and Schmid filter on it. To address the class
imbalance problem they also applied ikSVMs [11] on each attribute separately. They also pro-
posed using the Markov Random Field (MRF) to exploit the context from neighboring images.
In their representation, each image is a node and the link between two nodes is determined by
the similarity between the images. RAP dataset [5] is acquired from multiple viewpoints that
introduces significant variations for the same attributes along with severe occlusions. They
employed two CNN models based on Caffe framework [12] to analyze the impact of the varia-
tions introduced by different viewpoints and occlusions on the overall classification of the
attributes. They trained SVMs in addition to the adopting of ELF. Additionally, they divided
the image into multiple blocks (three in their case) to employ a part-based classification
scheme. For their work, the parts were comprised of: upper body (torso), lower body, and
head and shoulders. Joo et al. [13] proposed another approach that also employed part-based
recognition. In their work, they first crated Histogram of Oriented Gradient (HoG) features
from an image subdivided into multiple overlapping regions. For the attributes classification,
they employed a Poselet-based approach [14]. Zhao et al. [15] proposed a solution that
employed a Recurrent Neural Network (RNN). The authors proposed an end-to-end Recur-
rent Convolutional (RC) and Recurrent Attention (RA) models. RC model mines the correla-
tions among different attribute groups, while the intra-group attention correlation and intra
group spatial locality is used by the RA model to improve the performance and robustness of
pedestrian attribute recognition. However, their network has a deep architecture, hence the
number of parameters is quite large. In another part-based approach, Zhu et al. [16] proposed
a CNN-based solution where the human body is divided into 15 parts, and a CNN is trained
separately for each part. The contribution of each attribute determines the weight of the corre-
sponding CNN. Zhou et al. [17] first extracted mid-level features from detection layers using
GoogLeNet. They localized the pedestrian attributes by fusing and clustering the activation
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maps of the detection layers. Only the image labels are used to train the detected layers in
order to learn the relationship between the mid-level features and the pedestrian attributes.
For training a max-pooling based weakly-supervised object detection technique is employed.
Chen et al. [18] proposed a part-based network that combined LOMO features [19] with CNN
extracted features. They showed that the Scale-Invariant Local Ternary Patterns and HSV his-
tograms based LOMO features are illumination-invariant texture and color descriptors. Li
et al. [20] used pedestrian body structure knowledge and proposed a pose-guided model. In
the first step, the model computes the transformation parameters to estimate the pose from the
image. Based on the pose information it then localizes the body parts. Final attribute recogni-
tion is estimated by fusing multiple features. Another parts localization method is proposed by
Liu et al. [21]. They proposed a Localization Guide Network (LGNet) that uses a CNN model
based on Inception-v2 [22] for feature extraction. Afterward, a global average pooling layer
(GAP) is adopted to extract global features. The fusion of global and local features is used to
obtain the pedestrian attributes classification. Li et al. [23] presented a visual semantic graph
based approach that used ResNet-50 to for the pedestrian images feature extraction. Junejo et.
al. [24] also presented a multi-branch approach using different color space input. The pro-
posed network contains a large number of parameters because it had more than fifty layers.

Sarfraz et al. [25] proposed an end-to-end CNN-based network (VeSPA). This network had
four parts, where each part corresponds to a specific pose category. Pose-specific attributes of
each category are learned by each of these network parts. Their work demonstrated that coarse
body pose information greatly influences the pedestrian attribute recognition. They extended
their work in [26] and added a ternary view classifier in a modified approach that employed a
global weighting solution. In this work, the global weighting solution for feature maps was
employed before the final embedding. P-Net [27] employs a part-based approach. Based on
GoogLeNet, the method guides the refined convolutional feature maps to capture different
location information for the attributes related to different body parts. A joint person re-identi-
fication and attribute recognition approach (HydraPlus-Net) is presented by Liu et al. [28].
HydraPlus-Net is an Inception-based network and aggregates feature layers from multi-direc-
tional attention modules for the final feature representation. Sarafianos et al. [29] presented a
multi-branch network that employed a simple weight scheme to address the class imbalance
problem. They extracted visual attention masks to guide the network to crucial body parts.
The masks are then fused at different scales to obtain a better feature representation. Another
end-to-end method for person attribute recognition that uses Class Activation Map (CAM)
network [30] to refine attention heat map is proposed by Guo et al. [31]. The heat map identi-
fies the areas of different image attributes. They use CAM network to refine the attention heat
map for an improved recognition. A Harmonious Attention CNN (HA-CNN) based joint
learning approach for person re-identification is presented in [32]. They used HA-CNN for
the joint learning of hard regional attention and soft pixel attention. Feature representation is
obtained by this simultaneous optimization. A Multi-Level Factorization Net (MLFN) that fac-
tors the visual appearance of a person into latent discriminative factors is proposed by [33].
The factorization is done without manual annotation at multiple semantic levels. A Transfer-
able Joint Attribute-Identity Deep Learning (T]J-AIDL) model that allows for a simultaneous
learning of an identity discriminative and attribute-semantic feature representation is pro-
posed by [34]. Si et al. [35] proposed a Dual ATtention Matching network (DuATM), which is
a joint learning end-to-end person re-identification framework. Their method simultaneously
performs context-aware feature sequences learning and attentive sequence comparison in a
joint learning mechanism for person re-identification.

