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a b s t r a c t

This paper analyzes the inverse of near Toeplitz pentadiagonal matrices, arising from
a finite-difference approximation to the fourth-order nonlinear beam equation. Explicit
non-recursive inverse matrix formulas and bounds of norms of the inverse matrix are
derived for the clamped–free and clamped–clamped boundary conditions. The bound of
norms is then used to construct a convergence bound for the fixed-point iteration of the
form u = f (u) for solving the nonlinear equation. Numerical computations presented in
this paper confirm the theoretical results.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many applications give arise to mathematical problems that involve numerical computations with (near) Toeplitz
pentadiagonal matrices, which require their inversion (see [1] and references therein). Even though inversion of a
nonsingular pentadiagonal matrix can be done efficiently by a numerical linear algebra software, explicit inverse formulas
are useful, for example, in a computer algebra software.

Early results on inverses of banded matrices can be traced as far back as to the work of [2–4] for general band
matrices. Results for band Toeplitz matrices are given in [5], with explicit inverse formulas for tridiagonal matrices in [6]
and pentadiagonal matrices in [1,7–13]. In addition, properties including determinants of such matrices related to finite
difference operators have been investigated, e.g. in [14–17]. The recursive formula for computing the determinants of the
general pentadiagonal matrices, including the Toeplitz case, are given in [18]. In [19] there were closed expressions for
the determinants of arbitrary pentadiagonal matrices, which can be decomposed as a multiplication of the tridiagonal
matrices in terms of Chebyshev polynomials of the second kind. In [20], it was presented efficient computing algorithms
for finding the inverse and determinant of the pentadiagonal Toeplitz matrices.

In this study, we focus on the specific pentadiagonal matrices arising in a fixed-point iteration for numerically solving
the fourth-order nonlinear beam equation:

d4φ̂
d̂x4

= α1e−α2φ̂ , x̂ ∈ Ω = (0, l),
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where φ̂ is a displacement at x̂. This nonlinear equation finds applications in mechanical and civil engineering, which
models, e.g., a cantilever beam subjected to swelling pressure on one side. In the above equation, the right-hand side
term is the swelling pressure, which in this form is proposed by Grob [21], based on empirical studies (see, e.g., [22] and
the references therein), l > 0 is the length of the beam, and α1, α2 > 0 represents the mechanical property of the beam,
which are assumed to be constant.

Scaling the domain to unity using the dimensionless variable x = x̂/l and setting φ = α2φ̂ yields

d4φ
dx4

= ke−φ, in Ω = (0, 1), (1)

where k = α1α2l > 0. We shall use this formulation throughout. For (1) two types of boundary conditions are employed:

1. Clamped–Free (CF) condition:

φ(0) = φ′(0) = 0 and φ′′(1) = φ′′′(1) = 0, (2)

2. Clamped–Clamped (CC) condition:

φ(0) = φ′(0) = 0 and φ(1) = φ′(1) = 0. (3)

Since
d4φ
dx4

= ke−φ > 0, obviously, φ = 0 cannot be a solution, even though it satisfies the boundary conditions.
The solution of (1) with the boundary conditions (2) is concave up and an increasing function, which can be deduced

from a mixed formulation of (2):⎧⎪⎪⎨⎪⎪⎩
d2ω
dx2

= ke−φ, ω(1) = ω′(1) = 0,

d2φ
dx2

= ω, φ(0) = φ′(0) = 0.
(4)

From the first part of (4), with e−φ > 0 in Ω , ω′′ > 0, and w′ increases in Ω . The condition ω′(1) = 0 requires that w′ < 0
in Ω , which furthermore, together with the condition ω(1) = 0, implies that ω > 0 and decreases. From the second part
of (4), we have φ′′

= ω > 0; thus, φ′ is an increasing function in Ω . Since φ′(0) = 0, φ > 0, which implies φ > 0 and
increases. This characterization also holds in the finite-difference setting based on the second-order scheme we use in
this paper (c.f. Section 4).

Numerical methods based on finite element methods for (1) have been proposed and studied, e.g., in [23,24], where
focus is given on the accurate approximation of the solution. This paper approaches the problem from a different angle,
with emphasis put on the convergence of the iteration method of the form

φ = L−1 (
ke−φ

)
,

where L = d4/dx4, and the properties of the related iteration matrices involved. Using the second-order finite difference
approach, these matrices are pentadiagonal and near Toeplitz.

