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ABSTRACT The super packed functionalities and artificial intelligence (AI)-powered applications have
made the Android operating system a big player in the market. Android smartphones have become an
integral part of life and users are reliant on their smart devices for making calls, sending text messages,
navigation, games, and financial transactions to name a few. This evolution of the smartphone community
has opened new horizons for malware developers. As malware variants are growing at a tremendous rate
every year, there is an urgent need to combat against stealth malware techniques. This paper proposes a
visualization and machine learning-based framework for classifying Android malware. Android malware
applications from the DREBIN dataset were converted into grayscale images. In the first phase of the
experiment, the proposed framework transforms Android malware into fifteen different image sections and
identifies malware files by exploiting handcrafted features associated with Android malware images. The
algorithms such as Gray Level Co-occurrence Matrix-based (GLCM), Global Image deScripTors (GIST),
and Local Binary Pattern (LBP) are used to extract the handcrafted features from the image sections. The
extracted features were further classified using machine learning algorithms like K-Nearest Neighbors,
Support Vector Machines, and Random Forests. In the second phase of the experiment, handcrafted
features were fused with CNN features to form the feature fusion strategy. The classification performance
was evaluated against every malware image file section. The results obtained using the Feature Fusion
strategy are compared with handcrafted features results. The experiment results conclude to the fact that
Feature Fusion-SVM model is most suited for the identification and classification of Android malware
using the certificate and Android Manifest (CR+AM) malware images. It attained an high accuracy of
93.24%.

INDEX TERMS Handcrafted features, Machine learning, malware, Classification, Visualization, Android,
Security, Feature fusion

I. INTRODUCTION

Smartphones nowadays are a virtual substitute for any
generic computing device. Smartphones have become an in-
tegral part of life and users are reliant on their smart devices
for making calls, sending text messages, navigation, games,
and financial transactions to name a few. This evolution of
the smartphone community has opened new horizons for
malware developers. There are more than thirty categories

available on online app stores like Google Playstore. Among
those categories, Games, Business, Lifestyle, Education,
Entertainment, and Health & Fitness are found to be the
most popular. Users make use of these applications to their
maximum advantage and tend to communicate, entertain,
business, relax, and educate themselves. The rapid adoption
of such applications has resulted in the generation and
sharing of sensitive information. Amongst the plethora of
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available mobile operating systems, Android has managed
to conquer more than 86% of the total market. Android
being a market leader has an open marketplace and a huge
community promulgating intensely popular APIs.

The popularity of the Android operating system has also
attracted cybercriminals to develop malicious applications
to exploit Android users for monetary benefits. The cyber
attacks are commonly categorized as Malware, Adware,
and Potentially Unwanted Applications (PUA). As per the
annual threat report 2020, 57% of the total detected attacks
were due to malware. During the COVID-19 pandemic, a
notable rise is observed in the number and the severity of
cyber-attacks. The finding indicates that 68% of the total
reported attacks were related to financial gains. Furthermore,
once the malware applications breach into the phone, they
can adversely affect the smooth flow of an activity lifecycle
paradigm. Activity lifecycle involves various stages such as
onCreate(), onStart(), onStop(), and onDestroy() to name
a few. These callbacks are important to preserve because
they do take care of the normal execution of an Android
application. Android-powered devices run the archive file
known as Android Package (APK). An APK can be written
in renowned languages such as java, C++, and kotlin. The
APKs which are of few megabytes (MBs) in size when
backed with malicious payloads can harm the user socially,
emotionally, and financially. Malware applications tend to
hijack the imperative building blocks of the APK known as
application components. These components are activities,
broadcast receivers, content providers, and services. Mal-
ware authors take control of these components and compro-
mise the Android devices by establishing communication
with Command and Control (C&C) servers.

Automation and artificial intelligence are on the rise to
generate variants of malware families rapidly. Researchers
have realized that using signature-based methods, static
methods, and dynamic methods are not competing against
fast-growing malware variants. Signature-based detection
approaches are more prone to code obfuscation and transfor-
mation techniques. These approaches also need to keep their
database updated every time by appending new malware
variants into it. Plenty of time and expertise is invested in
manually analyzing the signatures and then extracting them.
The static analysis doesn’t stand even with trivial trans-
formations [1]–[3]. On the other hand, dynamic analysis
is heavy on time and resources [4], [5]. Significant time
is required to extract the static and dynamic features for
the detection and classification of Android malware. The
researchers have proposed various algorithms to build a
robust feature set to solve the multiclass problem. Construct-
ing the feature set manually is a tedious task and hence
requires more expertise and time. There is a need to deploy
better feature reduction techniques or other supplementary
techniques to build time-sensitive feature sets in Android
malware research.

Visualization-based techniques do not let the applica-
tion to execute rather it extracts CNN features [6] and

handcrafted features for the classification task. Handcrafted
features are used to extract the information from the images.
These features help to solve classification problems. The
algorithms such as GLCM, GIST, and LBP are also known
as texture or image descriptors. To perform classification,
the aforementioned algorithms must be used in linear com-
bination with machine learning classifiers such as Support
Vector Machine (SVM), K-Nearest Neighbor (KNN), and
Random Forest (RF). The image-based approaches based on
handcrafted features have gained an edge over traditional ap-
proaches for malware identification as handcrafted features
refer to properties derived using various algorithms using the
information present in the image itself. The adopted method-
ology would study raw bytes of malware code visualized as
an image. Such consideration would eventually eliminate
the need for decryption, disassembly, reverse engineering,
and execution of code. Min-Max Normalization method is
considered to investigate the impact of data normalization on
the classification performance of malware images. Results
produced on normalized and un-normalized are also com-
pared. A total of fifteen unique combinations of the Android
malware file structure were used to generate the malware
images. This paper is the extension of the work presented by
authors in [7]. They have deployed the visualization-based
approach infusion with deep learning architecture to classify
the Android malware families. We are motivated to improve
the classification accuracy by proposing the model based on
feature fusion methodology. Feature fusion is constructed
by combining the rich features extracted from deep layers
of Convolutional Neural Network (CNN) with handcrafted
features such as Gray Level Co-occurrence Matrix (GLCM),
Global Image deScripTors (GIST), and Local Binary Pattern
(LBP).