A Generative Adversarial Network based pose-normalized person re-identification frame-
work is presented in [36]. They learn pose invariant deep person re-identification features
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using synthesized images. A deep CNN based method to learn partial descriptive features for
efficient person feature representation is presented in [37]. They employed a pyramid spatial
pooling module and reported an improvement of 2.71% on the PETA dataset over [25]. [38]
improved over [25] by employing a deeper network based on a context sensitive framework.
The proposed network improved generalization and classification accuracy by creating a
richer feature sets using deeper residual networks (ResNet) and achieved the best in class
results on attribute recognition datasets. [39] presented a visual semantic graph reasoning
framework that modeled spatial and attribute relationships using two types of graphs. For rea-
soning, they employed Graph Convolutional Network that encapsulates the spatial relation-
ship between local regions of the image and the potential semantic relationship of the
attributes. [40] used Recurrent Attention (RA) and Recurrent Convolutional (RC) to present a
dual model approach for pedestrian recognition. The RC model employed a Convolutional-
LSTM model to establish the correlations between the different groups of attributes. To
improve the overall robustness, the RA model used both local attention correlation and global
spatial locality.

Using Gabor wavelets with CNNs have received a tremendous attention as well [9, 41-43].
[41] use a Gabor filter bank as the first layer of a CNN and the bank gets updated using the
standard back-propagation network leaning phase. [42] also use Gabor filters in the first layer
of the network. While introducing lateral inhibition to enhance network performance, they
use a n-fold cross validation to search for the best parameters. Authors in [43] introduce a
Gabor Neural Network (GNN) where Gabor filters are incorporated into the convolution filter
as a modulation process, in a spirit similar to the above mentioned works. In contrast to the
above works where fixed Gabor filters are used [9], introduce a trainable Gabor wavelets
(TGW) layer. The authors present a method where the hyperparameters of the wavelets are
learned from the input and a novel 1 x 1 convolution layers are employed to create steerable
filters. In this paper, we propose using this TGW layer with our proposed CNN for a novel
solution to the problem of PAR. We test on two challenging datasets and show a considerable
improvement over state of the art.

Main approach

In this section, we start with the description of Gabor wavelets layer before describing the
architecture of our network in general.

Gabor wavelets layer

We make use of the Trainable Gabor wavelets (TGW) layer as proposed by Kwon et. al. [9]
(see. Fig 2). A neural network is used to generate the hyperparameters for the Gabor wavelets
and the generated Gabor filters are applied to filter the inputs. In order to capture the essential
input features, a 1 x 1 convolution layer is added to the TGW layer to capture features at differ-
ent orientations.

Hyperparameter estimation. The 2D Gabor wavelets can be described as:

Glx,y) = exp (-M) X cos (2%)() (1)

202

where y represents aspect ratio, A represents wavelength of the sinusoidal, o represents width
or the standard deviation, X = xcos(0) + ysin(6), Y = —xsin(60) + ycos(0), and 0 is an angle in
the range [0, 7]. Thus in order to specify a continuous Gabor wavelets, we need to determine
the set of hyperparameters {y, 6, A, o}. In order to convert the continuous filter to a discrete
one, a sampling grids need to be defined, which is largely linked to 0. A new parameter is thus
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Fig 2. Trainable Gabor Wavelets (TGW) layer [9]: Inputs and outputs are multichannel. A neural network is used to generate Gabor wavelets
hyperparameters. These generated Gabor filters are then applied to the input. 1 x 1 convolution layer is added to enable the steerability of the Gabor
wavelets.