In this paper, we present explicit formulas for inverses of the specific pentadiagonal matrices and their bounds of
norms, which are necessary in the convergence analysis of the fixed-point iteration. As the inverse can be formed
explicitly, we are able to construct an exact norm of some of those matrices. The convergence rate for the clamped–free
and clamped–clamped problems were derived and then numerical examples were presented for different parameters.

The paper is organized as follows. Section 2 is devoted to the convergence and the inverse of the iteration matrix for
problem with the clamp-free condition. Similar discussion for the clamp-clamp condition is given in Section 3. Numerical
results are presented in Section 4, followed by some concluding remarks in Section 5.

2. The case with clamped–free boundary conditions

We consider n+ 1 equidistant grid points on the closed interval [0, 1], with the distance (grid size) h = 1/n, at which
the solution of (1) is approximated by a finite difference scheme. Each grid point is indexed by i = 0, . . . , n, where
i = 0 and n correspond to the boundary points. Throughout the paper, we shall consider n ≥ 5 for A to be a meaningful
approximation to the differential operator L, even though n = 5 may not be of practical interest.

For the interior nodes, 1 ≤ i ≤ n−1, the fourth-order derivative is approximated by the second-order finite difference
scheme:

d4φ
dx4

(xi) ≈
1
h4 (φi−2 − 4φi−1 + 6φi − 4φi+1 + φi+2),

where xi = ih and φi ≡ φ(xi). For i = 2, we impose the boundary condition φ(0) ≡ φ0 = 0. For i = 1, φ−1 corresponds
to a fictitious point outside the computational domain, which is eliminated using the central scheme approximation to
the boundary condition φ′(0) = 0. Similar approaches are used for i = n − 1 and n, with the boundary conditions
φ′′(1) = φ′′′(1) = 0 be approximated by appropriate second-order finite difference schemes.

2
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The resultant system of nonlinear equations is

Au = h4k exp(−u), (5)

where u = (u1, . . . , un)T ∈ Rn, with ui ≈ φ(xi), and

A :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 −4 1 0 · · · 0

−4 6 −4
. . .

. . .
...

1 −4
. . .

. . .

0
. . .

. . .
. . . 1 0

. . .
. . . 6 −4 1

... 1 −4 5 −2
0 · · · 0 2 −4 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

Here, A ∈ Rn×n is a nonsymmetric, nondiagonally dominant pentadiagonal matrix.
Our first result on A is that it is nonsingular. In fact, we have the following theorem of the explicit inverse of matrix

Theorem 2.1. Let B = [bi,j]i,j=1,n ∈ Rn×n such that

bi,j =
3ij2 + j − j3

6
, ∀j ≤ i, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n − 1},

bi,n =
1
2
bn,i,

bn,n =
1
12

n(2n2
+ 1),

bi,j = bj,i, i, j ∈ {1, 2, . . . , n − 1}.

Then B is the inverse of A, where A = [ai,j]i,j=1,n is given in (6).

Proof. The proof is done by the direct computation. Let D be matrix such that D = AB. We want to show that the product

di,j :=
[
ai,1 ai,2 . . . ai,n

]⎡⎢⎢⎣
b1,j
b2,j
...

bn,j

⎤⎥⎥⎦ =

{
1, i = j,
0, i ̸= j.

In other words, D is the n × n identity matrix.

(i) The case 3 ≤ i ≤ n − 2 and 1 ≤ j ≤ n.
In this case, ai,i−2 = 1, ai,i−1 = −4, ai,i = 6, ai,i+1 = −4, ai,i+2 = 1, while the others are 0. Therefore,

di,j = bi−2,j − 4bi−1,j + 6bi,j − 4bi+1,j + bi+2,j. (7)

If i = j, then bi−2,i = bi,i−2 = (2i3 − 6i2 + i + 6)/6, bi−1,i = bi,i−1 = (2i3 − 3i2 + i)/6, bii = (2i3 + i)/6,
bi+1,i = (2i3 + 3i2 + i)/6, and bi+2,i = (2i3 + 6i2 + i)/6, yielding di,i = 1.
For i ̸= j, we consider several cases.

