
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

1-1-2021

Variational Autoencoders and Wasserstein Generative Adversarial Variational Autoencoders and Wasserstein Generative Adversarial

Networks for Improving the Anti-Money Laundering Process Networks for Improving the Anti-Money Laundering Process

ZhiYuan Chen
University of Nottingham Malaysia

Waleed Soliman
University of Nottingham Malaysia

Amril Nazir
Zayed University

Mohammad Shorfuzzaman
Taif University

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Chen, ZhiYuan; Soliman, Waleed; Nazir, Amril; and Shorfuzzaman, Mohammad, "Variational Autoencoders
and Wasserstein Generative Adversarial Networks for Improving the Anti-Money Laundering Process"
(2021). All Works. 4305.
https://zuscholars.zu.ac.ae/works/4305

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact
Yrjo.Lappalainen@zu.ac.ae, nikesh.narayanan@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/4305?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Yrjo.Lappalainen@zu.ac.ae,%20nikesh.narayanan@zu.ac.ae

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Variational Autoencoders and Wasserstein Generative
Adversarial Networks for Improving the Anti-Money Laundering
Process

ZhiYuan Chen1, Member, IEEE, Waleed Soliman1, Amril Nazir2, and Mohammad
Shorfuzzaman3, Member, IEEE
1School of Computer Science, University of Nottingham Malaysia, Malaysia.
2Department of Information Systems, College of Technological Innovation, Abu Dhabi Campus, Zayed University, Abu Dhabi, United Arab Emirates
3Department of Computer Science, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia

Corresponding author: ZhiYuan Chen (e-mail: Zhiyuan.Chen@nottingham.edu.my).

This work was supported in part by the Taif University Researchers Supporting Project number (TURSP-2020/79), Taif University, Taif, Saudi Arabia

ABSTRACT There has been much recent work on fraud and Anti Money Laundering (AML) detection using

machine learning techniques. However, most algorithms are based on supervised techniques. Studies show

that supervised techniques often have the limitation of not adapting well to new irregular fraud patterns when

the dataset is highly imbalanced. Instead, unsupervised learning can have a better capability to find anomalous

and irregular patterns in new transaction. Despite this, unsupervised techniques also have the disadvantage

of not being able to give state-of-the-art detection results. We propose a suite of unsupervised and deep

learning techniques to implement an anti-money laundering and fraud detection system to resolve this

limitation. The system leverages three deep learning models: autoencoder (AE), variational autoencoder

(VAE), and a generative adversarial network. We preprocess the given dataset to separate the Transaction

Date attribute into its base components to capture time-related fraud patterns. Also, Wasserstein Generative

Adversarial Network (WGAN) is used to generate fraud transactions, which are then mixed with the base

dataset to form a more balanced mixed dataset. These two datasets are used to train the AE and VAE models.

We built two versions of the AE model (single-loss and multi-loss) besides a novel method of calculating the

anomaly score threshold, called Recall-First Threshold (RFT), which helps enhance the model’s performance.

Experimental results demonstrated that the False Positive Rate (FPR) drops down to as low as 7% in the

proposed multi-loss AE model. In comparison, we achieved an accuracy of 93%, with 100% of the fraud

transactions recalled successfully.

INDEX TERMS Anti-money laundering (AML), Autoencoders, Anomaly detection, Deep learning, Fraud

detection, GANs, Unsupervised learning.

I. INTRODUCTION

Money laundering involves concealing or disguising the

origin of illegal profits that have been generated from

criminal acts [1]. Banking products or services can be

exploited to transfer criminal proceeds for terrorist financing

and money laundering. These institutions become a direct or

indirect victim of money laundering activity, which

undermines the integrity of the financial system [2]. In light

of this, the pressure on financial institutions and banks to

improve their measures to fight money laundering is

increasing. Similarly, central banks and finance-related laws

have become stricter towards money laundering crimes such

that banks need to follow specific rules; otherwise, they

could be penalized or even closed [3]. One recent case

includes the largest bank in Italy, Unicredit, which was fined

$1.3 billion for using the US financial system to launder

about $6.76 billion [4]. In another case, the UK-based

banking giant, Standard Chartered, paid more than $1 billion

in fines and settlements for helping in money laundering [5].

Lastly, as a result of compliance failures in the firm’s anti-

money laundering program, Morgan Stanley was fined $10

million [6].

Nevertheless, most banks still adopt systems that comprise

a set of predefined if-then-else rules called “Rule-based

systems” to detect incoming and outgoing suspicious

transactions. This system requires a manual process of

checking for each transaction that has triggered the static

rules. Human experts define rule-based systems; hence, they

embed their own working experience into the automated

decision process. In future updates, more exceptions and

rules are necassary, which may impair system performance.

Additionally, those systems have a minimal ability to detect

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

suspicious transactions by groups of people across different

economic activities. This is because rule-based systems do

not consider the economic activities of different people.

Furthermore, acquiring economic knowledge about different

groups of people can be tedious work on its own [7, 8].

While banks and financial institutions seek cost-effective

means of complying with regulatory requirements, they face

responsibility for evaluating larger, more complex, and

faster-growing datasets, necessitating more powerful

analytical tools to efficiently monitor the financial sector.

Machine learning algorithms enable cheaper and more

accessible tools that are increasingly powerful as they make

sophisticated real-time insights on larger datasets possible.

These algorithms and tools can be used in the anti-money

laundering process by the anticipation and detection of fraud

and suspicious transactions [9]. However, adopting machine

learning to detect money laundering has long been in

research, using different methods and techniques that will be

covered in detail in the literature review section.

The current performance of machine learning techniques

in the anti-money laundering field is acceptable. However, a

lot of work is still required to enhance and optimize those

models in terms of performance, namely the so-called “false-

positive rate,” which indicates the regular transactions that

have been identified as fraud. The system will decline these

transactions or delay them for further investigation. In some

cases, false positives might be costing vendors much more

than the fraud transactions themselves. It has been reported

that even rule-based systems still struggle with about 20%

false-positive rates wherein only 1 in 5 transactions marked

by the system as fraud is genuinely fraud [10].

Our main contributions can be summarized as follows:
1. We design and implement deep learning models with

promising results in terms of the FPR, RFT, and AUC for

fraud detection.
2. We present recent state-of-the-art deep learning and

unsupervised learning techniques, namely, the

autoencoder (AE), variational autoencoder (VAE), and

generative adversarial network (GAN) to improve the

anti-money laundering (AML) process.
3. For the first time, we demonstrate the applicability and

effectiveness of combining AE/VAE with WGAN

methods. Particularly, the WGAN generates realistic

synthetic fraud transactions to solve the issue of

imbalanced class labels, and such additional transactions

are then used by the AE/VAE to train the model. The

results indicate that this approach offers significant

improvements for fraud detection.
The rest of the article is organized as follows. Section 2

presents the related literature. Various deep learning

architectures used in this study are described in Section 3.

Proposed methodology and experimental results are

presented in Sections 4 and 5, respectively. Finally, Section

6 concludes the article with a discussion of future work.

II. RELATED WORK

Decision Trees (DTs) are one of the common supervised

learning algorithms that are used to identify money

laundering cases. Rojas et al. [11] utilized DTs and Decision

rules by selecting Random Forest (RF), Random-Tree, and

J48graft from the DT algorithms group and decision table

JRip from the Decision rules algorithms. MABS (Multi-

Agent-Based Simulation) was used to generate synthetic data

that simulates mobile money transactions. JRip generated

about 0.999 true positives and only 0.012 false positives,

which was one of the best accuracies obtained. Despite this

accuracy, the research was based on synthetic data that may

not reflect real suspicious case situations. The accuracy

results may differ when used on real transaction data.

Sahin and Duman [12] proposed DT models such as C5.0,

CART, and CHAID combined with SVM (Support Vector

Machine), which utilizes various kernel functions, such as

radial basis, linear, polynomial, and sigmoid. The proposed

model was implemented in a credit card fraud detection

system. These classification models were compared using a

real dataset provided by a bank. However, due to the highly

imbalanced records (i.e., a ratio of 20,000 normal

transactions to 1 suspicious transaction), the author

performed stratified sampling to under-sample the normal

transactions. The result presented in the paper shows that

both CART and C5.0 have the highest accuracy of detecting

suspicious transactions at more than 90%. However, the

research did not evaluate the false positive rate; furthermore,

SVM offers 89% accuracy, but the author indicated that

SVM tends to suffer from over-fitting.

Bitmap Index-based DT (BIDT) algorithm was

implemented by Jayasree and Balan [13] to evaluate the

adaptability risk for money laundering. Results of false

positive and true positive rates, alongside the adaptability

rate and risk identification time, showed that the proposed

approach outperformed other methods. Also, the authors in

[14] used DT to assign a risk score to each customer profile

that represents their tendency to perform money laundering,

using four types of attributes: industry, location, business

size, and product type to build the decision tree. Each

attribute, including the class label, can accept three risk

values (high, middle, low). However, changes in the

predefined risk values will cause the decision tree model to

become inaccurate. Moreover, each type of attribute value

must be assigned with a risk rank, and this will require

domain experts to label those attributes correctly. Otherwise,

any changes to the training set will require the decision tree

to be trained again.

Recently, SVM [15] and ANN (artificial neural networks)

[16] were used and compared against RF and other

algorithms. Experimental results show that ANN performed

better when compared to other algorithms. Radial-Basis

function network (RBFN) is another approach that is used to

examine suspicious transactions. Lin-Tao et al. [17]

proposed an updated version of RBFN utilizing the APC-III

algorithm to optimize parameter learning in the hidden layer.

Additionally, RLS (Recursive Least Square) algorithm was

introduced to improve model convergence. A real bank

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

dataset containing 70 suspicious instances was used to train

the network. The experiment resulted in a low false-positive

rate, close to 0%, and a detection rate higher than 80%.

Although this implementation shows an excellent false

positive rate, the model’s accuracy can further be enhanced.

Benford’s Law and machine learning algorithms (ANN,

DT, RF) were used to investigate money laundering patterns

in real Spanish court cases [18]. The authors used Benford’s

law to map accounting records for each supplier to 21-

dimensional space. Results showed that even more

companies could be marked as a risk, but this approach still

required a domain expert in accounting to do the feature

engineering. Chouiekh and Haj [19] proposed a deep

convolution neural network (DCNN) to detect fraud cases

and obtained results outperforming the traditional machine

learning techniques such as SVM and RF.

Due to the lack of genuinely suspicious transaction data

and the sensitivity of these data, many researchers have

resolved to use synthetic data or simulated data in the

training set to reduce the class imbalance issue. However,

such an approach may not truly reflect real-world money

laundering cases, potentially causing a generalization issue.

Supervised techniques require a domain expert to label the

data and to help in feature engineering. Therefore, more

researchers have recently turned to unsupervised learning

methods to deal with the money laundering implementation

problem.