The manuscript is organized as: section 2 discusses the
related work of the study, section 3 lays the foundation for
the proposed methodology, section 4 elaborates the results
and findings, and section 5 concludes the study.

II. RELATED WORK
Authors in [8] implemented image-based approach to iden-
tify the malicious patterns in the code. They mapped the
sequence of API pairs to RGB images. After preprocessing
and preparation of the data for the neural network, it was
fed into the convolutional neural network. They worked on
the two-class problem i.e. detecting whether an application
is benign or malicious. The authors ran the experiment for
100 epochs with batch size 32. A disassembly process was
required to extract the API calls. Authors in [9] consider
a dataset of 144 Android permissions. They used the tools
such as androguard parser and smali disassembler for the
parsing and decompilation process of an APK. Further, they
extracted the requested permissions from the disassembled
manifest file and mapped it into 12x12 permission vectors
as an image. Their dataset contains a total of 2500 Android
applications in which 2000 applications were malware sam-
ples and 500 applications were benign samples. Further, a
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deep learning model was applied to identify and classify
the malware samples. Authors in [10], first disassembled
the APK file and extracted only the dex bytecode from
the file. They converted the dex bytecode into RGB image
format and fed it into a convolutional neural network for
automatic feature extraction and training. Authors in [11],
implemented their Android malware detection approach
in two phases. In the first phase, they extracted the dex
bytecode from the APK archive and transformed it into
RGB images. In the second phase, images were used to
train the convolutional neural network. They implemented
eight hidden layers in the convolutional neural network and
used the softmax function to classify whether the sample is
benign or malicious. A better result of precision and recall
was observed for malware samples as compared to benign
samples. Authors in [12] used the convolutional neural
network for detection of Android malware. They had used
the Rectified Linear Unit (Relu) activation function as it
overcomes the vanishing gradient problem and shows better
convergence performance. Furthermore, they had employed
the deep autoencoder to reduce the training time by 83% of
the convolutional neural network. They had also compared
their model with other machine classifiers such as Support
Vector Machine (SVM). The accuracy of their proposed
model was improved by 5% when compared to the accuracy
obtained using the SVM classifier. Authors in [13] imple-
mented multimodal deep learning strategy for Android mal-
ware detection. They have used publicly available dataset
omnidroid and Knowledge Discovery in Databases (KDD)
for training and evaluation of the proposed model. They uti-
lized manual and automatic feature engineering using deep
learning architectures. They have used convolutional neural
network, deep neural network, and transformer networks
to perform feature learning from grayscale images which
are generated from dex bytecode, static features i.e. intents
and permissions, and dynamic features i.e. system calls
respectively. Authors in [14] utilizes the GIST features for
the classification of malware families. The classifiers such
as Support Vector Machines, K-Nearest Neighbor, Random
Forests, and Naive Bayes were used in the experimenation.
The results with Support Vector Machines attain the highest
accuracy of 92.7%. Authors in [15] transformed the dalvik
executable code into two dimensional bytecode matrix.
Further, convolutional neural network was used for training
and classification task. Convolutional neural network can
automatically learn the features from the bytecode files to
recognize the malware. Various research areas and trends in
Android security domain were studied by the authors using
latent semantic analysis technique in [16], [17]. Authors
in [18] discusses the alarming challenges in the field of
Android security. Authors in [19], implemented the ten-
sorflow models i.e. GoogleNet and ResNet for malware
detection. In their work, ResNet proved to be more accurate
but consumed a lot of time. Authors in [20] proposed
the image texture-based approach to perform the analysis
on the code. They combine the image texture features

and API calls to train the Deep Belief Network (DBN).
DBN is stacked with Restricted Boltzmann Machines (RBN)
and Back Propagation (BP). Authors also compared their
proposed model with shallow machine learning models such
as Support Vector Machine (SVM), K-Nearest Neighbor
(KNN), and shallow feed-forward network ANN (Artificial
Neural Network) and found that the proposed DBN model
was more accurate. Table 1 comprises of a summary of
related literature.

The literature survey revealed that approaches of analyz-
ing malware include static analysis and dynamic analysis
or maybe the combination of both. The static analysis
mainly focuses on disassembling the code, followed by
manual investigation to search the malicious patterns in the
code. Conversely, dynamic analysis executes the code in
the virtual environment and analyzes its execution trace to
observe the malicious behavior of an application. The static
analysis is helpful in tracing original and full execution
paths; therefore, it provides complete code coverage but
eventually it suffers from code obfuscation. The sample has
to be decrypted first to perform static analysis. The problems
of intractable complexity hinder the analysis. Dynamic
analysis is more efficient and does not need the executable
to be unpacked or decrypted. The suspicious application is
monitored in a controlled environment. This process is time
and resource consuming. It also raises scalability issues.
Moreover, some malicious behavior might be unobserved
because the environment does not satisfy the triggering
conditions. Furthermore, malware authors make use of au-
tomation technology to generate a huge amount of new
malware variants, thus posing a big challenge to malware
analysts. The present state of art demands the integration of
existing primitive techniques with supplementary techniques
to achieve an effective solution. Supplementary techniques
such as visualization-based analysis should be leveraged
to complement the classification of fast-growing Android
malware families. It is proven to be effective in determining
abnormal modern malicious behavior or security vulnerabil-
ities. Deploying a visualization-based technique, a malware
variant can be visualized as an image. An image can capture
even small changes. In this paper, the visualization-based
technique backed with feature fusion strategy is proposed
to reduce the influence of obfuscation by transforming
the malware‘s non-intuitive features into fingerprint images
followed by the classification of Android malware families.
The following section explains the adopted methodology
and to undertake a case analysis.