(a) j ≤ i − 2; Then bi−2,j = (3ij2 + j − 6j2 − j3)/6, bi−1,j = (3ij2 + j − 3j2 − j3)/6, bi,j = (3ij2 + j − j3)/6,
bi+1,j = (3ij2 + j + 3j2 − j3)/6, bi+2,j = (3ij2 + j + 6j2 − j3)/6, yielding di,j = 0.

(b) j = i − 1; Then bi−2,j = (2i3 − 9i2 + 13i − 6)/6, bi−1,j = (2i3 − 6i2 + 7i − 3)/6, bi,j = (2i3 − 3i2 + i)/6,
bi+1,j = (2i3 − 5i + 3)/6, bi+2,j = (2i3 + 3i2 − 11i + 6)/6, yielding di,i−1 = 0;

(c) j = i + 1; Then bi−2,j = bj,i−2 = (2i3 − 3i2 − 11i + 18)/6, bi−1,j = bj,i−1 = (2i3 − 5i + 3)/6, bi,j = bj,i =

(2i3 + 3i2 + i)/6, bi+1,j = (2i3 + 6i2 + 7i + 3)/6, bi+2,j = (2i3 + 9i2 + 13i + 6)/6, yielding di,i+1 = 0.
(d) j ≥ i−1; Then bi−2,j = bj,i−2 = (3j(i−2)2+(i−2)−(i−2)3)/6, bi−1,j = bj,i−1 = (3j(i−1)2+(i−1)−(i−1)3)/6,

bi,j = bj,i =
3ji2+i−i3

6 , bi+1,j = (3j(i + 1)2 + (i + 1) − (i + 1)3)/6, bi+2,j = (3j(i + 2)2 + (i + 2) − (i + 2)3)/6,
yielding di,j = 0.

(ii) The case i = 1.
For j = 1, b1,1 = 3/6, b2,1 = 1, and b3,1 = 3/2; Thus, di,j = d1,1 = 7b1,1 − 4b2,1 + b3,1 = 1.
For j > 1, we have b1,j = bj,1 = j/2, b2,j = bj,2 = 2j− 1, and b3,j = bj,3 =

9j
2 − 4; Thus, di,j = 7b1,j − 4b2,j + b3,j = 0.

3
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(iii) The case i = 2, with di,j = −4b1,j = 6b2,j − 4b3,j + b4,j.
For j = 2, we have b1,2 = b2,1 = 1, b2,2 = 3, b3,2 = 5, b4,2 = 7; Thus, d2,2 = 1.
For j ̸= 2, then b1,j = j/2, b2,j = 2j − 1, b3,j =

9j
2 − 4, and b4,j = 8j − 10. We have di,j = 0.

(iv) For the case i ∈ {n − 1, n}, similar computations using (7) complete the proof. □

From now on, we shall use a−1
i,j to denote the (i, j)-entry of A−1, the inverse of A; thus, a−1

i,j = bi,j.
The following corollary is a consequence of Theorem 2.1.

Corollary 2.2. The inverse of A is a positive matrix; i.e., A−1 > 0, implying a−1
i,j > 0.

Proof. By Theorem 2.1 it follows that a−1
n,n = n(2n2

+1)/12 is positive. Notice that, for i ≥ j, a−1
i,j =

3ij2+j−j3
6 ≥

3j3+j−j3
6 > 0.

Consequently, entries determined by the other 2 parts of Theorem 2.1 are also positive. □

The above positivity result is important in the context of the fixed-point iteration we devise to solve the nonlinear
system (5). Consider the iteration

uℓ
= h4kA−1 exp(−uℓ−1), ℓ = 1, 2. . . . (8)

Since A−1 > 0 (Corollary 2.2), the recipe (8) generates a sequence of positive vectors {uℓ
}, if started with u0 > 0.

As the solution of this type of boundary-value problem is a nonnegative function (c.f., Section 1; see also later for the
finite-difference equation case), if the above iteration converges, it converges to a positive solution.