Zhang et al. [20] utilized a clustering algorithm to detect

money laundering. The authors extracted all the suspicious

individuals (n) related to suspicious cases identified by an

investigator. Then the author assembled the transactions that

those individuals made in n+2 dimensional Euclidean space,

where time represents the first dimension and transactions

represent the second dimension. Then, to reduce the

clustering problem, the timeline was discretized into various

time instances. By doing so, each transaction is viewed as a

node in one-dimension time-space. To make the problem

even more straightforward, the transaction frequency or the

money amount was accumulated in each timeline instance.

Finally, the histogram segmentation was conducted using a

k-means algorithm where each segmented histogram

represents a single cluster k. The abnormal hills in the

histogram are used to identify suspicious cases. Using only

the transactions data, the proposed method managed to

match the different transactions with their peers without

other features, such as occupation or business size. However,

the segmented histograms are only limited to transactions

that occurred on the same time instance. The histograms are

not able to uncover activities of money laundering that may

occur through multiple time instances. Capturing those time

instances can be a difficult task in such an approach.

Lune et al. [21] used the K-Nearest Neighbor (k-NN)

approach, which has shown a good performance. A public

domain dataset was used that was generated from a BTS

(Banking Transaction Simulator) to simulate shell

companies’ behavior. These are companies that seem to be

genuine, while their primary objective is to launder money.

The author assigned an anomaly score for each data point

called LOF (Local Outlier Factor), which is the data point's

ratio and its average density of the k-NNs. This approach

assumes that an outlier would be significantly lower than its

nearest neighbors while the genuine data point would have a

similar density. Finally, they set the LOF threshold to 0.9,

which will mark all data points above it as a shell company.

The problem with this approach is the sensitivity to the

outliers, where it can cause variation in density for the data

points.

Claudio and Balsa [22] chose to use numerical and

nominal attributes in K-means cluster development despite

K-means performance on nominal attributes being

inefficient in its use of squared Euclidian-distance to

calculate proximity. However, the data were clustered by

customer attributes to build a customer profiles table, and

then the PART algorithm was used for rule generation. The

initial 3 month period produced unsatisfactory results. After

expanding the client profiles to cover one year and including

more attributes, the algorithm showed a better result.

Nevertheless, the authors did not mention how they deal with

the imbalanced data as k-NN does not perform well on an

unbalanced dataset. Another research [23] tried to produce

clusters that are more understandable. The authors attempted

to add a meaningful description before clustering by

following the Apriori and LINGO algorithm

implementations to identify fraud in credit card transactions.

Following this, they compared the results from both

algorithms with other clustering algorithms such as k-NN.

Using simulated test transactions, their results showed that

the LINGO algorithm quickly generated more meaningful

patterns that can be used in near real-time transactions.

Using one-class SVM, Tang and Yin [24] proposed

another unsupervised approach to recognize normal and

suspicious human transaction behaviors. An improved RBF

kernel-based function was implemented over 1.2 million

records obtained from Wuhan Agriculture Bank, China, with

30 simulated suspicious transactions. Results showed that

the proposed RBF kernel enhanced the algorithm speed and

accuracy. However, the proposed solution has only 69.13%

accuracy in detecting doubtful cases, which may indicate

impracticality when applied in the real world. Furthermore,

the suspicious cases are synthetic records that may not fully

reflect real suspicious cases.

Recent research [25] tried to avoid the sensitivity of OC-

SVM (one-class SVM) for the noise and outliers existence in

the dataset by introducing a sparse and robust methodology

of fraud detection. The authors introduced the Ramp-loss

function to the original OC-SVM. Hence, they called it

Ramp-OCSVM. The advantage of implementing the ramp-

loss function's non-convexity nature and the concave-convex

procedure was the proposed algorithm’s ability to solve non-

convex, non-differentiable optimization problems. When

they compared the proposed approach against other methods,

such as OC-SVM and ROCSVM, the results showed that

their system presented the best performance within an

acceptable false-positive rate. Another research [26]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

proposed a special case that tried to overcome the OC-SVM

shortcoming of ignoring the training data's inner-class

structure. The proposed method attempted to minimize the

scatteredness of the training points; hence, the points can be

easily separated from the origin. The modified version is

called OC-WCSSVM (within-class scatter OC-SVM), a

typical OC-SVM except that it's β = 0. The result showed

that the proposed method is more accurate for anomaly

detection than other approaches such as PCA and

Geometrical Driven Diagnosis (GDD).

Wilson and Martinez [27] proposed the usage of an

improved RBF (Radial Basis Function) kernel-based

function that uses various distance metric functions. They

introduced three distance functions: HVDM (Heterogeneous

Value Difference Metric), IVDM (Interpolated Value

Difference Metric), and WVDM (Windowed Value

Difference Metric). These functions can be used with k-NN

for a wide range of implementations. Results showed that

WVDM and IVDM produced higher accuracy than HVDMs.

Chitra and Subashini [28] estimated the proportion for

each bank customer using EM (Expectation Maximization)

algorithm. They used the probability density function

Gaussian-Mixture Model to model the previous transaction’s

behavior for each bank customer and compare them against

the current transaction’s behavior. The main issue with this

method is that it requires the assumption that statistical

distribution (i.e., Gaussian distribution) of the dataset is

used. Furthermore, for the EM algorithm to work in the first

place, we need to define the number of clusters required and

estimate and maximize the different clusters’ data points. For

instance, in the two clusters experiment, the EM algorithm

assumed that every single cluster represents a different

Gaussian distribution with its own function parameters.

Cao and Do [29] attempted to attack money by moving

money in a circular pattern between accounts. They used the

CLOPE (clustering with sLOPE) algorithm to check small

amounts of money distributed to various recipients. It also

checks a single account for collecting money from different

senders. Moreover, the CLOPE algorithm's main

characteristic is the acceptance of nominal variables. Hence,

continuous variables such as the transaction-amount need to

be discretized and assigned to a meaningful label. The

research used a dataset consisting of 12,350 normal records

from an unspecified bank to measure CLOPE’s performance

in detecting money laundering. Furthermore, 25 simulated

suspicious records were inserted into the dataset to test the

algorithm. The experimental result showed that the detection

rate was about 100%, with only 25% of the false-positive

rate. Despite this, each cluster produced by CLOPE must be

thoroughly examined to determine which cluster belongs to

which type of money laundering case, which would require

intervention from domain experts. Furthermore, data

discretization requires a user to provide the number of bins,

and the author did not mention which method they used to

get the optimal bin number.

Zaslavsky and Strizhak [30] employed SOM (Self-

organizing map) to detect credit card fraud transactions.

Specifically, the authors used SOM to create a customer

behavior model on credit card transactions. The idea behind

the proposed model is to detect suspicious transactions when

a customer deviates from his usual transaction behavior. In

this approach, two profiles are created from the SOM

algorithm, namely the normal behavior model and the

fraudster behavior model, Each incoming transaction is then

compared with both models, and, subsequently, the

transaction similarity score is calculated for both models.

The issue here is that a predefined threshold must be set to

compare it against the similarity score. Also, to keep the

models updated, newly encountered behaviors (i.e., either

suspicious or normal) are used to re-train both models. This,

in turn, may cause over-fitting for these models. Another

research [31] proposed an improved version of SOM to

overcome the large presence of outliers in the dataset. The

author then compared his proposed method result against the

K-prototypes algorithm. The research concluded that the

improved SOM is better than the K-prototypes algorithm as

it gives better results, especially in handling the outliers.

However, interpreting results from SOM is a complicated

process as it is not transparent.

To identify suspicious transactions, the authors in [32]

proposed a sequence-matching algorithm. The idea of this

algorithm is to extract a sequence of daily transactions within

a certain peer group. Then, using a probabilistic model, it

identifies the high-risk sequence within the extracted

sequence. Later these sequences are compared against the

transaction’s history for each account. Each high-risk

sequence is given a similarity score by implementing

Euclidean similarity distance. Those assigned scores are then

separated based on manual threshold scores to extract the

suspicious sequence. However, having a predefined

threshold is not an optimal solution as it may vary between

different accounts. Moreover, in the real world, the number

of suspicious sequences is unidentified. Hence, having a high

threshold value might lead to a low false positive rate and

might miss some suspicious transactions. Alternatively,

having a low threshold might increase compliance officers'

workload to verify each case and increase the false positive

rate.

Another study [33] leveraged the semi-supervised

learning approach, which uses both supervised and

unsupervised algorithms. The proposed framework used

artificial neural network (ANN) and k-NN clustering to

investigate money laundering in an investment bank. The

framework first consolidated the transactions on a monthly,

weekly, and daily basis. By performing k-NN clustering over

these transactions to locate the suspicious transactions, each

suspicious transaction was labeled “suspicious” while others

are marked as “normal.” Following this, the ANN is trained

using these labeled transactions to generate the model. To

obtain enough suspicious transactions, the author used a

genetic algorithm to generate more synthetic suspicious

transactions like those that were detected from the k-NN

clustering process. Once the training phase is done using

these suspicious transactions, the trained model is then used

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

to test any new transaction to determine whether it is

suspicious or not. However, this approach still requires a

domain expert to identify and label the suspicious

transactions during the clustering phase. A heuristic

approach is used to define the number of clusters during the

clustering phase.

Shabat et al. [34] proposed two algorithms: geometry-

based extraction, called Diffusion Maps (DM), and matrix

decomposition. They deal with high-dimensional big data

(HDBD), which is critical in cybersecurity. The result

showed that the proposed approach could outperform the

nearest neighbor-based (k-NN) and the clustering-based

(uCBLOF) algorithms. However, a massive dataset is

required for this approach to be efficient.

To identify the relationship between different accounts

involved in the money laundering process, Shaikh and Nazir

[35] implemented clustering using social networks analysis

(SNA) that determines specific relations among illegal

transactions and suspicious customers. However, the authors

used fixed conditions and criteria to identify various types of

relationships, which may not be ideal for generalization.

Therefore, these conditions will need to be modified and

updated for each geo-social zone.

Colladon and Remondi [36] proposed a similar approach

to build a risk profile by using multiple networks during the

experiment. However, they focused only on factories and the

business sector, which may lead to less generalization when

applied to personal bank networks. Also, they neglect certain

features from their analysis, such as the size and the age of

the firms. Another related approach proposed by Molloy et

al. [37] used graph analytic and BIRCH (Balanced Iterative

Reducing and Clustering using Hierarchies). The proposed

method used the SCC (Strongly Connected Component) to

reduce the false-positives and efficiently identify suspicious

transactions. SCC theory assumes that transactions within an

SCC are less likely to be fraudulent than the transactions that

span two SCCs. Although the proposed method showed good

discrimination between normal transactions and suspicious

ones, the implementation still requires high computational

cost.

A powerful unsupervised deep learning approach was

recently proposed based on variational autoencoders (VAE)

for anomaly detection [38]. The VAE's main advantage over

PCA and the standard autoencoder is that it delivers a

probability measure as an anomaly score rather than a

reconstruction error. The result showed that the proposed

method performed better than PCA and standard

autoencoder-based methods. Furthermore, given its

generative nature, analyzing the anomaly's underlying cause

is also possible through data reconstruction. However,

reconstruction probability still requires a fixed threshold, and

it can be easily affected by outliers. Furthermore, it still

needs to be validated against real money laundering cases. In

another similar effort [39], an autoencoder-based data

augmentation technique was presented for unsupervised

anomaly detection. Babaei et al. [40] proposed a prune-based

outlier factor (PLOF) approach for the detection of point

outliers which can significantly reduce the execution time of

local outlier factor (LOF) while maintaining performance.