https://doi.org/10.1371/journal.pone.0251667.9002

introduced to compute the discrete filter:

Glom, n] = gl v) = (% qaur c) @

where m and n are in the interval — (], |{| + 1, ..., |{], and by just varying | (|, variety of sam-
pling grids can be achieved [9]. For a loss function L, we need to compute ?)—i in order to train

for the wavelets layer that is cascaded with our CNN. In order to train for the {, what remains

is to compute %’g’"], as c')G([?rﬁ,n] is handled automatically by the deep learning libraries:
9Gm,n] _ og(u,v) du n 9g(u,v) Ov 3)
a  ou ov I

_o%guvu  Og(uv)v

ou ( ov 4)

OG[m,n] 9G[m,n] OG[m,n]
do > Oy > O

and a similar parameterization can be adopted for the parameters o, y and A.
A very significant parameter for the Gabor wavelets is the orientation (6) parameter. These
values are mostly chosen empirically. This parameter is also made trainable to better design

as i |{] = 0. The remaining parameters can be computed in a similar way

orientations for the task at hand. To use the steering property, where a linear combination of
finite set of responses can be used to represent convolution at any orientation, a 1 x 1 convolu-
tion layer, working as a linear combination layer, is added to the output of the generated filters.
For this layer, ten equally spaced fixed orientations are selected, working as basis filters: 9°,
27°,45°,63°,81°,99°,117°,135°,153°, and 171" [9].

Attribute recognition network

The above mentioned TGW layer can be thought of as a feature extracting layer. In addition to
this, we also employ it as the key building block of our network. Thus, in addition to function-
ing as the lowest layer in the network, it also aids the network in learning high level features.
The proposed network is shown in Fig 3. A color input image is first converted to a gray-
scale image. This image is then passed on to the two branches of the network. As can be seen
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Table 1. Parameters used for the TGW layers.

m:l—3 x conv layers
’]—-Lrew, BN, Dropput
output

Fig 3. Our approach: The input is passes through two branches in the network. For each branch, the network contains 3 mixed-layers (combination
of TGW and 3Conv layer). The output of each branch is followed by three convolutional layers and a fc layer. Size of the last layer of the network
matches the number of attributes of the dataset. Parameters of the network are mentioned in Table 1.

https://doi.org/10.1371/journal.pone.0251667.9003

in the figure, each branch consists of 3 mixed-layers. As mentioned above, the mixed-layer is
defined as a combination of TGW layer and a 3 x 3 convolution layer. The input to this layer
starts with a 1-channel conversion, i.e. a multi-channel input is converted to a 1-channel,
which is a summation over the channels operation for all layers except the first layer where we
perform a simple color-to-gray image conversion. The top branch (depicted with blue in the
figure) and the bottom branch (depicted with orange in the figure) differ only in their parame-
ters, as given in Table 1. The difference in these parameters is clearly visible. The value for (A,,
0 ;) in the top branch are larger than the corresponding values in the bottom branch. This
intuitively translates into the bottom branch having a smaller receptive field. Thus, smaller or
finer features are extracted from the bottom branch whereas the top branch focuses on larger
image features.

Each mixed-layer (1 to 3) contains 64 channels from the TGW layer and 64 channels from
a 3 x 3 convolution layer (denoted as 3Conv). Thus depth of each mixed-layer output is 128
(concatenation of TGW and 3Conv layer). The network thus contains blocks of layers stacked
together. For each 3Conv layer, as the name suggest, the kernel size is of size 3 x 3. Convolu-
tion is followed by LeakyReLU activation function, max-pool layer (size 2 x 2), and Batch
Normalization (BN) layer. Size of input to each of these stacked layers is, respectively:
227 x 227,113 x 113, and 56 x 56. As shown in Fig 3, output from the two branches is stacked
and follows through three convolutional layers. For each of these layers: kernel size 3 x 3,
LeakyReLU activation function, BN layer, a max-pool layer of stride (size 2 x 2).

In order to reduce the number of parameters, the output from the convolution layers are
fed into a single fully connected layer (fc1) of size 512. The fcl layer uses LeakyReLU as the

Layer Yo Ao 0, lo TGW Channels Conv Channels
1 Top 0.3 6.8 54 6 64 64
2 Top 0.3 5.6 4.5 5 64 64
3 Top 0.3 4.6 3.6 4 64 64
4 Bottom 0.3 35 2.8 3 64 64
5 Bottom 0.3 2.5 2.0 2 64 64
6 Bottom 0.3 2.5 2.0 2 64 64

https://doi.org/10.1371/journal.pone.0251667.t001
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Table 2. Parameters used for three convolution layers.