Let p ∈ {1, 2, ∞}. Our starting point for the convergence analysis is the relation, with u0 > 0,

∥uℓ
− uℓ−1

∥p = ∥h4kA−1(exp(−uℓ−1) − exp(−uℓ−2))∥p

= h4k∥A−1 (
exp(−uℓ−2) + G(uℓ−1

− uℓ−2) − exp(−uℓ−2)
)
∥p

= h4k∥A−1G(uℓ−1
− uℓ−2)∥p,

where G = −diag(exp(−ξ1), . . . , exp(−ξn)), such that the vector ξ = [ξi]i=1,n ∈ B = {x ∈ Rn
: ∥x − uℓ−2

∥p <

∥uℓ−1
− uℓ−2

∥p}. Since {uℓ
} is a sequence of positive vectors, ξ is also a positive vector, and consequently the diagonal

entries of G are strictly less than 1. Thus, ∥G∥p < 1, and

∥uℓ
− uℓ−1

∥p ≤ h4k∥A−1
∥p∥G∥p∥(uℓ−1

− uℓ−2)∥p

< h4k∥A−1
∥p∥uℓ−1

− uℓ−2
∥p. (9)

We define Lp to be

Lp = h4k∥A−1
∥p. (10)

Convergence guarantee of the fixed point iteration (8) requires Lp < 1, which in turn, for given k and chosen h, requires
that

∥A−1
∥p < 1/(h4k). (11)

Lemma 2.3. For the inverse of A in Theorem 2.1, the following holds true:

a−1
i1,j > a−1

i2,j, ∀i1 > i2 > j, with i1, i2, j ∈ {1, 2, . . . , n}.

Proof. From Theorem 2.1 it follows that a−1
i1,j = (3i1j2 + j − j3)/6 and a−1

i2,j = (3i2j2 + j − j3)/6. Thus, one can notice that
a−1
i1,j > a−1

i2,j, for i1 > i2 > j. □

Theorem 2.4. Let A ∈ Rn×n be given in (6), with n ≥ 5. Then

∥A−1
∥p =

{
(n4

− n2)/8, if p = 1,
(n4

+ n2)/8, if p = ∞.

Proof. For p = 1 case, it follows from Lemma 2.3 that

∥A−1
∥1 = max

1≤j≤n

n∑
i=1

|a−1
i,j | = max

{
n∑

i=1

|a−1
i,n−1|,

n∑
i=1

|a−1
i,n |

}
.

We have
n∑

i=1

|a−1
i,n−1| =

n∑
i=1

|a−1
n−1,i| =

n∑
i=1

3(n − 1)i2 + i − i3

6
=

n4
− n2

8
.

4
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We can now proceed similarly:
n∑

i=1

|a−1
i,n | =

1
2

n∑
i=1

|a−1
n,i | =

1
2

n∑
i=1

3ni2 + i − i3

6
=

3n4
+ 4n3

+ 3n2
+ 2n

48
.

From the above results,
n∑

i=1

|a−1
i,n−1| −

n∑
i=1

|a−1
i,n | =

3n4
− 4n3

− 9n2
− 2n

48
> 0

for n ≥ 5. Therefore,

max
1≤j≤n

n∑
i=1

|a−1
i,j | ≤

n∑
i=1

|a−1
i,n−1| =

n4
− n2

8
= ∥A−1

∥1.

Next for p = ∞ using Lemma 2.3,

∥A−1
∥∞ = max

1≤i≤n

n∑
j=1

|a−1
i,j | =

n∑
j=1

|a−1
n,j | =

n−1∑
j=1

|a−1
n,j | + a−1

n,n

=

n−1∑
j=1

3nj2 + j − j3

6
+

n(2n2
+ 1)

12

=
n4

+ n2

8
. □

Using Hölder’s inequality,

∥A−1
∥2 ≤

√
∥A−1∥1∥A−1∥∞ =

1
8

√
n8 − n4 ≤

1
8
n4.

We conclude this section by the characterization of the finite difference solution of the system (5). Because Au =

h4k exp(−u) > 0, for the last row of the system,

2un−2 − 4un−1 + 2un > 0 H⇒ un − un−1 > un−1 − un−2. (12)

From the (n − 1)th row, with un−3 − 4un−2 + 5un−1 − 2un > 0, we have

un−1 − un−2 > un−2 − un−3 + 2un−2 − 4un−1 + 2un > un−2 − un−3, (13)

after using the inequality (12). Furthermore, this row leads to

4(un−1 − un−2) > un − un−3 + un − un−1 > un − un−3 + un−1 − un−2,

after again using (12), which in turn yields

3(un−1 − un−2) > un − un−3. (14)

We then have the following lemma:

Lemma 2.5. For the inequality Au > 0, with A given by (6), the following inequalities hold, with j = i+2 and i = 3 . . . , n−1
the rows of A:

uj+2 − uj+1 > uj+1 − uj, 3(uj+2 − uj+1) > uj+3 − uj.