Another research [41] proposed unary classification with

deep autoencoder, which used the OCC (One Class

Classification) to identify only one class among all data

objects. Results showed better accuracy and performance

over the other traditional machine learning algorithms.

However, as it is only one class, it is hard to identify the

attribute that contributes the most to the separation of

positive and negative classes.

Pumsirirat and Yan [42] used the Restricted Boltzmann

Machine (RBM) and autoencoders to detect credit card

fraud. By using RBM, the model can reconstruct the normal

transactions to locate fraud. Having both algorithms enabled

them to investigate the real-time transactions, the

experiments were conducted over three datasets from

Australia, Germany, and Europe. The results showed a low

false-positive rate besides a good performance.

Paula et al. [43] used autoencoders to investigate fraud and

money laundering in Brazilian exports. The authors used a

dataset containing 820 thousand records and conducted the

experiments using PCA and autoencoders. Results showed

that autoencoder could detect fraud even with high latent

dimensions while PCA could not achieve the same effect.

In conclusion, clustering approaches are simple but still

require a domain expert to determine the number of clusters

and analyze each cluster's members to determine the

suspicious ones. However, clustering algorithms focus on

grouping similar transactions based on each transaction's

characteristics, so the imbalance dataset issue does not

heavily impact it (e.g., a ratio of 20,000 normal transactions

to 1 suspicious transaction). Additionally, recent advances in

deep learning techniques such as autoencoders and their

promising results in anomaly detection make it an excellent

candidate for implementation in this research.

III. DEEP LEARNING MODELS

In this section, we describe autoencoders (AEs),

Variational Autoencoders (VAEs), Generative Adversarial

Networks (GANs), and Wasserstein GANs (WGANs).

Autoencoders are an unsupervised learning method that is

mainly used for feature extraction. They use a feedforward,

non-recurrent neural network to perform representation

learning. An autoencoder will learn the representation or

code by trying to copy the input to output. However, using

an autoencoder is not as simple as copying the input to

output; otherwise, the neural network would not uncover the

hidden structure in the input distribution. An autoencoder

will encode the input distribution into a low-dimensional

tensor, which usually takes the form of a vector. This will

approximate the hidden structure that is commonly referred

to as the latent representation, code, or vector. This process

constitutes the encoding part. The decoder part will then

decode the latent vector to recover the original input. As a

result of the latent vector being a low-dimensional,

compressed representation of the input distribution, it should

be expected that the output recovered by the decoder can

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

only approximate the input. The dissimilarity between the

input and the output can be measured by a loss function.

A. AUTOENCODERS (AEs)

An autoencoder consists of input, hidden (or bottleneck), and

output layers. Although it is a single network, as Figure 1

shows, it is a virtual composition of two components [44]:

● Encoder: This transforms the input (x) into a low-

dimensional latent vector bottleneck, z =ƒ (x). Since the

latent vector is of low dimension, the encoder is forced

to learn only the most important features of the input

data.
● Decoder: This tries to recover the input from the latent

vector g(z)=x'. Although the latent vector has a low

dimension, it has a sufficient size (m < n) to allow the

decoder to recover the input data. Simultaneously, it

restricts the encoder function to approximate x so that it

is forced to learn only the most salient properties of x

without copying it exactly.

FIGURE 1. Representation of an autoencoder.

The autoencoder can be trained by minimizing the loss

function known as the reconstruction error, L=(x, x'). It

measures the distance between the original input and its

reconstruction. It can be minimized in the usual way with

gradient descent and backpropagation. Popular loss

functions such as mean square error (MSE) or binary cross-

entropy (like cross-entropy, but with only two classes) can

be used as reconstruction errors, as in equation (1).

 𝐿(𝑥, 𝑥′) = 𝑀𝑆𝐸 =
1

𝑚
∑ (𝑥𝑖 − 𝑥𝑖

′)𝑚
𝑖=1 (1)

The reconstruction error in the equation above is used as

an anomaly score for the autoencoders' fraud detection

implementation, as will be explained later in the

methodology.

B. VARIATIONAL AUTOENCODERS (VAEs)

By architecture, AEs tend to memorize the input, especially

if the dimension of the latent code is significantly bigger than

the number of features. To encourage the model to generalize

better, various techniques can be used, such as Denoising

AEs, Sparse AEs, or VAEs.

VAEs are the stochastic version of AEs as they can

describe the latent representation in probabilistic terms [45].

Instead of discrete values, there will be a probability

distribution for each latent attribute, making the latent space

continuous. This makes random sampling and interpolation

easier. In terms of structure, VAEs bear a resemblance to an

autoencoder; they are also made up of an encoder (also

known as recognition or inference model) and a decoder

(also known as a generative model). Both VAEs and

autoencoders attempt to reconstruct the input data while

learning the latent vector. However, unlike autoencoders, the

latent space of VAEs is continuous, and the decoder itself is

used as a generative model.

VAEs can be expressed as follow: the encoder q_ϕ (z|x)

where ϕ are the weights and biases of the network, x is the

input, and z is the latent space representation. Here, instead

of being a discrete value, the encoder output is a distribution

(for example, Gaussian) over the possible values of z, which

could have generated x.

FIGURE 2. Variational autoencoder representation.

The VAE stochastically (randomly) samples z from the

distribution, then it sends the sample through the decoder p_θ

(x|z) where θ is the decoder weights and biases. The decoder

output, in turn, is a distribution over the possible

corresponding values of x, as Figure 2 shows.

By doing this kind of sampling from a distribution, VAEs

have two different types of losses. The first of these is the

Kullback-Leibler divergence (KL) between the probability

distribution q_ϕ (z|x) and the expected probability

distribution, p_θ (x|z). It measures how much information is

lost when q_ϕ (z|x) is used to represent p_θ (x|z) (in other

words, how close the two distributions are). It encourages the

autoencoder to explore different reconstructions. The second

is the reconstruction loss, which measures the difference

between the original input and its reconstruction. The more

they differ, the more it increases. Therefore, it encourages

the autoencoder to reconstruct the data better. These two

losses can be expressed as follows:

𝐿(𝜃, 𝜙; 𝑥) = −𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥)||𝑝𝜃(𝑧)) + 𝐸𝑞𝜙(𝑥)[𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑝𝜃(𝑧))]

 (2)

To implement this, the bottleneck layer will not directly

output the latent state variables. Instead, it will output two

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

vectors, which describe the mean and variance of each latent

variable's distribution, as shown in Figure 3.

Once the mean and variance distributions are obtained, a

state z can be sampled from the latent variable distributions,

and it can be passed through the decoder for reconstruction.

However, this sampling process has one issue during training

such that Backpropagation gradients do not work over

random processes (stochastic layer) like the one described

above [46].

The solution to this problem is to push out the sampling

process as the input, which can be done by using an innovat-

FIGURE 3. VAE sampling process.

ive technique, called the reparameterization trick. First, a

random vector ε is sampled, with the same dimensions as z

from a Gaussian distribution (the ε circle in the figure

below). Then, it is shifted by the latent distribution's mean μ,

and is subsequently scaled by the latent distribution's

variance σ, as shown in Figure 4 [47].

FIGURE 4. VAE reparameterization trick.

By doing this, the random generator is omitted from the

backward pass, and the sampled data will have the properties

of the original distribution. The updated sampling process

now can be expressed as follows:

𝑧 = 𝜇 + 𝜎⨀𝜀 (3)

In the fraud detection domain, VAEs represent a powerful

technique. The encoder would produce a distribution of

possible encodings describing the transaction's essential

characteristics, yet it will keep the generalization intact.

C. GENERATIVE ADVERSARIAL NETWORKS (GANS)

GANs were introduced by Ian Goodfellow and his fellow

researchers at the University of Montreal in 2014 [48]. A

GAN consists of two neural networks, as Figure 5 shows

[49]:

● Generator: This is the generative model. It takes a

probability distribution (random noise) as input from a

latent space and tries to generate a realistic output

sample. Its purpose is similar to the decoder part of the

VAE.
● Discriminator: This is sometimes known as a “critic,”

which takes two alternating inputs: the real samples of

the training dataset or the generated fake samples from

the generator. It tries to determine whether the input

sample comes from the real samples or the generated

ones.

FIGURE 5. The architecture of generative adversarial

network.

These two cooperating (and competing) networks are

trained together as one system wherein the discriminator

tries to get better at distinguishing between the real and fake

samples. The generator tries to output more realistic

examples to deceive the discriminator into thinking that the

generated example is real. That’s why it is called

“adversarial.” The system's ultimate goal is to make the

generator so good that the discriminator would not be able to

distinguish between the real and fake samples. Even though

the discriminator does classification, a GAN is still

unsupervised since it does not need labels for the samples.

The discriminator is a classification neural network, and it

can be trained the usual way by using gradient descent and

backpropagation. However, the training set is composed of

equal parts real and generated samples. Therefore, the loss

function can be minimized as follows:

𝐿(𝐷)(𝜃(𝐺), 𝜃(𝐷)) = −𝐸𝑥~𝑃𝑑𝑎𝑡𝑎
𝑙𝑜𝑔 𝑙𝑜𝑔 𝐷(𝑥) − 𝐸𝑧

𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))) (4)

The equation is just the standard binary cross-entropy cost

function. The loss is the negative sum of the expectation of

correctly identifying real data, D(x), and the expectation of

1.0 minus correctly identifying synthetic data, 1-D(G(z)).

GAN considers the total of the discriminator and generator

losses as a zero-sum game to train the generator. The

generator loss function is simply the negative of the

discriminator loss function [46]:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

𝑉(𝐺)(𝜃(𝐺), 𝜃(𝐷)) = −𝐿(𝐷)(𝜃(𝐺), 𝜃(𝐷)) (5)

Thus, the GAN minimax loss objective function can be

written as [50]:

𝑚𝑖𝑛

𝐺
 𝑚𝑎𝑥

𝐷
 𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎

𝑙𝑜𝑔 𝑙𝑜𝑔 𝐷(𝑥) + 𝐸𝑧

𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))) (6)

The solution to the minimax game is called the Nash

equilibrium. A Nash equilibrium happens when one of the

actors does not change its action, regardless of what the other

actor may do. A Nash equilibrium in a GAN framework

happens when the generator becomes so good that the

discriminator is no longer able to distinguish between the

generated and real samples. However, the gradient descent

algorithm is designed to find the minimum of the loss

function rather than the Nash equilibrium. As a result,

sometimes the training may fail to converge, but, due to the

popularity of GANs, many improvements have been

proposed.