III. MATERIALS AND METHODS
We evaluated our experiments over the DREBIN [38]
dataset. This dataset has been adopted by many researchers
investigating Android malware. The count of samples of
malware families in DREBIN dataset is shown in the Figure
1. The subsequent sections discuss the methodology of
the proposed work followed by results and findings. A
graphical representation of the proposed methodology is
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illustrated in Figure 2. The following subsections discusses
the underlying steps in proposed methodolgy.

A. DESCRIPTION OF FUNDAMENTAL CONCEPTS
With a slight change in malware code, the malware au-
thors can generate numerous malware variants. Any type
of malware can be visualized as an image, which can
capture even the slightest of the changes. An image has the
capability to retain the original semantics of the code. The
basic structure of an APK and the process of transforming
malware into images are defined in subsequent sections.
All files and folders that are contained in the ZIP archive
of an APK. These files are binded together to develop an
application. The literature survey indicated an inspection
of four types of primary resources for identifying malware
behaviour [5]. These primary resources include classes.dex,
resource, manifest, and certificate files. There is a high
propensity that malware developers exploit these files to
store malicious behavior.

FIGURE 1. Count of samples in each malware family in DREBIN dataset

The functionality and purpose of files and folders within
an apk as shown in Figure 3 are explained below:

a) Meta-Inf /: It contains the signature files such
as CERT.SF and CERT.RSA. It also contains the manifest
file i.e. MANIFEST.MF

b) assets/: AssetManager object is used by the application
to retrieve the application assets detailed in assets folder.

c) res/: This folder includes description of resources.
These resources are not compiled in resources.arsc folder.

d) lib/: The software layer of a processor is associated
with a particular type of compiled code that is stored inside
this folder.

e) resources.arsc : The compiled apk resources are
contained within this file. Strings, styles and the paths of
images/layout files are part of this content. Data is processed
in XML format only.

f) classes.dex : Class files are generated after compilation
of the java code. These class files are merged into one single
dex file using some standard dex tool. Classes.dex contains
the Dalvik bytecode. Dalvik Virtual Machine executes the
dex file. Any change in dex file will affect the APK.

g) AndroidManifest.xml: It includes the set of per-
missions required by an application, hardware or software
components, and linking of API libraries. It also reveals the
SDK version.

B. CONVERTING MALWARE APK INTO GRAYSCALE
IMAGES

Primarily four types of files such as classes.dex, resource,
manifest, and certificate files constitute a stable APK struc-
ture [39]. The malware binary bits are paired into 8-bit
vectors and in this manner converted over into grayscale
images. There are a couple of key advances associated while
transforming any malware binary samples into grayscale
images. The whole malware substring can be viewed as the
grouping of a few substrings. Every substring in a binary
code which is 8-length long termed as a pixel. The 8-bit
length number stream can be further converted to represent
decimal numbers within the range 0 to 255. After the
computation of unsigned decimal numbers, the malicious
code matrix needs to be generated. All malware executable
substrings are further split into 1D vectors of decimal
numbers. A one-dimensional vector space can be considered
as linear vector space. It is further processed to form a two-
dimensional matrix of specific width. Furthermore, some
generalizations have been made based on empirical observa-
tions. We have fixed the grayscale image widths as indicated
by the image size in Table 2 [40]. In this paper, we have used
the DREBIN dataset for malware classification purposes.
The malware executables of twenty families were converted
into grayscale images by following the above-mentioned
steps. The illustration of malware images of families such
as FakeInstaller, DroidKungFu, Plankton, and Opfake is de-
picted in Figure 4. These grayscale images relate to various
areas of the APK. We have created the images using fifteen
unique combinations of Android file structures. Figure 6
summarizes the number of malware images generated for
every unique file structure combination. It can been visually
interpreted from the figure that the malware images are
distributed familywise. CR stands for the certificate file,
AM, RS, CL stands for Android manifest file, resources
file, and classes.dex file of any malware APK. In Figure
4, the malware images of the families are generated using
file combination CR and RS. In Figure 5, the malware
images of the families are generated using file combination
CR+AM+RS+CL. The variants of the mentioned malware
families were found to be dissimilar in their texture. These
images found to have different grayscale image textures
when generated using different file structure combinations.
The texture tends to change with the contents of the malware
APK. The malware images generated are different in size.
The height of the images is adjusted according to the file
size of the malware sample. This motivates to classify and
analyze the malware based on malware images.
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FIGURE 2. The proposed methodology

FIGURE 3. Primary resources of an APK

TABLE 2. Fixation of image width

File Size Width
<50 KB 64
50KB~100KB 128
100KB~200KB 256
200KB~500KB 512
500KB~1000KB 1024