Proof. We have proved the inequalities for j = n− 3, which comes from the (n− 1)th row of Au > 0. Now suppose that
they hold also for j = n−3, n−4, . . . , k+1. Associated with j = k is the inequality uk −4uk+1 +6uk+2 −4uk+3 +uk+4 > 0
from the (k + 2)th row of Au > 0, which gives

uk+2 − uk+1 > 3uk+1 − uk − 5uk+2 + 4uk+3 − uk+4

= uk+1 − uk + [4(uk+3 − uk+2) + uk+1 − uk+4 + uk+1 − uk+2]
> uk+1 − uk + [3(uk+3 − uk+2) + uk+1 − uk+4]
> uk+1 − uk

by assumption. Next, note that uk−4uk+1+6uk+2−4uk+3+uk+4 = 3(uk+2−uk+1)+uk−uk+3−[3(uk+3−uk+2)+uk+1−uk+4] >
0. Thus, 3(uk+2 − uk+1) + uk − uk+3 > 3(uk+3 − uk+2) + uk+1 − uk+4 > 0, by assumption. □

Theorem 2.6. The solution of the finite difference system (5) is a nonnegative vector u, with increasing ui.

5
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Proof. On the nodes i = 0, 1, approximation to the differential term leads to

ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2 > 0,

which is of the same structure as the i = 3, . . . , n − 2 rows of A. By Lemma 2.5,

u2 − u1 > u1 − u0, u1 − u0 > u0 − u−1.

Therefore,

un − un−1 > un−1 − un−2 > · · · > u2 − u1 > u1 − u0 > u0 − u−1.

With u0 = 0 (from the boundary condition φ(0) = φ0 = 0) and u−1 = u1 (from using central finite differencing on
φ′(0) = 0), from the most right inequality, we get u1 > 0 = u0. Also, u2 − u1 > u1 − u0 > 0; thus u2 > u1. In general, we
have ui+1 > ui, i = 1, . . . , n − 1. □

3. The case with clamped–clamped boundary conditions

In this section, we consider the case with the boundary conditions (3). Conditions at x = 1 are treated in the same
way as at x = 0, leading to (5), but now with u = (u1, . . . , un−1)T ∈ Rn−1 and A ∈ R(n−1)×(n−1) given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 −4 1 0 · · · 0

−4 6 −4
. . .

. . .
...

1 −4
. . .

. . .
. . .

0
. . .

. . .
. . .

. . . 0
. . .

. . . −4 1
...

. . .
. . . −4 6 −4

0 · · · 0 1 −4 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

However, to simplify our notation, we shall consider the case where u ∈ Rn and A ∈ Rn×n in the subsequent analysis; in
this case, h = 1/(n + 1).

In contrast to (6), the matrix (15) is centrosymmetric and near Toeplitz. Furthermore, it admits the rank-2 decompo-
sition as follows:

A = T 2
+ UU t , (16)

where T = tridiagn(−1, 2, −1) is an n × n tridiagonal symmetric Toeplitz matrix, and

U =

⎡⎢⎢⎢⎣
√
2 0
0 0
...

...

0
√
2

⎤⎥⎥⎥⎦ ∈ Rn×2. (17)

T is a symmetric M-matrix, with positive inverse given explicitly by (see, e.g., [10])

[T−1
]ij =

{
j

n+1 (n − (i − 1)), i ≥ j,
i

n+1 (n − (j − 1)), i < j.
(18)

A is symmetric positive definite because T 2
= T TT (and UU t ) is symmetric positive (semi) definite. The inverse of A

can be computed by applying the Sherman–Morrison formula on (16):

A−1
= T−2

− T−2U(I2 + U tT−2U)−1U tT−2

= T−1(I − T−1U(I2 + U tT−2U)−1U tT−1)T−1

= T−t (I − T−1U(I2 + U tT−2U)−1(T−1U)t )T−1. (19)

Because A−1 is symmetric positive definite, the middle term on the right-hand side I − T−1U(I2 +UTT−2U)(T−1U)T is also
symmetric positive definite. Rewriting (16) as

A = T 2
+ UU t

= T t (I + T−1U(T−1U)t )T ,

clearly

(I + T−1U(T−1U)t )−1
= I − T−1U(I2 + U tT−2U)−1(T−1U)t =: M.