D. WASSERSTEIN GANS (WGANS)

GANs can be very difficult to train and are prone to mode

collapse. Mode collapse is when the generator produces

outputs that look the same even though the loss functions are

already optimized. Wasserstein GAN [46, 51] proposed an

implementation that can avoid a mode collapse issue; that is,

by replacing the GAN loss function based on the Wasserstein

1 or Earth-Mover distance (EMD). In our case, this is where

the “critic” discriminator is calculating the Wasserstein

distance between the real and fake samples. As the loss

function decreases in the training process, the Wasserstein

distance becomes smaller. Hence, the generator generates

samples closer to the real ones.

FIGURE 6. A pictorial representation of the Earth-Mover

distance computation [46].

The intuition behind EMD is that it measures how much

mass γ(x,y) should be transported by d = ‖x-y‖ for the

probability distribution p_data to match the probability

distribution p_g, as shown in Figure 6 [46]. Γ(x,y) is also

known as a transport plan to reflect the strategy for

transporting masses to match the two probability

distributions, which can be expressed as the following

equation:

𝑊(𝑝𝑑𝑎𝑡𝑎, 𝑝𝑔) = 𝑖𝑛𝑓𝛾∈∏(𝑝𝑑𝑎𝑡𝑎,𝑝𝑔)𝐸(𝑥,𝑦)∼𝛾
[‖𝑥 − 𝑦‖] (7)

When using EMD or Wasserstein 1 as the loss function, the

generator will try to minimize, while the discriminator tries

to maximize, it can be expressed as follow:

𝐿(𝐷) = −𝐸𝑥~𝑝𝑑𝑎𝑡𝑎
𝐷𝑤(𝑥) + 𝐸𝑧𝐷𝑤(𝐺(𝑧)) (8)

𝐿(𝐺) = −𝐸𝑧𝐷𝑤(𝐺(𝑧)) (9)

In the generator loss function L(G), the first term disappears

since it is not directly optimizing with respect to the real data.

Moreover, the discriminator is not trying to tell whether the

samples are real or fake anymore. Instead, it is using K-

Lipschitz function to calculate the Wasserstein distance

between the real and fake samples. As the loss function in

the training process decreases, the Wasserstein distance

becomes smaller. Hence, the generator generates samples

closer to the real ones [52], which can be described by:

𝑊(𝑝𝑑𝑎𝑡𝑎, 𝑝𝑔) = 𝑚𝑎𝑥
𝑤∈𝑊

 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎
[𝐷𝑤(𝑥)] − 𝐸𝑧[𝐷𝑤(𝐺(𝑧))] (10)

IV. METHODOLOGY

This section explores the workflow that the research follows

towards the model implementation. It describes different

techniques and methods that have been used in each one of

these steps, such as the data preparation and preprocessing

techniques, model building, and performance evaluation.

A. WORKFLOW

As shown in Figure 7, once the raw data is obtained, some

time is invested in understanding the data in order to describe

it and discover any underlying relations. Following this,

different data preprocessing techniques are used to prepare

the data for model training and evaluation. The output from

the data preprocessing is separated into two different

datasets. The first dataset, called “base,” is used to train and

test the autoencoder models (AE and VAE). AE has two

different versions: single-loss function and multi-loss

function.

The second dataset, called “merged,” is used to train and

test the WGAN model, which generates more fake fraud

transactions. These transactions are then mixed with the

merged dataset to produce the “mixed” dataset. Finally, the

mixed dataset is used to train the autoencoder models one

more time. The idea behind this approach is that by having

more fraud transactions, the model performance is expected

to increase, as will be explained later. All the models are then

compared using the different evaluation techniques to obtain

the best performing AE model.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

B. DATASET DESCRIPTION

1) RAW DATA

The data is obtained from the research project that was

undertaken in 2014 between the School of Computer

Science, University of Nottingham (Malaysia campus) and a

FIGURE 7. The workflow of the model implementation. The raw data is split into two segments: merged and base

datasets. The merged dataset is used as input for the WGAN model. The WGAN model produces and generates the

mixed dataset which is then used to train the AE and VAE models. The base dataset is used as input to train both

VAE and AE models. The AE model uses two loss functions, namely the multi-loss and single-loss function.

local Malaysian Bank. The original dataset that was obtained

in 2014 contains about 30 million transactions (records) for

the period from 2012 until 2013 [7]. However, for privacy

reasons, the full dataset is not accessible anymore. Instead,

this research obtained access to a subsection of the dataset as

summarized in Table 1.

TABLE I

RAW DATASET DESCRIPTION. THE RAW FINANCIAL TRANSATIONS ARE

PRE-PROCESSED ON DIFFERENT TIME HORIZONS, NAMELY DAY, WEEK, AND

MONTH.

Name Rec. Attr. Normal Fraud
Null

Values
Duplicates

Day 2706 69 2661 45 3 0

Week 1490 71 1446 44 3 0

Month 693 71 649 44 2 0

The whole subsection dataset contains a total of 4889

transactions that are consolidated based on the time intervals

in 3 different files (Day, Week, and Month) and labeled

under the class attribute by a domain expert to be either (0 =

normal) or (1 = fraud). The number of attributes (or

“features”) varies between these groups based on the time

interval, as the Day group has 69 attributes including the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

class as it is the base time interval. In contrast, the other two

groups have two extra attributes with a total of 71 attributes.

These two extra attributes are (tran_date_to and Week), in

the case of the Week group, and (tran_date_to and Month),

in the case of the Month group.

The Day group has the most transactions, with a total of

2706 transactions, where 45 of them are fraud and the rest

are normal with only 3 Null values under the P2 attribute and

no duplicates. While the Week group has 1490 transactions,

44 of them are fraudulent ones, with three Null values under

the P2 attribute and no duplicates. Finally, the Month group

has 693 transactions, with 44 of them being fraud, two Null

values under the P2 attribute, and no duplicates. In this

research, the Day group is used as the base dataset, as it has

the most normal transactions that will be required to train the

autoencoders model and it requires less preprocessing work.

2) MERGED DATA

We notice from the dataset above that it does contain

sufficient fraudulent transactions. However, training the

WGAN model requires enough fraud transactions to produce

more realistic fraud transactions in turn.

Therefore, to obtain enough transactions to train the

WGAN, the three groups of the dataset in Table 1 are merged

into one dataset. However, two issues need to be solved to

perform this merging successfully. The first issue is that

different datasets have different numbers of attributes. The

Week and Month datasets have two extra attributes - one

attribute is the time interval, and the other attribute is the

ending date for that interval, as mentioned above. To solve

this issue, the time interval will be reconstructed into the base

unit for all three datasets, which will require feature

engineering for the transaction date tran_date attribute that

will be discussed in the next section. Therefore, the

(tran_date_from and Week) attributes will be dropped from

the Week dataset. Also, the (tran_date_from and Month)

attributes equally will be removed from the Month dataset

while keeping the tran_date_to attribute

TABLE II

MERGED DATASET DESCRIPTION. THE NEW DATASET IS SORTED AND RE-

INDEXED AFTER THE DATASETS ARE MERGED. THE DATASET CONTAINS 133

FRAUD TRANSACTIONS, AND, AS IT WAS EXPECTED, 7 DUPLICATES WERE

FOUND.

Name Rec. Attr.
Nor
mal

Fraud
Null

Values
Duplicates

Merged 4889 69 4756 133 8 7

since it represents the end of the time interval for both

datasets. Thus, the processed datasets will have equally 69

attributes and can be merged.

The second issue is the possibility of having duplicates.

However, this issue will be discussed and solved in the next

section. Table 2 summarizes the merged dataset. After the

datasets are merged, the new dataset is sorted and re-indexed.

The dataset now contains 133 fraud transactions, and as was

expected, seven duplicates were found, which will be

handled next.

C. DATA PREPROCESSING

Data preprocessing is one of the key steps towards any

successful machine learning implementation. It helps to

remove the noise data and irrelevant information from the

dataset that prevents the knowledge discovery and can hurt

the generalization. In the next sections, we will cover some

of the data preprocessing techniques such as transformation,

normalization, data cleaning, and feature extraction that were

implemented in this research.

1) FEATURE DROPPING

This is the first technique that can help in dimension

reduction. Keeping irrelevant attributes could hurt the model

performance and cause overfitting, but by removing the

unnecessary or redundant features, the model is expected to

perform and generalize better. It will also help cut down the

computing power required to train and run the model. In this

research, two techniques were used to identify such features

in the dataset: zero-sum and automatic generated.

Attributes that have the same value for every record

instance do not add any extra knowledge to the model as it

cannot enhance the prediction; rather, it can hurt the model.

Significantly, if the total value for that attribute for the whole

dataset is zero, this attribute is dropped during the data

preprocessing step. This is the case for some features in the

dataset such as (rl0003, rl0012, rl0013, rl0014, etc.).

There are two attributes directly related to the customer in

the given dataset. These two features are customer identifier,

cif_id, and account number, account_no. The bank system

automatically generates both these attributes. Some fraud

detection implementations are mainly built on such attributes

as the graph analysis and the social network analysis, where

the customer account number is considered to be a ‘node’

and his transaction an ‘edge’. Then certain weights and

techniques are applied to evaluate whether this account is

doing money laundering or not.

However, these implementations require the account that

the transaction was sent from and the account that the

transaction will be sent to. Unfortunately, the given dataset

does not provide these attributes. Also, in terms of

implementation for this research, including these customer-

related features will have a negative impact on the model

performance. The model will be used as a real-time fraud

detection system during the inference phase, where even a

single transaction can be evaluated from a totally new

customer. Therefore, during the model training no customer-

specific features will be included and both attributes are

removed from the dataset.

2) DUPLICATE DROPPING

Even though the groups that were mentioned in Table 1 do

not have duplicates, when these groups are combined

together in the merged dataset, some duplicates were found.

Hence, we check for duplicates in the merged dataset and

drop them.

However, it is worth pointing out that the duplicates that

have been dropped from the dataset have occurred because

of the merging process. In other cases where duplicates

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

represent an original part of the dataset, it is still acceptable

to keep them.

3) BINARY ENCODING

Categorical attributes need to be converted into numbers,

so the model will be able to work with them, and there are

different types of encoding techniques. Among the most

popular ones are One Hot Encoding and Binary Encoding.

We compare these two encoding techniques in terms of their

impact on the model accuracy and the number of output

attributes that each technique produces. Binary Encoding

will have the same impact on the model accuracy as One Hot

Encoding but with less attributes, which is sufficient for this

research. Three attributes (account_type, product_type,

business_type) in the dataset need to be encoded. The binary

encoder will encode the categories in each one of these

attributes into binary code then split it into columns.

4) NULL VALUES

Having null or missing values in the dataset can lead to

wrong predictions or even issues during model training.

Therefore, filling these values is an important step during the

preprocessing phase. In the given dataset, eight null values

were found under the P2 attribute. These null values were

handled by filling them with the mean attribute value.

5) LOG TRANSFORMATION

Data skew represents another challenge that needs to be

fixed. Three attributes in the given dataset (credit_amount,

debit_amount, debitpluscredit_amount) show an extensive

range of differences within their values because the vast

majority of the values are skewed towards a certain direction

while the remaining few are skewed in the other direction.