C. EXPERIMENT DESIGN
As depicted in Figure 4 and 5, we can see that malware im-
ages have textures in it. The texture is the description of the
spatial arrangement of color, intensities, or a selected region
in an image. Image texture is a function of spatial variation
in pixel intensity which reveals how the pixel values are
changing over an area. It eventually defines the visual
interpretation of an image. Nowadays, in the era of digital
image analysis, textures of the image are used for various
purposes such as image segmentation, image classification,
texture synthesis, and shapes that can be discriminated using
textures. Texture involves the spatial distribution of gray
levels. There are multiple uses of textures. Application areas
of textures are multidisciplinary such as the food processing

industry, biometrics analysis (matching fingerprint, iris, or
retina), medical image analysis, remote sensing data analysis
(geographic information system), cybersecurity. The texture
features are calculated using a statistical approach. The
statistical approach includes methods such as GIST, Gray
Level Co-occurrence Matrix-based (GLCM) features, and
Local Binary Pattern (LBP) features. The stated descriptors
are explained as below:

1) Gray Level Co-occurrence Matrix-based (GLCM features)
GLCM are one of the most popular texture features which
have been utilized widely for content-based image retrieval,
medical image classification, and object recognition. In this
approach, texture information from the image is extracted
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FIGURE 4. Malware images generated using files certificate (CR) and resource (RS) of an Android application

FIGURE 5. Malware images generated using files Android manifest (AM), certificate (CR), classes.dex (CL), and resource (RS) of an Android application

FIGURE 6a. Distribution of eight types of unique malware images across malware families
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FIGURE 6b. Distribution of eight types of unique malware images across malware families

FIGURE 6c. Distribution of seven types of unique malware images across malware families

FIGURE 6d. Distribution of seven types of unique malware images across malware families

FIGURE 6. Distribution of malware images across malware families (CR is Certificate, AM is AndroidManifest, RS is Resource, CL is Classes.dex)

from the spatial relationship between the pixels. This spatial
relation between the image pixels is defined in terms of
distance and orientation. Initially, the GLCM matrix is
calculated which estimates the probability density function
of the gray level pairs in an image with some specific spatial
relationship. The most common choice of distance is 1 in
four directions (0°, 45°, 90°, and 135) [22], [37]. Then,
several statistics are calculated from this matrix to describe
the texture in an image. In this work, only nineteen statistics
are used to represent the texture of malware images. These
features include contrast, correlation, energy, entropy, ho-
mogeneity, sum of square, sum average, sum variance, sum
entropy, difference variance, difference entropy and Infor-
mation measure of correlation. These features are measured
for each combination of distance and orientation which
results in total 76 features.

2) Local Binary Pattern (LBP)

Local Binary Pattern (LBP) [41], [42] texture descriptor
is calculated on malware grayscale images. In a small
patch/matrix of the image, the center pixel is surrounded
by the neighbors. If the neighbor has the value greater than
the center value, it would be replaced with 1 otherwise with
0. For example, consider the 3x3 matrix, there would be 8
neighbors around the center pixel and hence 8-bit sequence
would be generated. For every 8-bit sequence, there are 8
such rotations and also there is an integer representation
associated with each rotation. LBP is typically defined as the
integer value of the minimum of rotations. The parametric
value of radius is taken to be 8.
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3) Global Image deScripTors (GIST)
GIST algorithm [43], [44] is known for its good accuracy
in computer vision tasks. GIST uses 8 orientation of pa-
rameters per scale in 4 different blocks. It convolved the
image with 32 Gabor filter at 4 scales and 8 orientation to
produce 32 feature maps of the same size of an input image.
It divides each feature map into 16 regions (4x4 grid) and
then averages the feature values within each region. It then
concatenates the 16 averaged values of all 32 feature maps
resulting in a 16x32=512 GIST descriptors.

Feature fusion has been widely adopted by researchers
for detection and classification tasks relevant to computed
vision [45]–[49]. We have used GIST descriptors with
default value. Using default GIST values produced 512
features in total. For GLCM and LBP, a total of 76 and 58
features respectively are used. CNN architecture produces
the vector of length 4096 features. In our work, we have
used the concatenation method for feature fusion [50], [51].
Features are concatenated column-wise. The working of
CNN architecture has been elaborated in Figure 9.

IV. RESULTS
Top twenty classes with maximum number of instances
in the DREBIN dataset were included in this experiment.
We have used a handcrafted and CNN feature extraction
approach to solve the malware classification problem. The
results obtained from the experiments are discussed in the
subsequent sections.

A. CLASSIFICATION PERFORMANCE WITH
HANDCRAFTED FEATURES
Table 3 shows the classification results with classifiers SVM,
KNN, and RF for malware images using three texture de-
scriptors GLCM, GIST, and LBP. To identify the effective-
ness of the proposed solution, various evaluation measures
such as Accuracy, Precision, Recall, and Error Rate were
explored. We have used the default parameters of machine
classifiers - Support Vector Machines, K-Nearest Neighbor,
and Random Forest which are mentioned in the Scikit-Learn
library. The important findings from the outcomes are as
follows.

The performance of SVM classifier degrades for malware
images when used with GLCM and LBP texture descriptors.
As shown in Table 3, when features were extracted using the
GLCM algorithm and used SVM to perform classification,
the accuracy for 11 different combinations of image sections
lies only between 51% to 59%. For some combination
of image sections, it is even worse. For combination RS,
CR+RS, AM+RS, CR+AM+RS, it is 30.56%, 29.71%,
38.62%, 39.21% respectively. In LBP+SVM classification
results, the accuracy for 14 combinations of image sections
lies only between 54% to 63%. For RS combination, it is
even poorer which is 46.62%. The performance of the SVM
classifier significantly improved when used with GIST text
descriptors. For 15 unique combinations of image sections,
the accuracy lies between 82% to 92%. The highest accuracy

of 91.29% was observed for combination CR+AM. The
lowest accuracy of 82.92% was observed for combination
CR.