Layer input channels output channels kernel size padding
layer 1 256 256 3x3 1
layer 2 256 256 3x3 1
layer 3 256 256 3x3 1

https://doi.org/10.1371/journal.pone.0251667.t1002

activation function, followed by a dropout layer (p = 0.5), to minimize the number of network
parameters. The final output layer size matches the number of dataset attributes. Table 2
described these convolutional layers.

We have presented a method proposes using Gabor wavelets merged with a deep neural
network. Whereas other methods construct Gabor filters manually, our network learns the
wavelets parameters, suitable to the dataset. Generated Gabor filters are stacked with convolu-
tion layers to build the overall network. As we shall show next, the proposed network is effi-
cient and learns the dataset structure well to perform at par with state of the art.

Evaluation

Following the channel conversion, the grayscale image is passed through the two branches of
the network. Each branch has three mixed-layers in a sequence. Each of the mixed-layer con-
tains an equal number of channels from TGW and 3Conv layer, i.e. 64 and 64. The two
branches are stacked together and then three convolution layers are used before a single fully
connected layer. LeakyReLU is used as the activation function for all our layers. The output
layer uses sigmoid as the activation function.

In order to evaluate our method quantitatively, we compute various measures and report
the results below. Although mean accuracy has been widely used in the attribute recognition
literature, it however treats each attribute independent of the other attributes. This might not
necessarily be the case and an inter-attribute correlation might exist. Therefore, researchers
also report example-based evaluations, namely accuracy (Acc), precision (Prec), recall (Rec),
and F1 score (F1) [5].

Dataset

RAP and PETA are the most widely used datasets for the problem of pattern attribute recogni-
tion. Collected from real-time surveillance cameras, the PETA dataset contains 19, 000 images

collected from 10 publicly available datasets. The resolution of the images ranges from 17 x 39

to 169 x 365. Collected from a multi-camera setup of around 26 cameras, the RAP dataset con-
tains 41, 585 pedestrian samples. Each attribute is annotated independently and the size of the

images range from 36 x 92 to 344 x 554.

Most of the previous works [20, 25] report results on the PETA dataset using only 35 attri-
butes. Similarly, for the RAP dataset, results are reported on 51 datasets. In order to make a
fair comparison, we adopt the same scheme and test/train on the same attributes. Similarly, for
a fair comparison, experiments are conducted on 5 random splits: we allocate 9, 500 samples
for training, 1, 900 samples for validation, 7, 600 samples for testing on the PETA dataset. For
the RAP dataset, we split it randomly into 33, 268 training images and 8, 317 test images [25].
We adopted the weighted-cross entropy loss function [20] in order to mitigate the class imbal-
ance problem. Similarly, following other researchers, images are resized to an image resolution
of 144 x 48.
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Pre-processing. Before continuing to the next step, we perform mean subtraction: That
is, we compute the mean for all images (for each color spaces) and this value is then subtracted
from image data. Intuitively for each dimension, this step is equal to centering the data around
its origin. Next step involves normalization: we compute the standard deviation separately for
each color channel and image data is divided by this value.

Setup

For deep learning, we adopted the KERAS [44] library, which is based on the TensorFlow
backend. All experiments were performed on a cluster node with 2 x Intel Xeon E5 CPU,
128GB Registered ECC DDR4 RAM, 32TB SAS Hard drive storage, and 8 x NVIDIA Tesla
K80 GPUs.

Implementation details

We train the network for 50 epochs. LeakyReLU was used as the activation function for all
layers of the network. We used Adam as the update optimizer with parameters: learning
rate = le™*, 8, = 0.9 and S, = 0.999.

To prevent model over-fitting, we added the dropout layer to the fc layer. We adopt weight
decay by a factor of 0.1 after 15 epochs. The batch size was set to be 8. All weights in the net-
work are initialized using He Normal initialization.

For the TGW layers with a steering block, we use the scheme suggested by [45]: we fix the
parameters {y, o, A} as shown in Table 1 while training for {. This setup yields the best results
in our experiments.