By applying the common scaling techniques directly to such

attributes, the scaled data will not preserve the original data

representation. Therefore, log transformation is required to

fix the data skew as it pulled in the extremely high values

relative to the median while stretching the low values back

further away from the median. Moreover, the log

transformation respects the positivity of the attribute, which

is essential for the scaling techniques that will be applied to

the data. By applying log transformation on the attributes,

their distribution takes a better shape.

6) STANDARDIZATION

As the dataset contains a wide range of values, the

normalization or standardization of data prior to the training

phase is favorable because it can reduce the estimation errors

and calculation time.

Normalization, which is also called Min-Max Scaling, can

be achieved by scaling the attribute to a fixed range (0 and

1) through this equation:

 𝑋𝑛𝑜𝑟𝑚 =
𝑋 – 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 – 𝑋𝑚𝑖𝑛
 (11)

However, in fraud detection models, it is important to

preserve the original distance between data points.

Therefore, standardization will be much more appropriate

for implementation. Standardization scales the data based on

its mean (𝜇) and the standard deviation (𝜎) from the mean.

Having 𝜇 = 0 and 𝜎 = 1 will center the data around 0 as

in the following equation:

 𝑍 =
𝑋 – 𝜇

𝜎
 (12)

The standardization technique was applied over all the

non-binary attributes in the dataset (credit_amount,

debit_amount, p2,…, etc.).

7) FEATURE ENGINEERING ON DATES

One reason for having the raw dataset divided into three

groups is to enhance the model accuracy by grouping the

transactions within a specific period. Although this is still a

valid approach, it can be improved even further.

This research introduces another approach that can better

use the date attribute, engineering some new features based

on the tran_date feature. Specifically, the tran_date feature is

split into its base date components, then these new features

are added into the dataset. These new features are described

in Table 3.

TABLE III

 DATE-BASED NEW FEATURES

Feature Description

month Month of the transaction

day Day of the transaction relative to the month

quarter Quarter of the year (1~ 4) of the transaction
dayofweek Day of the week of the transaction

is_weekend
Whether the transaction occurred during the

weekend or not

The idea behind introducing these features is to allow the

model to capture any pattern within the data that is related to

its date. As shown in Figure 8, transactions tend to have

different data peaks from one feature to another, which the

model may utilize to identify fraudulent behavior.

FIGURE 8. Data distribution for the new date related

features based on different time horizons (i.e., day,

month, and quarterly). The y-axis represents the density

and the x-axis represents the range of values.

However, the given dataset does not provide any

timestamp features. It could be instrumental in deducing

even more information, such as whether the transaction

occurred during daytime, night, morning, or afternoon,

which may be useful for the model.

It is worth mentioning that there is a popular deep learning

implementation that can handle time-series data and

sequence data better than the non-recurrent neural networks,

which is called LSTM (Long Short-Term Memory).

However, this approach is not useful for this research

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

because fraud behavior does not follow a particular

sequence; one transaction cannot be used to predict the next

one. Moreover, this research aims to build a real-time fraud

detection application that may operate on one transaction

rather than a batch of transactions.

D. PREPROCESSED DATASET

The preprocessing phase outputs two datasets; the base

dataset will be used to train the autoencoder models, and the

merged dataset used to train the WGAN. This section

describes these two datasets as they are now ready to be used.

Table 4 shows the description of these datasets.

The different number of attributes in the two datasets are

due to one extra attribute, rl0030, that was dropped from the

base dataset because it has a zero-sum value. However, this

attribute holds some value for instances in the other two

groups when the groups are merged together. Although the

number of Fraud transactions is low compared to the normal

transactions in the base dataset, the autoencoder

implementation will overcome this issue. As the WGAN will

need the fraud transactions for the training, the merged

dataset is used as it has more fraud transactions than the base

dataset.

TABLE IV

PROCESSED BASE AND MERGED DATASETS

Name Rec. Attr. Normal Fraud
Null

Values
Duplicates

Base 2706 43 2661 45 0 0

Merged 4882 44 4749 133 0 0

FIGURE 9. Attributes distribution by class (Normal and Fraud). The y-axis represents the fraction of transactions, and

the x-axis represents the time horizons (i.e., quarter, month, day, dayofweek etc.)

FIGURE 10. Attributes distribution by class (Normal and Fraud). Normal transactions are represented as ‘blue’

whereas fraud transactions are represented as ‘orange’

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

In both datasets, fraud and normal transactions are

overlapped in almost every feature, except in certain features

such as credit_amount, debit_amount, and

depitpluscredit_amount, where fraud and normal

transactions can be slightly separable, as Figure 10 shows.

Nevertheless, when these barely separable features are

investigated further, their distribution shows a high level of

mixing, as Figure 9 shows in the case of credit_amount.

Therefore, a machine learning implementation is necessary

for better normal-fraud class classification.

E. MODEL IMPLEMENTATION

1) AE

The autoencoder is mainly used to learn the important

features; then, it utilizes that knowledge to reconstruct the

data to be as similar as possible to the original data.

However, in fraud detection implementation, the

autoencoder's output is not the focus. Instead, the most

important part is the knowledge that the model gains in the

latent vector. That knowledge can be evaluated through the

reconstruction error, as mentioned earlier.

In this implementation, the autoencoder will be only

trained over the normal transactions. Thus, the model is

expected to learn the normal transactions’ important features

and then reconstruct these transactions. However, during the

testing phase, the model will be tested against both normal

and fraud transactions. That’s when the reconstruction error

is used. If the tested transaction is normal the model will be

able to reconstruct it with the minimum error. However, if

the transaction is fraud, the reconstruction error will be

relatively significant. Moreover, to determine whether the

error is big or small, a predetermined threshold value is used,

on which the anomaly score is given to each transaction. The

threshold determination method will be discussed in the next

sections.

MODEL ARCHITECTURE

The first component in the autoencoder implementation is

the input layer, Model_Input, which has 42 neurons. Each

neuron represents one attribute in the base dataset except the

class attribute. No activation function is used for this layer as

no prior weights exist; hence, it merely passes the values to

the network's next component.

FIGURE 11. Autoencoder model structure.

The next component of the network is the encoder. It

consists of 3 dense layers (Encode_1, Encode_2, Encode_3),

and the number of neurons in each one is almost half of the

number of its previous layer. Thus the autoencoder is forced

to learn only the important features. The bottleneck layer is

the next component; it has the minimum number of neurons,

which is eight, that will hold the latent vector weights.

Then, the network passes the values to the decoder, which

in turn consists of three dense layers (Decode_1, Decode_2,

Decode_3). However, the number of neurons in each dense

layer in the decoder is almost double the number of its

previous layer to build towards restoring the same number of

features as the original data. The last component of the

network is the Model_Output layer, which has 42 neurons

representing the same number of neurons as the original

input. Figure 11 shows the architecture of the AE model.

The activation function in the first layer in both the

encoder and the decoder is tanh as it will ensure the output

values for neurons in these layers will always be between (-

1, 1). This fits nicely because of the data standardization in

the preprocessing phase. The other layers in both of these

components use the ReLU activation function, which will

force the output to be positive, or else zero. Finally, a

sigmoid activation function in the Model_Output layer will

produce output within the range of (0, 1).

The model uses Mean Squared Error (MSE) as a loss

function as most of the input values are a spectrum rather

than binary. The MSE computes the average of the square

difference between the actual input value and the predicted

value. Therefore, the objective of the optimizer is to

minimize that loss function. The output of MSE is a positive

value. However, as sigmoid was used as an activation

function in the last layer of the autoencoder, it is expected to

have a Binary Cross-Entropy (BCE) loss, which will be

discussed in the next section.

Lastly, the gradient-based optimization optimizer Adam is

used by the model to minimize the loss function as it is

invariant to the gradients' diagonal rescaling and capable of

handling a wide range of nosiy data.

MULTI-LOSS FUNCTION

Given that the input features have both binary and non-

binary data, and sigmoid is used as the model output

activation function, this paper implemented another variant

of the AE model. Instead of having one loss function, this

variant has two loss functions, MSE and BCE. BCE is

capable of handling the binary values and has a bounded

output of [0,1]. The idea of combining these two losses is to

have a smooth and stable loss value that will handle both

binary and non-binary values during the optimization. The

implementation adds these two losses then returns their mean

value.

TRAINING AND HYPERPARAMETERS TUNING

Several experiments have been undertaken to determine the

values of the hyperparameters (such as the learning rate,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

number of epochs, etc.). After reaching a stable performance,

the learning rate value, which determines the gradient

optimizer's step size, is set to be (1e-3), and the number of

epochs is set to be 300. To optimize the training process, an

early stopping technique is used to terminate the training if

the loss does not decrease beyond 1e-5.

As the dataset is not large enough, we used a cross-

validation technique where 20% of the data is used for

testing, and 80% is used in the training process. Each batch

size is set to be 80, selected based on a random seed. Finally,

to avoid the network’s tendency to memorize the training

data and fail to generalize, the model uses an activity

regularizer in the encoder's first layer. This allows the

application of penalties over this layer during the

optimization and adds those penalties to the loss function.

2) VAE

The variational autoencoder follows the same idea for

implementation as for the AE. That is, only the normal

transactions are used during the training phase. Then an

anomaly score is assigned with each transaction during the

test phase for both normal and fraud transactions by

comparing the reconstruction loss against a predefined

threshold. The difference between VAE and AE is the latent

space; as in VAE, it is represented by a distribution rather

than data values.

MODEL ARCHITECTURE FOR VAE

The model starts with the input layer Model_Input, which

has 42 neurons with no activation function, and the encoder,

consisting of two dense layers (Encode_1, Encode_2) where

they have (22 and 12) neurons, respectively. The Encode_2

layer, in turn, outputs two different vectors, Mean and Log

Variance. Each one of these two vectors is mapped to its own

layer. Log Variance here is used because of its more

numerical stability than the standard deviation, which will be

calculated later in the Sigma layer.

However, before recovering the standard deviation in the

Sigma-dense layer, both Mean and Log Variance are passed

to a custom layer, KLDivergenceLayer. This layer calculates

the distribution loss using a KL divergence function, then

adds this loss to the total model loss. Finally, it returns the

inputs (Mean and Log Variance) unchanged to the next layer.

Next, the Sigma-dense layer receives the values from

KLDivergenceLayer and recovers the Standard Deviation.

Subsequently, we implemented the reparameterization trick

by introducing a separate dense layer, Epsilon, which uses

the Monte Carlo sampling technique to draw a random

sample from a normal distribution with the same latent

vector dimension. This sample represents Noise, which is

then multiplied by Sigma, and the product is forwarded to

the next layer.

The latent space Z-dense layer receives the sampled vector

standard deviation multiplied by epsilon and also receives

the Mean from KLDivergenceLayer. Then it adds them

together and outputs the result to the model decoder. The

decoder consists of two dense layers: (Decode_1,

Decode_2), and the number of neurons in each of them is and

12 and 22, respectively. Finally, the Model_Output layer

receives the decoded values and outputs 42 features. In

general, the model uses the ReLU activation function in both

the encoder and the decoder layers. Figure 12 shows the

architecture of the VAE model.