When the KNN classifier was used to classify GLCM fea-
tures, a decent accuracy between 79% to 84% was observed
for most of the combinations of image sections. The highest
accuracy of 83.36% was observed for the combination of
CR+AM. The poor performance was seen against only one
combination i.e. CR with accuracy 56.05%. The KNN clas-
sifier also performs well when used with LBP descriptors.
The accuracy for 14 out of 15 combinations lies between
79% to 86%. For combination RS+CL malware images,
the highest accuracy of 85.18% was recorded. It is closely
followed by malware images combination of CR+RS+CL
with an accuracy of 84.92%. The lowest accuracy of 61.53%
was observed for CR malware images. The classification
results using GIST-KNN, showed good accuracy which is
comparable to classification results of GIST-SVM. For 14
combinations, accuracy lies between 85% to 91%. The
highest accuracy of 90.12% was observed for combination
CR+AM. The lowest accuracy of 80.60% was observed for
CR.

The better performance was seen in the results when
GLCM features are extracted from malware images and
classified using RF. For most of the combination of image
file sections, the accuracy lies between 87% to 92%. The
highest accuracy of 91.74% was observed for the combina-
tion of CR+AM of malware images. The lowest accuracy
of 76.62% was observed for CR malware images. When
malware images are classified using GIST texture descrip-
tors + RF classifier, the classification results are decent but
not better than GIST-SVM and GIST-KNN. The accuracy
for all combinations of malware images lies between 83%
to 89%. The highest accuracy of 88.69% was observed for
the combination of CR+AM of malware images. The lowest
accuracy of 83.42% was observed for CR.

When features were extracted using LBP texture descrip-
tors and classified using RF, it provided better classifica-
tion results than LBP-SVM and LBP-KNN. Most of the
combinations of malware image sections attain the accuracy
between 84% to 86%.

The top average accuracy observed to be 88.05%,
87.99%, 87.44%, 85.32%, and 84.37% for GIST-SVM,
GLCM-RF, GIST-KNN, GIST-RF, LBP-RF respectively.
The classification results with all classifiers SVM, KNN,
and RF on all combinations of malware image sections using
GIST algorithm found to be maximum stable. GIST features
are more helpful in drawing the original semantics and anal-
ysis of the malware image. GLCM features when classified
with SVM classifier shown poorer performance with an
average accuracy of 48.35%. LBP features performed well
with classifiers KNN and RF with an average accuracy of
81.17% and 84.37% respectively. LBP texture descriptors
did not perform well with the SVM classifier and attain an
average accuracy of 55.87%. CR+AM malware images have
attained the maximum accuracy.
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TABLE 3. Accuracy of handcrafted features on fifteen combination of malware images

Image
Combination

GLCM-
SVM

GLCM-
KNN

GLCM-
RF

GIST-
SVM

GIST-
KNN

GIST-
RF

LBP-
SVM

LBP-
KNN

LBP-
RF

CR 51.08% 56.05% 76.62% 82.92% 80.60% 83.42% 56.22% 61.53% 67.66%
AM 57.02% 81.60% 89.86% 90.70% 89.01% 86.35% 59.23% 79.39% 85.37%
RS 30.56% 79.45% 87.84% 86.02% 85.44% 84.07% 46.62% 80.88% 86.80%
CL 52.86% 82.25% 88.69% 88.69% 88.88% 86.28% 58.32% 83.62% 85.11%
CR+AM 58.45% 83.36% 91.74% 91.29% 90.12% 88.69% 62.42% 81.99% 86.22%
CR+RS 29.71% 79.91% 87.52% 85.70% 85.63% 83.81% 46.75% 79.97% 84.46%
CR+CL 53.06% 81.66% 89.08% 88.69% 89.14% 85.63% 58.19% 84.46% 85.11%
AM+RS 38.62% 80.17% 88.43% 87.26% 86.28% 84.14% 52.99% 79.52% 85.83%
AM+CL 52.86% 82.70% 88.56% 88.95% 88.49% 85.83% 58.45% 84.46% 86.35%
RS+CL 52.21% 82.31% 88.30% 88.75% 88.56% 85.18% 56.76% 85.18% 85.89%
CR+AM+RS 39.21% 80.95% 88.43% 87.39% 85.89% 84.79% 54.23% 79.97% 84.46%
CR+AM+CL 52.73% 83.09% 88.82% 87.84% 88.82% 85.31% 58.52% 84.07% 85.31%
CR+RS+CL 52.28% 81.86% 88.62% 89.01% 88.23% 85.24% 57.35% 84.92% 86.09%
AM+RS+CL 52.21% 82.18% 88.82% 88.56% 88.04% 85.37% 55.98% 83.94% 85.57%
CR+AM+RS+CL 52.34% 82.05% 88.56% 88.95% 88.49% 85.70% 56.05% 83.62% 85.37%

B. IMPACT OF NORMALIZATION ON CLASSIFICATION
PERFORMANCE

In this work, the Min-Max Normalization method is consid-
ered to investigate the impact of data normalization on the
classification performance of malware images. The method
scales the un-normalized data to a predefined lower and
upper bounds linearly. The data is usually rescaled within
the range of 0 to 1 or -1 to 1. Table 4 shows the classification
accuracy for normalized using handcrafted features. The
classification performance on normalized data is discussed
below.

The classification results produced using GLCM features
and classifiers SVM, KNN, and RF are depicted in Figure
7(a), 7(b), and 7(c). The difference in the classification
results with normalized and unnormalized data can be seen
visually. Figure 7(a) shows that there is an improvement
in classification performance with normalized data. For all
combinations of the malware image section, the accuracy
is observed to be significantly improved using GLCM-
SVM. It is to be worth noted that GLCM-SVM showed the
worst performance on unnormalized data with an average
classification accuracy of 48.35%. But with normalized
data, the average classification accuracy of GLCM-SVM
improved to 84.33%. The highest accuracy of 92.20% was
observed with GLCM-SVM using AM malware images.
Therefore, min-max normalization proved to be substantial
to make GLCM-SVM a more stable model.