6
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Note that, with (17) and (18),

T−1U =

√
2

n + 1

⎡⎢⎢⎢⎢⎣
n 1

n − 1 2
...

...

2 n − 1
1 n

⎤⎥⎥⎥⎥⎦ . (20)

Direct computation yields

I2 + U tT−2U =
2

(n + 1)2

⎡⎢⎢⎢⎢⎢⎢⎣
(n + 1)2

2
+

n∑
k=1

k2
n∑

k=1

(n − (k − 1))k

n∑
k=1

(n − (k − 1))k
(n + 1)2

2
+

n∑
k=1

k2

⎤⎥⎥⎥⎥⎥⎥⎦
=

1
γ

[
γ + τ γ n − τ

γ n − τ γ + τ

]
,

where τ =
2n3+3n2+n

6 and γ =
(n+1)2

2 . Its inverse is given by

(I2 + UTT−2U)−1
=

1
δ

[
γ + τ −γ n + τ

−γ n + τ γ + τ

]
, (21)

where det(I2 + UTT−2U) =
1
3 (n

2
+ 2n + 3) > 0 and δ = (n + 1)(2τ + γ (1 − n)) =

1
6 (n + 1)2(n2

+ 2n + 3).
Let M = [mij]i,j=1,n. Using (20) and (21), we have, for i ̸= j,

mij = −
2

δ(n + 1)2
[n − (i − 1) i]

[
γ + τ −γ n + τ

−γ n + τ γ + τ

][
n − (j − 1)

j

]
= q0(n) + q1(n)(i + j) + q2(n)ij,

where

q0(n) = −
4n2

+ 8n + 6
(n + 1)(n2 + 2n + 3)

,

q1(n) =
6

n2 + 2n + 3
,

q2(n) = −
12

(n + 1)(n2 + 2n + 3)
.

One can verify that mij change signs. Thus M is not an M-matrix.
For i = j,

mii = 1 −
2

δ(n + 1)2
[n − (i − 1) i]

[
γ + τ −γ n + τ

−γ n + τ γ + τ

][
n − (i − 1)

i

]
=

n3
− n2

− 3n − 3
(n + 1)(n2 + 2n + 3)

+
12

n2 + 2n + 3
i −

12
(n + 1)(n2 + 2n + 3)

i2

> 0,

for n ≥ 1.

Theorem 3.1. The inverse of A given by (15) is a positive matrix. Furthermore, let α = n+1−i, β = jα/(6(n+1)(n2
+2n+3)),

and ε = 3(1 + α(n + 1))(1 + (i − j)j). The entries of A−1 are

• a−1
ij = β(ε + (j2 − 1)(2α2

+ 1)), for i ≥ j
• a−1

ij = a−1
ji , otherwise.

7
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Proof. Let A−1
= [a−1

ij ], with A−1
= T−1MT−1. Denote by yj = [yk,j]k=1,n = MT−1

j , the product of M and the jth column
of T−1. For i ≥ j,

yj =
1

n + 1

⎡⎢⎢⎢⎢⎢⎣
(n + 1 − j)(m1,1 + 2m1,2 + · · · + jm1,j) + j(m1,j+1(n − j) + · · · + m1,n)

...

(n + 1 − j)(mj,1 + 2mj,2 + · · · + jmj,j) + j(mj,j+1(n − j) + · · · + mj,n)
...

(n + 1 − j)(mn,1 + 2mn,2 + · · · + jmn,j) + j(mn,j+1(n − j) + · · · + mn,n)

⎤⎥⎥⎥⎥⎥⎦ .

Using mi,j, for i ≤ j, we have, with m∗

i,j = q0 + q1(i + j) + q2ij,

yi,j =
(n − (j − 1))i

n + 1

+
n + 1 − j
n + 1

(m∗

i,1 + 2m∗

i,2 + · · · + jm∗

i,j) +
j

n + 1
(m∗

i,j+1(n − j) + · · · + m∗

i,n)

=
(n − (j − 1))i

n + 1

+
q0 + q1i
n + 1

((n + 1 − j)(1 + · · · + j) + j(n − j + · · · + 1))

+
q1 + q2i
n + 1

((n + 1 − j)(12
+ · · · + j2) + j((n − j)(j + 1) + (n − j − 1)(j + 2) + · · · + n))

=
1

n + 1
((n − (j − 1))i + r0 + r1i) ,

where

r0 = −
j(n + 1 − j)((n + 1)(n + 1 − j) + 1)

n2 + 2n + 3
and

r1 =
j(n + 1 − j)(n + 1 − 2j)

n2 + 2n + 3
.