FIGURE 12. VAE model architecture.

TRAINING AND HYPERPARAMETERS TUNING FOR
VAE

The initial learning rate is set to be (1e-3), while the model

will be trained for 300 epochs. Cross-validation is used

where training and test datasets correspond to 80% and 20%

of the original dataset, and batch size is set to be 128.

The RMSprop optimizer is used to minimize the loss

function because it limits the vertical direction fluctuations.

This allows increasing the learning rate, allowing the

gradient to take larger steps for faster convergence.

3) WGAN

The fraud detection models' problem is that their datasets are

always unbalanced, given that the fraud behavior

infrequently occurs. The same case applies to the merged

dataset as it has only 133 fraud transactions. Therefore,

WGAN will generate more fraud transactions, enhancing or

solving the unbalanced dataset problem, hence enhancing the

model’s performance.

As the model will generate fraud transactions, the merged

dataset is used to train the model. After the training is done,

the model is used to generate new fraud transactions. These

newly generated fraud transactions are mixed with the

dataset to formulate the mixed dataset.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

MODEL ARCHITECTURE FOR WGAN

As training GANs is not easy in terms of stability [50], the

model implementation considers that adding extra layers

such as the Dropout layer and the LeakyReLU activation

layer could make the model more stable.

In general, the model starts with the Model_Input layer,

which receives 43 features mapped to its 43 neurons. Then

the model separated into two different networks: one is the

FIGURE 13. WGAN model architecture.

generator, and the other one is the discriminator. The

generator network has three dense layers (Gen_1, Gen_2,

Gen_3) plus the Gen_Out layer. Because the generator

generates fake transactions, it does not need to follow a

specific structure in each layer's neuron number. However,

as almost all GANs literature is based on image processing,

it follows a binary multiplication system. To follow that

practice in this network, the number of neurons in the

generator layers are 128, 256, and 512, respectively.

However, for the Gen_Out layer, the number of neurons is

43, as it will be the same number of features as the real

transaction.

After each layer in the generator except for Gen_Out, there

is a LeakyReLu activation layer that replaces the standard

layer activation and could handle values better than the

standard ReLU.

The discriminator network, on the other hand, starts with

the Mixed_Input layer receiving input from both the

generator, which will produce the fake transactions and also

a randomly selected batch from the real transactions. These

two sources are then mixed and passed to the next layers. The

dimensions of the generated fake transactions and the real

transactions are the same (i.e., 43 features). Hence, the

number of neurons in this layer is 43 as well.

 The discriminator consists of 3 dense layers (Disc_1,

Disc_2, Disc_3) beside the Model_Output layer. The dense

layers are based on the binary system where the number of

neurons is 512, 256, and 128, respectively. The output layer

will have only one neuron. The same technique of using

LeakyReLu is used here, so each dense layer except the

output is followed by the LeakyReLU activation layer.

Moreover, to solve the problem of overfitting and stability

issue, a Dropout layer is added after the first dense layer

activation, which could help to regularize the network.

Finally, the discriminator output layer, Model_Output, has

no activation function as it is implementing the Wasserstein

distance. It will use the single neuron in the layer to output

the distance of which the transaction is considered real or

fake, rather than outputting 0 or 1, using a classic activation

function such as Sigmoid. Figure 13 shows the architecture

of the WGAN model.

TRAINING AND HYPERPARAMETERS TUNING FOR
WGAN

GANs require a relatively long time to converge. Hence the

number of epochs is set to be 50,000. The optimizer is set to

be Adam with a learning rate of about (1e-3). The batch size

for the real transactions' random sample is set to be 64, which

the discriminator will use.

Moreover, a checkpoint is made to save the model and

weights in every 100 epochs in addition to the loss values.

Once training is done, an accuracy check iterates over all

checkpoints to select the best version in terms of accuracy

relative to its corresponding loss.

 It is worth mentioning that the LeakyReLU layers have a

hyper-parameter, called alpha, that determines the curve's

negative slope. Here alpha is set to be 0.2, and the Dropout

rate is set to be 0.1.

F. Performance Evaluation Methods

Various measures are used to evaluate the performance of

proposed models. We start with a list of related terms that

will be used in these measures. False positive (FP) refers to

the number of normal transactions that are predicted as fraud.

True positive (TP) is the number of fraud transactions that

are predicted as fraud. False negative (FN) specifies the

number of fraud transactions that are predicted as normal.

Finally, true negative (TN) refers to the number of normal

transactions that are predicted as normal.

In this research, a confusion matrix is used to report the

model performance by combining the indicators mentioned

above. This will help visualize how the model confuses the

true class. Moreover, some other performance measures will

be calculated using the confusion matrix, such as FP rate

(FPR), accuracy (ACC), precision, recall, F1 score, and

Receiver Operating Characteristics (ROC) curve.

FPR is highly important in fraud detection models,

especially in this research, as it aims to minimize the value

of FPR as much as possible. It is expressed as follows:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (13)

Accuracy indicates the overall correct predicted

transactions, whether it is TP or TN relative to the total

instances. Precision identifies the correct fraud transactions

rate relative to all transactions that are predicted as fraud.

The recall is the rate of the correctly predicted fraud

transactions relative to all of the actual fraud transactions. To

summarize the model with only one single score, the F1

score is used as it considers both recall and precision in its

formula as follow:

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (14)

It is worthwhile to mention that both the Precision and F1

scores are relatively low in fraud detection models as the

number of FPs is always more prominent than the TPs.

Finally, ROC is used to visualize the True Positive Rate

(TPR) and the FPR, and both are plotted on the y-axis and x-

axis, respectively. Hence, it shows how the model reacts

under all different combinations of thresholds.

An important indicator is calculated from ROC and called

Area Under the Curve (AUC). AUC summarizes the whole

model performance in one number, ranging from 0 to 1 with

the best performance equal 1.

The optimizer’s objective is to minimize the loss.

However, this could lead to overfitting. Two model losses,

such as Training Loss and Testing Loss, are reported to make

sure that the model is not overfitting. Suppose the Training

Loss is higher than the Testing Loss. In that case, the model

is underfitting, and there is room for enhancement until the

Training Loss is near or equal to the Testing Loss - which is

perfect fitting. Once the Testing Loss exceeds the Training

Loss, the model is overfitting, and it needs to be adjusted.

THRESHOLD OPTIMIZATION

As was mentioned before, fraud detection implementations

require a predefined Threshold value to be able to assign an

anomaly score to each transaction. However, given the

business scope of these implementations, they should filter

out all of the fraud transactions. Yet, they should maintain a

good degree of efficiency by targeting a low FP rate.

To automate the process of determining the Threshold, and

at the same time, aligned with the business scope target, this

research defines the Threshold to be Recall-First Threshold

(RFT). The Recall-First Threshold (RFT), is the value that

will allow the recall of all fraud transactions with the highest

precision possible, as Figure 14 shows. This can be used

perfectly as a Threshold for our fraud detection

implementation as its required to filter out all of the fraud

transactions; nevertheless, it should maintain a good degree

of efficiency by targeting low FP rate.

To calculate the RFT, precision-recall pairs for different

probability thresholds are computed using the

precision_recall_curve function in the sklearn library. Then

the minimum value in the returned thresholds array is

selected.

Figure 14. Recall-First threshold.

VI. RESULTS AND DISCUSSION

This section presents the results from different

experiments. Firstly, it describes the mixed dataset, which is

the result of the WGAN model. Secondly, it compares the

AE model (single-loss and multi-loss) and VAE model under

both datasets (Base and Mixed). Finally, the section

concludes with a discussion of each model’s performance

using each dataset.

A. WGAN

WGAN training process is relatively tricky, and it often

requires a significant number of epochs. Hence, the WGAN

model with the configuration detailed in the previous section

shows various accuracy levels during the training process, as

Figure 15 shows. The accuracy refers to how much the

generated samples are identical to the real samples. Thus,

higher accuracy is an indication that the discriminator is no

longer able to distinguish between the generated and real

samples. During training, a checkpoint is saved for the

model, and once the training is completed, an iteration is

used to select the best version of the model based on its

accuracy, which reached 99%. The optimal number of

iterations is chosen when the accuracy has reached a plateau

or degradation.

After training, the best model is utilized to generate fraud

transactions. Specifically, it is used to generate about the

same number of real fraud transactions in the merged dataset;

that is, about 132 fraud transactions. These fake fraud

transactions are then mixed into the merged dataset to result

in the mixed dataset, as Table 5 shows.

TABLE V

MIXED DATASET DESCRIPTION

Name Rec. Attr. Normal Fraud
Null

Values
Duplicates

Mixed
501

4
44 4749 265 0 0

Subsequently, the mixed dataset is re-indexed and sorted

to be used during the autoencoder models training, and the

final dataset is shown in Figure 16.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

B. AE SINGLE-LOSS (AE-S)

The autoencoder model with a single loss function (MSE)

training generally shows an acceptable fitting level. The

Training Loss stayed above but near the Testing Loss using

the base dataset. On the contrary, the Training Loss goes

below but near the Testing Loss when the mixed dataset is

used, indicating a sort of overfitting, as Figure 17 shows.

When the base dataset is used, the Recall-First Threshold

(RFT) was 0.216, which increased to reach 0.589 after the

mixed dataset is used, as Figure 18 shows. The AUC was

calculated to be 0.920 in the base dataset. However, it

increased to reach about 0.963 once the mixed dataset is

used, as shown in Figure 19.

As the RFT is already calculated, the reconstruction error

can be assigned an anomaly score, as Figure 21 shows. All

of the reconstruction error values located above the RFT are

considered fraud; else, it is considered normal. However, the

different color represents the actual points class.

FIGURE 15. WGAN classification accuracy at different epochs during training of the credit_amount attribute. The left

side shows the distribution of the real dataset while the three remaining right sides show the distribution of the

generated synthetic data for different epochs (i.e., 100, 200, and 300). It can be observed that the distribution of the

synthetic data is very similar to the real dataset.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

FIGURE 16. Credit_amount feature distribution in the mixed dataset by class (Normal and Fraud).

FIGURE 17. AE-S model loss.

FIGURE 18. AE-S recall-first threshold. The precision/recall value is between 0 and 1.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

FIGURE 19. AE-S receiver operating characteristic curve and AUC.

Finally, the confusion matrix is depicted in Figure 20,

based on the fraud scores assigned in the above step. All

fraud transactions are identified correctly, which makes the

recall 100% for the base dataset. The same goes for the

mixed dataset, where all of the 43 fraud transactions are

identified correctly.

However, the number of normal transactions that are

incorrectly predicted as fraud was about 94 transactions in

the base dataset, while decreased to 69 transactions after

using the mixed dataset. Moreover, these predictions

impacted other measures, such as the FPR, which reached

0.18 when the based dataset was used against 0.07 when the

mixed dataset was used. In general, all of the measures are

reported in Table 6.