Normalization not always improve classification perfor-
mance. Incase of GLCM-RF, the classification accuracy is
observed to be declined for some combination of malware
image sections. But it also increased for some of the
combinations. The maximum fall in accuracy is seen to be
0.85% for combination CR+RS. The maximum increase in
accuracy is seen to be of 0.85% for RS+CL. Hence, we can
say that normalization does not have a significant impact on
the combination GLCM-RF as shown in Figure 7(b)

The classification results improved with normalized data
using GLCM-KNN. It got improved for all combinations
of image file sections. There is an increase in accuracy

ranges from the window of 6.57% to 8.39% for at least
fourteen combinations as shown in Figure 7(c). It is ob-
served that classification accuracy for CR malware images
has been increased by 22.55%. Earlier GLCM-KNN with
unnormalized data was the worst performer on CR with
an accuracy of 56.05% but with normalized data, it got
increased to 78.61%. The average classification accuracy of
GLCM-KNN got improved from 79.97% to 87.91% due to
the impact of normalization.

There is no major impact of normalization was observed
on classification accuracy obtain using GIST features and
classifiers SVM, KNN, and RF.

The significant improvement is observed in the classifi-
cation results when malware images were classified using
LBP-SVM as shown in Figure 8(a). At least an increase of
21% to 27% in the accuracy has been observed in most of
the combinations of malware image sections. The average
classification accuracy increases from 55.87% to 80.37%.
Thus, normalization makes the LBP-SVM a more stable
model.

Normalization also improved the classification results of
LBP-KNN as shown in Figure 8(b). The average classifica-
tion results of LBP-KNN with normalized data observed to
be 84.34%.

There is no significant improvement observed in the
results of LBP+RF with normalized data as shown in Figure
8(c).

C. FEATURE FUSION OF CNN AND HANDCRAFTED
FEATURES ON NORMALIZED DATA
For feature fusion experiments, we have combined CNN
features and handcrafted features to perform Android mal-
ware image classification. The CNN architecture used in this
work was adopted from [7]. The classification is performed
using SVM, KNN, and RF classifiers with normalized data.
The graphical representation of the CNN architecture is
presented in Figure 9. The grayscale images are fed into
the CNN architecture. CNN will extract the features from
the malware images. Conv2D and MaxPooling2D are the
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TABLE 4. Accuracy of handcrafted features on fifteen combination of malware images (normalized dataset)

Image
Combination

GLCM-
SVM

GLCM-
KNN

GLCM-
RF

GIST-
SVM

GIST-
KNN

GIST-
RF

LBP-
SVM

LBP-
KNN

LBP-
RF

CR 78.94% 78.61% 77.11% 83.58% 80.60% 83.25% 63.02% 65.01% 68.99%
AM 92.20% 89.99% 90.12% 90.77% 89.66% 86.35% 80.30% 83.49% 85.11%
RS 79.13% 86.54% 87.58% 84.98% 85.37% 84.85% 73.93% 83.88% 86.35%
CL 84.85% 88.36% 88.62% 88.82% 88.62% 85.63% 84.01% 85.70% 85.24%
CR+AM 90.96% 90.57% 91.81% 91.35% 89.21% 88.56% 83.88% 84.72% 86.09%
CR+RS 81.27% 86.15% 86.67% 86.09% 85.37% 84.79% 76.92% 84.07% 84.14%
CR+CL 83.49% 89.34% 88.75% 88.75% 88.56% 85.83% 84.20% 87.06% 86.15%
AM+RS 83.42% 87.13% 88.36% 87.26% 86.35% 84.07% 77.96% 86.09% 86.22%
AM+CL 83.75% 89.40% 88.69% 88.82% 88.43% 85.89% 84.66% 87.26% 85.76%
RS+CL 84.07% 88.95% 89.14% 89.01% 88.43% 85.89% 83.75% 86.54% 85.89%
CR+AM+RS 86.28% 88.17% 88.49% 87.58% 86.35% 84.40% 76.72% 85.05% 84.59%
CR+AM+CL 84.66% 89.21% 88.43% 88.04% 88.75% 84.66% 84.92% 87.13% 86.02%
CR+RS+CL 83.68% 88.62% 88.56% 89.53% 88.10% 85.18% 83.22% 86.67% 86.09%
AM+RS+CL 84.14% 89.01% 89.08% 88.82% 88.43% 85.11% 84.20% 86.15% 85.70%
CR+AM+RS+CL 84.07% 88.62% 88.95% 89.21% 88.62% 85.37% 83.94% 86.35% 85.31%

FIGURE 7a. Comparison of Accuracy of GLCM-RF on fifteen combination of malware images of normalized and un-normalized dataset

FIGURE 7b. Comparison of Accuracy of GLCM-RF on fifteen combination of malware images of normalized and un-normalized dataset

FIGURE 7c. Comparison of Accuracy of GLCM-KNN on fifteen combination of malware images of normalized and un-normalized dataset
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FIGURE 8a. Comparison of Accuracy of LBP-SVM on fifteen combinations of grayscale malware images ofnormalized and un-normalized dataset

FIGURE 8b. Comparison of Accuracy of LBP-KNN on fifteen combinations of grayscale malware images ofnormalized and un-normalized dataset