Results

We evaluate the effectiveness of the proposed method on both PETA and RAP datasets.
Table 3 shows a comparison of the proposed method with six current state of the art methods.
For the PETA dataset, Acc obtained from our method is 80.1%. This is higher than all the
other methods that we compare with. The obtained results for the other measures (Pre, Rec
and F1) is 84.77%, 80.01%, and 81.79% respectively. Class-wise accuracy chart for the PETA
dataset is shown in Fig 4. Interestingly, the lowest accuracy is that for the class upperBody-
Other. Considering the image resolutions in the dataset, this is indeed a very difficult class to
accurately measure. On the other hand, the highest accuracy is that of the classes upperBo-
dyThinStripes and upperBodyVNeck.

For the RAP dataset, similar to the PETA dataset, the obtained results are exceedingly
encouraging. The obtained accuracy is 91.5%, while we obtained 92.59% 91.6%, and 91.9% for

Table 3. Quantitative results (%) on PETA and RAP datasets. Results are compared with the other benchmark methods. As can be seen, we have comparable results,
with considerable improved accuracy for both the datasets.

Acc
Chen et. al. [20] 75.07
Liet. al. [5] -
Sudowe et. al. [46] 73.66
Liu et. al. [17] 74.62
Sarfaraz et. al. [25] 77.73
Liet. al. [28] 76.13
ours 80.1

https://doi.org/10.1371/journal.pone.0251667.t003

PETA [4] RAP [5]

Prec Rec F1 Acc Prec Rec F1
83.68 83.14 83.41 62.02 74.92 76.21 75.56

- - - 63.67 76.53 77.47 77.00
84.06 81.26 82.64 62.61 80.12 72.26 75.98
82.66 85.16 83.40 53.30 60.82 78.80 68.65
86.18 84.81 85.49 67.35 79.51 79.67 79.59
84.92 83.24 84.07 65.39 77.33 78.79 78.05
84.77 80.1 81.79 91.5 92.59 91.6 91.9
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Fig 4. Class-wise accuracy—PETA dataset: The figure shows the obtained class-wise accuracy. The highest accuracy is for the
class upperBodyThinStripes. The lowest accuracy is for the class upperBodyOther.

https://doi.org/10.1371/journal.pone.0251667.9g004

the remaining measure precision, recall, and F1-score. The obtained results are a considerable
improvement over state of the art. One significant reason for this difference is primarily the
large size of the RAP dataset. For the RAP dataset, class-wise accuracy is shown in the Fig 5.
The class BaldHead is recognized with a highest accuracy score while the two class that had a
low score were that of Age17-30, Age31-45. These two classes, naturally, are very diffi-
cult to judge, even for experience human observers. Other low performing classes are:
Jacket, OtherAttachments.

The proposed method makes a novel use of Gabor wavelets layers. Instead of manually con-
structing Gabor filters, TGW layers are trainable and are able to correctly estimate model
parameters. The paper proposes a two branch network. For each branch, we train three
mixed-layers: combination of TGW and 3Conv layers. The output of these branches are
stacked and then followed by a fc layer before the final output layer. We have obtained very

Class-wise Accuracy: RAP Dataset
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Fig 5. Class-wise accuracy—RAP dataset: The lowest accuracy is that of the classes: Age17-30, Age31-45. The highest accuracy is for the class

BaldHead.

https://doi.org/10.1371/journal.pone.0251667.9005
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encouraging results for the key measures. The method is novel and unique in the sense that it
does not resort to data augmentation or part-based computations, as employed by [5]. We also
do not have to compute pose estimation [20], or construct any hand-crafted features [18]. Our
results are an improvement over state of the art and clearly justifies the use of Gabor wavelets
layers.

Conclusion

The works focuses on the problem of Pedestrian Attribute Recognition (PAR). As a novelty,
we are introducing trainable Gabor wavelets (TGW) layer to the problem of pedestrian attri-
bute recognition that are cascaded with convolutional layers for an effective learning. The pro-
posed network is two branched where each branch contains three mixed-layers. These mixed-
layers are the building blocks of our network; they contain stacked layers from TGW and con-
volution layers. We have extensively tested the proposed method on the most challenging pub-
lic datasets and have presented encouraging results. Specifically, we have tested on the PETA
and the RAP datasets and demonstrate results (F1-score of 81.79% on PETA and 91.9% on
RAP dataset) that are a magnitude improvement over the state of the art. For future work, we
intend to further investigate Gabor wavelets for the PAR problem with different network
architectures in addition to incorporating 3DCNNss in the proposed architecture.
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