C. AE MULTI-LOSS (AE-M)

As was proposed by this research, the AE-M uses both cross-

entropy and MSE loss functions to evaluate the model loss.

Results show that the model has a perfect fitting in the base

dataset case as Training Loss and Testing Loss

FIGURE 20. AE-S confusion matrix.

are positioned over each other. However, it was relatively

over-fitted in the mixed dataset case, as Training Loss went

below the Testing Loss, as Figure 22 shows. The RFT scored

about 0.229 when the base dataset was used, while it scored

0.554 when the mixed dataset was used, as Figure 23 shows.

AUC was lower in the base dataset than the mixed dataset

case, as it is reported to be 0.915 and 0.965, respectively,

shown in Figure 24.

FIGURE 21. AE-S reconstruction error fraud-score. The reconstruction error is between 0 and 25.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

FIGURE 22. AE-M model loss.

FIGURE 23. AE-M Recall-First threshold. The precision/recall value is between 0 and 1.

FIGURE 24. AE-M receiver operating characteristic curve and AUC.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

FIGURE 25. AE-M reconstruction error fraud-score. The reconstruction error is between 0 and 25.

FIGURE 26. VAE model loss.

FIGURE 27. AE-M confusion matrix

When AE-M is used to classify the transactions based on

their reconstruction error score against the calculated RFT

value, results shows that the distribution of the error points

was scattered in the base dataset compared to the mixed

dataset case, as shown in Figure 25. After the fraud scores

were assigned to the transactions, the confusion matrix in

Figure 27 is constructed. In both datasets, all the fraud

transactions were recalled correctly. In contrast, 100

normal transactions were predicted as frauds in the base

dataset case, and 67 normal transactions were incorrectly

FIGURE 28. VAE recall-first threshold. The precision/recall value is between 0 and 1.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

.

FIGURE 29. VAE receiver operating characteristic curve and AUC.

FIGURE 30. VAE reconstruction error fraud-score.

classified for the mixed dataset as well, as Figure 27 shows.

Among other performance measures that are detailed in

Table 6, FPR scored about 0.19 in the base dataset case while

it scored 0.07 in the mixed dataset case.

D. VAE

Variational autoencoder showed perfect fitting in the base

dataset case, yet the Training Loss went below the Testing

Loss when the mixed dataset was used. Hence, it is

overfitting, as Figure 26 shows. The RFT was calculated to

be 0.202 for the base dataset and 0.552 for the mixed dataset

to assign fraud scores to the predicted transactions, as shown

in Figure 28.

As Figure 29 shows, AUC reached as high as 0.9645 when

the mixed dataset was used, while it decreased to reach

0.9057 when the base dataset was used. Based on the RFT

computed value, the fraud score was assigned, showing that

the reconstruction error points are more condensed under the

threshold when the mixed dataset was used. In

FIGURE 31. VAE confusion matrix.

contrast, they were scattered under the threshold when the

based dataset was used, as Figure 30 shows.

Lastly, the confusion matrix was assembled based on the

RFT, where it shows that all the fraud transactions were

correctly predicted in both datasets. Moreover, the

incorrectly predicted normal transactions decreased from

101 transactions for the base dataset experiment to be 75

transactions in the mixed dataset experiment, as depicted in

Figure 31.

Accordingly, FPR decreased from 0.19 in the base dataset

to about 0.08 in the mixed dataset experiment. Table 6 shows

a summary of all the performance results in the next section.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

E. DISCUSSIONS

The mixed dataset shows a better performance in almost

every measure, and Table 6 shows the overall indicators in

percentage for comparison.

The FPR dropped drastically from around 19% for the base

dataset to around 8% for the mixed dataset. This was

expected as the number of fraud class transactions in the

mixed dataset is almost double. However, the interesting part

is that the FP number itself decreased in nearly all

experiments, which implies a better model's ability to

separate the fraud class from the normal class. The reason for

this is that the shape of the reconstruction error distribution

that was nicely flattened under the threshold line. Moreover,

the proposed threshold (RFT) proved to be a good estimate,

as its value was almost doubled from around 0.2 for the base

dataset, reaching approximately 0.5 in the mixed dataset

case. This increased the model's ability to cover a broader

range of the reconstruction error.

In anomaly detection research, a highly unbalanced dataset

is always the case, which impacts the performance of certain

measures such as precision and accordingly F1 measure; that

is, the precision considers the FP count relative to the true

positive count. Thus, although the result shows a better

precision and F1 measure in the mixed dataset, reaching

around 39% and 56%, respectively, these values are still low

compared to other studies that are not in the anomaly

detection domain. The better alternatives to the F1 measure

that can be used in the anomaly detection field are ROC and

AUC as the TP/FP ratio issue does not impact them.

Therefore, we obtained an AUC value of 96.50% in the

mixed dataset, which is still comparable across different

research domains.

TABLE VI

OVERALL PERFORMANCE RESULTS IN PERCENTAGE FOR BOTH

DATASETS. THE RESULTS SHOW THE MEAN OF RETURNS AVERAGED

OVER SIX RUNS. THE STANDARD DEVIATION IS NOT REPORTED SINCE THE

VARIATION IS INSIGNIFICANT (STD LESS THAN 0.01).

Name Acc. Precision Recall F1 AUC FPR

Base

AE-S 83 10 100 19 92.00 18

AE-M 82 10 100 18 91.50 19

VAE 81 10 100 18 90.57 19

Mixed

AE-S 93 38 100 55 96.30 7

AE-M 93 39 100 56 96.50 7

VAE 93 36 100 53 96.45 8

The proposed approach of having a multi-loss function for

the autoencoder model shows the best overall result with the

mixed dataset, as its FPR went as low as 7%, while its AUC

scored 96.50%.

Although the proposed models' overall performance and

results were good, some minor overfitting was reported in

the mixed dataset even after applying cross-validation,

regularization, and dropout techniques. Solving this issue

may require access to a bigger dataset. However, in this

research, the implementation is mainly focused on the latent

vector and the reconstruction error rather than the actual

output of the model. Hence, minor overfitting is not expected

to have an impact on the model's overall performance.

In this paper, we have designed and implemented a deep

learning model that gives state-of-the-art results, in terms of

the FPR, RFT, and AUC, for improving the anti-money

laundering (AML) process. We also explored recent state-of-

the-art deep learning and unsupervised learning techniques

such as autoencoder (AE), variational autoencoder (VAE),

and generative adversarial network (GAN), and we showed

that these techniques can enhance earlier results [7, 8].

Recent works such as Pumsirirat and Yan [42] and Paula

et al. [43] both used autoencoders (AEs) to investigate fraud

and money laundering. However, for the first time, we

demonstrate the applicability and effectiveness of combining

AE and VAE with WGAN methods. We use WGAN to

generate realistic synthetic fraud transactions to solve the

issue of imbalanced class labels, and such additional

transactions are then used by the AE/VAE to train the model.

Our results indicate that this approach achieves significant

improvements for fraud detection.

VI. CONCLUSIONS AND FUTURE WORK

Money laundering is a serious global issue that needs to be

addressed, especially considering the fast-growing datasets

that need to be evaluated and analyzed. This research

attempted to extend the work previously started in 2014 by

applying deep learning and unsupervised techniques to

improve the anti-money laundering process. More

specifically, our system leveraged AE and VAE models.

However, as access to the whole dataset is not available

anymore, the current study relied on another advanced

technique in deep learning called GAN to generate more

fraud transactions to produce more reliable models.

To obtain a more balanced dataset, WGAN was used to

generate more fraud transactions, which were mixed with the

base dataset to produce the mixed dataset. This was then used

to train the autoencoders. WGAN performance scored a very

high accuracy, reaching about 99%. Hence, the generated

fraud transactions were almost identical to the real fraud

transactions.

Experimental results show that even with the base dataset,

the proposed models performed better than the original

research as it helped decrease the FPR to reach around 18%.

However, using the mixed dataset, the results were even

better as the FPR was reduced to 7%. Other measures were

enhanced, such as accuracy, which increased to 93%, and

AUC, which reached 96.50%. Results also show that the

proposed multi-loss function autoencoder performed better

than the other models.

It is worth mentioning that the model’s loss in the mixed

dataset case was slightly over-fitted. Hence, additional data

may be required to overcome this issue in the future.

However, as this implementation mainly focused on the

latent vector and the reconstruction error rather than the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

actual output of the models, minor overfitting is not expected

to impact the model's overall performance.

Money laundering inherently possesses complicated

characteristics, for example, the layering phase in which

launderers distribute money between the different accounts

while trying to hide their sources. Capturing such a pattern

will require additional work such as the graph and social

network analysis along with the deep learning and

unsupervised techniques proposed by this study.

Despite the promising results, there is still some space for

enhancement. This could be achieved if access to a bigger

dataset is secured along with an in-depth interpretation for

the dataset attributes.

REFERENCES

[1] Money Laundering, FATF. Accessed on: May 01, 2019. [Online].

Available: https://www.fatf-gafi.org/faq/moneylaundering.
[2] S. Surendran and M. Ramasamy. “Consequences of money laundering

in banking sector,” Sains Humanika, vol. 64, no. 2, 2013.

[3] I. E. Bekhouche, “Money laundering in Malaysia, regulations and
policies,” Intl. J. of Law, vol. 4, no. 2, pp. 22-26, 2018.

[4] K. Dugan, Italian bank will pay $1.3B fine for money laundering, New

York Post. Accessed on: May 01, 2019. [Online]. Available:
https://nypost.com/2019/04/15/italian-bank-will-pay-1-3b-fine-for-money-

laundering.

[5] K. Dugan, UK bank hit with $1B in fines for helping Iran launder money,
New York Post. Accessed on: May 01, 2019. [Online]. Available:

https://nypost.com/2019/04/09/uk-bank-hit-with-1b-in-fines-for-helping-

iran-launder-money
[6] Reuters. Morgan Stanley fined $10M for anti-money laundering failures,

New York Post. Accessed on: May 01, 2019. [Online]. Available:

https://nypost.com/2018/12/26/morgan-stanley-fined-10m-for-anti-money-
laundering-failures.

[7] Z. Chen et al., “Exploration of the effectiveness of expectation

maximization algorithm for suspicious transaction detection in anti-money
laundering,” in Porc. 2014 IEEE ICOS, 2014, pp. 145-149.

[8] Z. Chen et al., “Machine learning techniques for anti-money laundering

(AML) solutions in suspicious transaction detection: A review,” Knowl. and
Inf. Sys., vol. 57, no. 2, pp. 245-285, 2018.

[9] Financial Stability Board, “Artificial intelligence and machine learning

in financial services – Market developments and financial stability
implications,”, Financial Stability Board, pp. 45, Nov 01, 2017. [Online].

Available: http://www.fsb.org/2017/11/artificial-intelligence-and-machine-

learning-in-financial-service/
[10] R. Wedge et al., “Solving the false positives problem in fraud

prediction using automated feature engineering,” in Proc. Joint Eur. Conf.

on Mach. Learn. and Know. Disc. in Databases, pp. 372-388, 2018.
[11] L. Rojas, E. Alonso, and S. Axelsson, “Multi agent based simulation

(MABS) of financial transactions for anti-money laundering (AML),” in

Proc. Secure IT Systems - 17th Nordic Conf., NordSec 2012, Karlskrona,
Sweden, 2012.