FIGURE 8c. Comparison of Accuracy of LBP-RF on fifteen combinations of grayscale malware images ofnormalized and un-normalized dataset

other two libraries imported to set up the environment for
neural networks. MaxPooling will help to reduce the size of
the image. Other libraries imported are Activation, Dropout,
Flatten, and Dense. Malware grayscale images are in two
dimensions. The height, width, and depth of the input image
are taken to be 108, 108, and 1 respectively. To build and
train the CNN on the malware images of different families,
we added the three convolutional layers to the model which
are represented as the Conv2D (32,7,7), Conv2D (128,5,5),
and Conv2D (256,3,3). The first argument defines the num-
ber of output filters in the convolution layer. The next two
arguments define the kernel size. Kernel size is a tuple of
two integers that is specifying the width and height of the
two-dimensional convolutional window. ReLu is used as the
activation layer in the CNN architecture. Max-pooling layer

has been deployed with pool size 3X2, 3X3, and 2X2 after
each convolution layer. To avoid the overfitting problem, a
dropout layer with a value of 0.5 was used. Three dense
layers with 50, 100, 200 neurons were deployed in the
network. The softmax activation function is added to the
output layer of 20 neurons.

1) Comparison with GLCM-SVM, GIST-SVM, LBP-SVM

Feature Fusion with SVM classifier significantly improves
the classification accuracy when compared with the re-
sults of GLCM-SVM. A decent hike of 7% to 10% was
observed for at least ten combinations of malware im-
age sections as depicted in Figure 10(a). These combi-
nations are AM+RS+CL, CR+AM+CL, CR+AM+RS+CL,
AM+CL, CL, AM+RS, RS+CL, CR+RS+CL, CR+CL, and
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FIGURE 9. The CNN architecture

CR+RS with increased accuracy 6.70%, 6.96%, 7.02%,
7.35%, 7.35%, 7.35%, 7.61%, 8.13%, 8.45%, and 9.23%
respectively. For the rest of the combinations of malware
image sections, the classification accuracy increased from at
least 2% to the maximum of 7%. A slight decline of 0.65%
was observed in classification accuracy for malware images
created using AM file. The highest accuracy of 93.24% was
observed for combination CR+AM using Feature Fusion-
SVM classifier.

The classification results of Feature Fusion-SVM are also
compared with GIST-SVM as shown in Figure 10(b). It has
been observed that classification results produced using Fea-
ture Fusion-SVM are better than the results of GIST-SVM
on various combinations of malware image sections. For at
least thirteen combinations, there is a hike in classification
accuracy between the range 1% to 4%.

Figure 10(c) revealed that Feature Fusion-SVM also out-
performed the combination LBP-SVM. For combinations
AM, AM+RS, CR+RS, RS, CR+AM+RS the accuracy in-
creased by 11.25%, 12.81%, 13.59%, 14.69%, and 15.47%
respectively. For the rest of the combinations, there was an
increase in accuracy between the range 6% to 10%. The
average accuracy is observed to be 90.90% using Feature
Fusion-SVM whereas it was 80.37% using LBP-SVM.

2) Comparison with GLCM-KNN, GIST-KNN, LBP-KNN

The comparison results of Feature Fusion-KNN with
GLCM-KNN, GIST-KNN, LBP-KNN are shown in Figure
11(a), 11(b), and 11(c). An increase of 0.39% to 2.86%
in classification accuracy was observed when the results
of Feature Fusion-KNN are compared with GLCM-KNN.
On the other hand, an increase of 0.83% to 3.77% in
classification accuracy was observed when the results of
Feature Fusion-KNN are compared with GIST-KNN. KNN
outperformed the results of LBP-KNN when it was used
with feature fusion. It was observed that LBP-KNN showed
the worst performance against CR malware images with an
accuracy of 65.01%. KNN performance on CR malware im-
ages got better with Feature Fusion and obtain an accuracy
of 81.43%. For the rest of the combinations, accuracy ranges
from 2% to 7%.

3) Comparison with GLCM-RF, GIST-RF, LBP-RF
The comparison results of Feature Fusion-RF with GLCM-
RF, GIST-RF, LBP-RF are depicted in Figure 12(a), 12(b),
12(c). There is no significant difference between the results
which are produced by GLCM-RF and Feature Fusion-
RF. The variation in accuracy is observed when results
of GIST-RF are compared with classification results of
Feature Fusion-RF. An increase in accuracy between the
range of 0.17% to 4.16% was observed for RF when used
in linear combination with Feature Fusion. The results of
Feature Fusion-RF are also better than the results of LBP-
RF. The average classification result of LBP-RF is recorded
as 84.51% whereas it is 88.34% when RF is used with
handcrafted and CNN features.

The top five type of malware images against which hand-
crafted features and feature fusion strategy have attained
maximum accuracy are depicted in Figure 13(a), 13(b)
,13(c), 13(d), 13(e). It revealed that classifiers have attained
the maximum accuracy on AM and CR+AM malware
images. It is observed that sharp spikes appear when using
the feature fusion strategy for the classification of Android
malware images. For CR+AM malware images, GLCM,
GIST, and LBP features attained an average accuracy of
91.05%, 89.71%, and 84.89% respectively whereas feature
fusion strategy attained an accuracy of 91.3%. For AM mal-
ware images, GLCM, GIST, and LBP features attained an
average accuracy of 90.77%, 88.93%, and 82.96% respec-
tively whereas feature fusion strategy attained an accuracy
of 89.62%. For CR+CL malware images, GLCM, GIST,
and LBP features attained an average accuracy of 87.19%,
87.71%, and 85.80% respectively whereas feature fusion
strategy attained an accuracy of 90.75%. For AM+CL mal-
ware images, GLCM, GIST, and LBP features attained an
average accuracy of 87.28%, 87.71%, and 85.89% respec-
tively whereas feature fusion strategy attained an accuracy of
90.42%. For CR+AM+CL malware images, GLCM, GIST,
and LBP features attained an average accuracy of 87.43%,
87.15%, and 86.02% respectively whereas feature fusion
strategy attained an accuracy of 90.31%.