Using similar calculation for i > j, we get

yi,j =
1

n + 1

{
r0 + r1i + (n + 1 − j)i = r0 + (r1 − j) i + (n + 1)i, i ≤ j,
r0 + r1i + (n + 1 − i)j = r0 + (r1 − i) i + (n + 1)j, i > j;

hence,

yj =
1

n + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
r0

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
...

1
1
...

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ (r1 − j)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
...

j − 1
j
...

n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ (n + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
...

j − 1
j
...

j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Consider the ith row of T−1:

T−t
i =

1
n + 1

[
n + 1 − i 2(n + 1 − i) · · · i(n + 1 − i) i(n − i) · · · i

]
.

We have

a−1
ij = T−t

i MT−1
j = T−t

i yj

= r0
i(n + 1 − i)

2
+

(
r1 −

j
n + 1

)
i(n + 1 − i)(n + 1 + i)

6

+
j(n + 1 − i)(3i(n + 1) + 1 − j2)

6(n + 1)
= β(ε + (j2 − 1)(2α2

+ 1)),

where

α = n + 1 − i,

8
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β =
j(n + 1 − i)

6(n + 1)(n2 + 2n + 3)
,

ε = 3(1 + α + nα)(1 + ij − j2).

Notice that α, β, ε > 0, ∀i, j = 1, . . . , n. With i ≥ j and j2 > j2 − 1,

a−1
ij > β(j2 − 1)(2α2

+ 1)
≥ 0. □

By Theorem 3.1, starting from u0 > 0, the fixed-point iteration (8) is guaranteed to generate a sequence of positive
vectors.

In the sequel, we present two ways of constructing an estimate for norms of the inverse of A. The first approach is
based on the factorization A−1

= T−tM−1T−1 in (19). The result is presented in the next theorem.

Theorem 3.2. For p ∈ {1, 2, ∞},

∥A−1
∥p ≤ (n + 1)4/32.

Proof.

∥A−1
∥p ≤ ∥T−1

∥p∥M∥p∥T−1
∥p = ∥T−1

∥
2
p∥M∥p.

Note that ∥T−1
∥1 = ∥T−1

∥∞, due to symmetry. Thus, we shall consider only ∥T−1
∥1. Using (18),

n∑
j=1

|T−1
ij | =

1
n + 1

⎡⎣(n − (i − 1))
i−1∑
j=1

j + i
n−(i−1)∑

j=1

j

⎤⎦
=

1
2(n + 1)

[
(n + 1)2i − (n + 1)i2

]
.

The maximum of the rowsum is then attained for i = (n + 1)/2. Thus,

∥T−1
∥1 = max

1≤i≤n

n∑
j=1

|T−1
ij | ≤

(n + 1)2

8
, (22)

with equality holding when n is odd.
We now estimate the 1-norm of M . Let m̃ij = q0(n)+q1(n)(i+ j)+q2(n)ij, ∀i, j = 1, . . . , n and consider

∑n
j=1 |m̃ij|. For a

fixed i, m̃ij can be viewed as a linear function of j.
∑n

j=1 |m̃ij| can then be viewed as the rectangular rules that approximate
the area made by the function m̃ij and the j-axis. In this case, treating j ∈ [0, n + 1] ⊂ R,

n∑
j=1

|m̃ij| ≤

∫ n+1

j=0
|m̃ij|dj =

1
2
(|m̃i,0| + |m̃i,n+1|)(n + 1),

where m̃i,0 = −(4n2
+6n(1− i)+8−6i)/[(n+1)(n2

+2n+3)] and m̃i,n+1 = (2n2
+6n−2−6i(n+1))/[(n+1)(n2

+2n+3)].
Since the matrix M̃ = [m̃ij] is persymmetric, we just need to consider i = 1, . . . , (n + 1)/2. Then,

n∑
j=1

|m̃ij| ≤ max
i

1
2
(|m̃i,0| + |m̃i,n+1|)(n + 1) =

1
2

2(n2
+ 5)

(n + 1)(n2 + 2n + 3)
(n + 1)

=
n2

+ 5
n2 + 2n + 3

.