[12] Y. Şahin and E. Duman, “Detecting credit card fraud by decision trees

and support vector machines,” in Proc. IMECS, Hong Kong, 2011.
[13] V. Jayasree and RV S. Balan. “Money laundering regulatory risk

evaluation using Bitmap Index-based Decision Tree.” Journal of the

Association of Arab Universities for Basic and Applied Sciences, vol. 23,
no. 2017, pp. 96-102, 2017.

[14] S. Wang and J. Yang. “A money laundering risk evaluation method
based on decision tree,” in Proc. 2007 IEEE Int. Conf. on Machine Learning

and Cyber., vol. 1, 2007, pp. 283-286.

[15] D. Savage, Q. Wang, P.L. Chou, X. Zhang, and X. Yu “Detection of
money laundering groups using supervised learning in networks.” arXiv

preprint arXiv:1608.00708, 2016.

[16] Y. Zhang and P. Trubey, “Machine learning and sampling scheme: An

empirical study of money laundering detection,” Comput. Econ, vol. 54, pp.

1043-1063, 2019.
[17] L.T. Lv, N. Ji, and J. Zhang. “A RBF neural network model for anti-

money laundering.” in Proc. 2008 Int. Conf. on Wav. Anal. and Patt. Recog.,

Hong Kong, China, 2008, pp. 209-215.
[18] E. Badal-Valero, J.A. Alvarez-Jareño, and J.M. Pavía, “Combining

Benford’s Law and machine learning to detect money laundering. An actual

Spanish court case.” Forensic Sc. Int., vol. 282, pp. 24-34, 2018.
[19] A. Chouiekh and E.H. Haj, “Convnets for fraud detection analysis,”

Proc. Comp. Sc., vol. 127, pp. 133-138, 2018.

[20] Z. Zhang, J .J. Salerno, and P. S. Yu, “Applying data mining in
investigating money laundering crimes,” in Proc. of the Ninth ACM

SIGKDD, 2003, pp. 747-752.

[21] D. K. Luna, G. K. Palshikar, M. Apte, and A. Bhattacharya, “Finding
shell company accounts using anomaly detection,” in Proc. of the ACM

India Joint Int. Conf. on Data Sc. and Manag. of Data, 2018, pp. 167-174.

[22] A. Claudio and J. Balsa, “Client profiling for an anti-money laundering
system,” arXiv preprint arXiv:1510.00878, 2015.

[23] M. Hegazy, A. Madian, and M. Ragaie, “Enhanced fraud miner: credit

card fraud detection using clustering data mining techniques,” Egyp. Com.
Sc. Journal, vol. 40, no. 3, pp. 72-81, 2016.

[24] J. Tang and J. Yin, “Developing an intelligent data discriminating

system of anti-money laundering based on SVM,” in Proc. 2005 IEEE Int.
Conf. on Machine Learning and Cyber., vol. 6, 2005, pp. 3453-3457.

[25] T. Yingjie et al., “Ramp loss one-class support vector machine; A
robust and effective approach to anomaly detection problems,”

Neurocomputing, vol. 310, pp. 223-235, 2018.

[26] W. An, M. Liang, and H. Liu, “An improved one-class support vector
machine classifier for outlier detection,” in Proc. of the Inst. of Mech. Eng.,

Part C: J. of Mech. Eng. Sc., vol. 229, no. 3, 2015, pp. 580-588.

[27] D. R. Wilson and T. R. Martinez, “Improved heterogeneous distance
functions,” J. of AIR, vol. 6, no. 1, pp.1-34, 1997.

[28] K. Chitra and B. Subashini, “Data mining techniques and its

applications in banking sector,” Int. J. of Emerg. Tech. and Adv. Eng., vol.
3, no. .8, pp. 219-226, 2013.

[29] D. K. Cao and P. Do, “Applying data mining in money laundering

detection for the Vietnamese banking industry,” in Proc. of ACIIDS, 2012,

pp. 207-216.

[30] V. Zaslavsky and A. Strizhak, “Credit card fraud detection using self-

organizing maps,” Information and Security, vol. 18, pp. 48-63, 2006.
[31] S. Engardt, “Unsupervised learning with mixed type data for detecting

money laundering,” M.S. Thesis, School of Elect. Eng. and Comp. Sc., KTH

Royal Institute of Technology, Stockholm, Sweden, 2018.
[32] X. Liu, P. Zhang, and D. Zeng, “Sequence matching for suspicious

activity detection in anti-money laundering,” in Proc. Int. Conf. on Intell.

and Sec. Inform., 2008, pp. 50-61.
[33] N. A. Le Khac and M. Kechadi, “Application of data mining for anti-

money laundering detection: A case study”, in Proc. of ICDM, 2010, pp.

577–584.
[34] G. Shabat, D. Segev, and A. Averbuch, “Uncovering unknown

unknowns in financial services big data by unsupervised methodologies:

Present and future trends,” in Proc. of KDD 2017 Workshop on Anomaly
Detection in Finance, vol. 71, 2018, pp. 8-19.

[35] K. A. Shaikh and A. Nazir, “A model for identifying relationships of

suspicious customers in money laundering using social network functions,”

in Proc. of the World Cong. on Eng., vol. 1, 2018, pp. 1-4.

[36] A. F. Colladon and E. Remondi, “Using social network analysis to

prevent money laundering,” Expert Systems with Applications, vol. 67, pp.
49-58, 2017.

[37] I. Molloy et al., “Graph analytics for real-time scoring of cross-channel

transactional fraud,” in Proc. of Int. Conf. on Fin. Crypt. and Data Sec.,
2016, pp. 22-40.

[38] J. An and S. Cho, “Variational autoencoder based anomaly detection

using reconstruction probability,” Special Lecture on IE, vol. 2.1, pp. 1-18,
2015.

[39] B. Kasra, Z. Chen, and T. Maul. “Data augmentation by autoencoders

for unsupervised anomaly detection,” arXiv preprint arXiv:1912.13384,
2019.

[40] B. Kasra, Z. Chen, and T. Maul, “Detecting point outliers using prune-

based outlier factor (PLOF),” arXiv preprint arXiv:1911.01654, 2019.

http://www.fsb.org/2017/11/artificial-intelligence-and-machine-learning-in-financial-service/
http://www.fsb.org/2017/11/artificial-intelligence-and-machine-learning-in-financial-service/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

[41] A. Malathi, J. Amudha and P. Narayana, “A prototype to detect

anomalies using machine learning algorithms and deep neural network,”

Comp. Vis. and Bio Insp. Comp., pp. 1084–1094, 2018.
[42] A. Pumsirirat and L. Yan, “Credit card fraud detection using deep

learning based on auto-encoder and restricted Boltzmann machine’, Int. J.

of Adv. Comp. Sc. and Appl., vol. 9, no. 1, pp. 18–25, 2018.
[43] E. L. Paula, M. Ladeira, R. N. Carvalho, and T. Marzagão, “Deep

learning anomaly detection as support fraud investigation in Brazilian

exports and anti-money laundering,” in Proc. 15th IEEE Int. Conf. on Mach.
Learn. and Appl., 2016, pp. 954–960.

[44] I. Vasilev et al., “Python Deep Learning” Packt Publishing, 2019.

[Online]. Available: https://www.packtpub.com/product/python-deep-
learning-second-edition/9781789348460

[45] D. P. Kingma and M. Welling, “Auto-encoding Variational Bayes”, in

Proc. ICLR, 2014, pp. 1–14.
[46] R. Atienza, Advanced Deep Learning with Keras, Packt Publishing, pp.

369, 2018. [Online]. Available: http://www.packtpub.com.

[47] J. Jordan, Variational Autoencoders, Accessed on: August 15, 2018.
[Online]. Available: https://www.jeremyjordan.me/variational-

autoencoders.

[48] I. J. Goodfellow et al., “Generative Adversarial Networks”, pp. 1–9,
2014. [Online]. Available: http://arxiv.org/abs/1406.2661.

[49] P. Spyridon and Y.S. Boutalis, “Generative adversarial networks for

unsupervised fault detection,” in Proc. 2018 Eur. Control Conf. (ECC),
2018, pp. 691–696.

[50] J. Klaas, Machine Learning for Finance, Packt Publishing, Accessed
on: August 05, 2019. [Online]. Available:

https://github.com/PacktPublishing/Machine-Learning-for-Finance.

[51] M. Arjovsky, C. Soumith, and L. Bottou, "Wasserstein generative
adversarial networks," in International Conference on Machine Learning,

2017, pp. 214-223.

[52] L. Weng, “From GAN to WGAN,” Accessed on: August 18, 2019.
[Online] Available: https://lilianweng.github.io/lil-log/2017/08/20/from-

GAN-to-WGAN.html
[53] Arjovsky, M., Chintala, S. and Bottou, L., 2017, July. Wasserstein
generative adversarial networks. In International conference on machine

learning (pp. 214-223). PMLR.

Zhiyuan Chen received the M.Phil. and a

Ph.D. in Computer Science from the University

of Nottingham in 2007 and 2011, respectively.
Since 2012, she has been an Assistant Professor

with the University of Nottingham Malaysia

(UNM), School of Computer Science. She
works as Principal Consultants for many

industrial and research organizations. Before
joining UNM, she has been a research associate

in the UK Horizon Digital Economy Research

Institute. Her research interests are in the area of
Machine Learning, Data Mining, Deep

Learning, and Anomaly Detection.

Waleed Mahmoud Soliman received his
Ph.D. in economics & management from

China Agricultural university in 2015. He

received the M.S. degrees in agri. economics

& management from Minia University in

2008 and the M.S. degrees in computer
science from the University of Nottingham

in 2020. His research interests include Macro

Economics, Artificial Intelligence (AI),
Machine Learning, Data Science, and Big Data.

AMRIL NAZIR is an Associate Professor
at the College Technological Innovation,

Zayed University, and the Consulting
Director / Chief Architect at

CODECOMPASS LLP. He was formerly a

Senior Research Scientist for the Malaysian
R&D institute for 9 years. His research

interests include Artificial Intelligence (AI),
Machine Learning, Data Science, and Big

Data.

MOHAMMAD SHORFUZZAMAN is currently an Associate Professor
with the Department of Computer Science, College of Computers and

Information Technology (CCIT), Taif University, Taif, Saudi Arabia. He is
also a member of the Big Data Analytics and Applications (BDAAG)

Research Group, CCIT. His current research interests include applied

Artificial Intelligence in the areas of computer vision, natural language
processing, big data, and cloud computing.

http://www.packtpub.com/
http://arxiv.org/abs/1406.2661

	Variational Autoencoders and Wasserstein Generative Adversarial Networks for Improving the Anti-Money Laundering Process
	Recommended Citation

	Variational Autoencoders and Wasserstein Generative Adversarial Networks for Improving the Anti-Money Laundering Process