The confusion matrix for the twenty malware families
is shown in Figure 14. The performance metrics such as
precision, recall, and error rate is also shown in Figure 15.
As discussed earlier, Feature Fusion with SVM classifier
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FIGURE 10a. Comparison of Accuracy of GLCM-SVM and Feature Fusion-SVM on fifteen combinations of grayscale

FIGURE 10b. Comparison of Accuracy of GIST-SVM and Feature Fusion-SVM on fifteen combinations of grayscale

FIGURE 10c. Comparison of Accuracy of LBP-SVM and Feature Fusion-SVM on fifteen combinations of grayscale

FIGURE 11a. Comparison of Accuracy of GLCM-KNN and Feature Fusion-KNN on fifteen combinations of grayscale
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FIGURE 11b. Comparison of Accuracy of GIST-KNN and Feature Fusion-KNN on fifteen combinations of grayscale

FIGURE 11c. Comparison of Accuracy of LBP-KNN and Feature Fusion-KNN on fifteen combinations of grayscale

FIGURE 12a. Comparison of Accuracy of GLCM-RF and Feature Fusion-RF on fifteen combinations of grayscale

FIGURE 12b. Comparison of Accuracy of GIST-RF and Feature Fusion-RF on fifteen combinations of grayscale
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FIGURE 12c. Comparison of Accuracy of LBP-RF and Feature Fusion-RF on fifteen combinations of grayscale

FIGURE 13a. Graphplot showing accuracy of handcrafted features and feature fusion against CR+AM malware image

FIGURE 13b. Graphplot showing accuracy of handcrafted features and feature fusion against AM malware image

FIGURE 13c. Graphplot showing accuracy of handcrafted features and feature fusion against CR+CL malware image
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FIGURE 13d. Graphplot showing accuracy of handcrafted features and feature fusion against AM+CL malware image

FIGURE 13e. Graphplot showing accuracy of handcrafted features and feature fusion against CR+AM+CL malware image

FIGURE 14. A confusion matrix
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FIGURE 15. Performance metrics obtained using Feature Fusion-SVM classifier

achieved the highest accuracy of 93.24% using CR+AM
malware images. Among the total malware families, the
families such as Kmin, GoldDream, FakeDoc, Iconosys,
Opfake, and FakeInstaller attain high precision and recall.
ExploitLinuxLootor, MobileTx, Gappusin, and BaseBridge
are the families against which low precision and recall were
observed. The performance degrades due to the less number
of samples in these families.

The error rate for the malware family ExploitLinuxLotoor
is found to be 65.21%, which is relatively high. For Mo-
bileTx and Imlog, it was 34.78% and 28.57% respectively.
The error rate for the families Adrd, SMSreg, DroidDream,
and Gappusin varies from 21% to 24%. All the samples for
the malware family Kmin were correctly classified. Even no
sample of other class gets misclassified to Kmin malware
family class. Therefore, its error rate found to be zero.
The family Iconosys also attained the error rate of zero
but achieve the precision of 98.03%. Only one sample of
FakeInstaller gets misclassified into the Iconosys malware
family. One sample of Plankton class gets misclassified into
SendPay class and one sample of Sendpay gets misclassified
into DroidKungFu class. For this reason, malware family
Iconosys attain an equal precision and recall rate. The error
rate of 2.91% and 2.95% was recorded for malware family
Plankton and FakeInstaller respectively. For Opfake family,
it was observed to be 0.49%.

V. CONCLUSION AND FUTURE SCOPE
A series of experiments were conducted for the analysis and
classification of Android malware images. The handcrafted
features used in this work are Gray Level Co-occurrence
Matrix (GLCM), Global Image deScripTors (GIST), and Lo-
cal Binary Pattern (LBP). LBP features do not contain much

information for malware classification. GIST features with
classifiers SVM, KNN, and RF showed good classification
accuracy. Min-max normalization on the dataset showed a
great impact on the proposed methodology. GLCM-SVM
achieved the highest classification accuracy of 92.20% on
AM malware images closely followed by the GLCM-RF and
GIST-SVM model that achieved an accuracy of 91.81% and
91.35% respectively on CR+AM malware images. Further-
more, CNN and handcrafted features were fused to form
the feature fusion strategy for the classification of Android
malware images. The classification results obtained using
handcrafted features are compared with results achieved
using feature fusion methodology. It was found that the
classification performance of all the classifiers eventually
increased when feature fusion was deployed. Of the top
malware images revealed in this work, feature fusion un-
doubtedly outperforms handcrafted features in the classifi-
cation of Android malware images. The highest accuracy
of 93.24% was observed for malware image combination
CR+AM using the Feature Fusion-SVM classifier. There-
fore, the efforts can be saved in inspecting the entire APK
structure for the classification of Android malware. The
proposed visualization technique based on feature fusion
will let the same work done with lesser resources and
time. The primary focus of this study, was on the feature
fusion technique to identify the descriptors, which could
help to differentiate between different types of Android
malware families. The study on the correlation of features
can be another interesting area to explore. The features that
are extracted may contain irrelevant or redundant features.
Therefore, as future scope of this work, we tend to deploy
suitable feature extraction techniques to identify and remove
the redundant features by analyzing the correlation between

18 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3090998, IEEE Access

Thakur: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

them. Moreover, the use of ensemble learning in CNNs and
other transfer learning models considering hyperparameters
optimization sets the future scope of this work.
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