Now,
n∑

j=1

|mij| =

n∑
j=1,j̸=1

|mij| + |mii| =

n∑
j=1,j̸=1

|m̃ij| + |1 + m̃ii|

≤ 1 + |m̃ii| +

n∑
j=1,j̸=i

|m̃ij|

= 1 +

n∑
j=1

|m̃ij|.

9
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Thus, for n ≥ 1,

∥M∥1 = max
i

n∑
j=1

|mij| ≤ 1 + max
i

n∑
j=1

|m̃ij|

≤ 1 +
n2

+ 5
n2 + 2n + 3

≤ 2,

since n2
+ 5 < n2

+ 2n + 3 for n ≥ 1.
Combining with ∥T−1

∥1, we get the desired result. Furthermore, using Hölder’s inequality, ∥A−1
∥2 ≤

√
∥A−1∥1∥A−1∥∞

≤ (n + 1)4/32. □

The second approach uses the knowledge of the entries of A−1 in Theorem 3.1. Tedious calculation results in exact
norms in some cases, and, hence, much stronger estimates than the previous estimates.

Theorem 3.3. For p ∈ {1, 2, ∞},

∥A−1
∥p ≤ (n + 1)2

(
(n + 1)2 + 8

)
/384.

If n is odd, then the equality holds for p ∈ {1, ∞}.

Proof. We shall first consider the case p = ∞. In this case, by using a−1
i,j > 0,

∥A−1
∥∞ = max

i

n∑
j=1

|a−1
i,j | = max

i

n∑
j=1

a−1
i,j

For i = 1, . . . , n,
n∑

j=1

a−1
i,j =

i∑
j=1

a−1
i,j +

n∑
j=i+1

a−1
i,j =

i∑
j=1

a−1
i,j +

n−i∑
k=1

a−1
k,i ,

because of the centrosymmetry of A−1. Calculating each sum using the formula for the entries a−1
ij , we get

i∑
j=1

a−1
i,j = δ̂−1

⎡⎣C i
1

i∑
j=1

j + C i
2

i∑
j=1

j2 + C i
3

i∑
j=1

j3

⎤⎦
= δ̂−1

[
C i
1
i2 + i
2

+ C i
2
2i3 + 3i2 + i

6
+ C i

3
i4 + 2i3 + i2

4

]
,

where δ̂ = 6(n + 1)(n2
+ 2n + 3) and

C i
1 = n3

+ 3n2
− 3i2n + 5n + 2i3 − 3i2 − 2i + 3,

C i
2 = 3in3

− 6i2n2
+ 9in2

+ 3i3n − 12i2n + 12in + 3i3 − 9i2 + 6i,
C i
3 = −n3

− 3n2
+ 3i2n − 5n − 2i3 + 3i2 + 2i − 3.

Also,
n−i∑
k=1

a−1
k,i = δ̂−1

[
Ck
1

n−i∑
k=1

k + Ck
2

n−i∑
k=1

k2 + Ck
3

n−i∑
k=1

k3
]

= δ̂−1
[
Ck
1
(n − i)2 + (n − i)

2
+ Ck

2
2(n − i)3 + 3(n − i)2 + (n − i)

6

]
+ δ̂−1Ck

3
(n − i)4 + 2(n − i)3 + (n − i)2

4
,

where

Ck
1 = 3i2n − 2i3 + 3i2 + 2i,

Ck
2 = 3i2n2

− 3i3n + 6i2n + 3in − 3i3 + 3i,
Ck
3 = −3i2n + 2i3 − 3i2 − 2i.

10
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Assuming that i ∈ [1, n] ⊂ R, the maximum of the rowsum is obtained from the condition d
di

∑n
j=1 a

−1
i,j = 0. In this

regard, we have

d
di

n∑
j=1

a−1
i,j = δ̂−1 [

C ′

0 + C ′

1i + C ′

2i
2
+ C ′

3i
3]

= 0,

where

C ′

0 =
1
2
n4

+ 2n3
+ 4n2

+ 4n +
3
2
,

C ′

1 =
1
2
n5

+
5
2
n4

+ 5n3
+ 5n2

+
1
2
n −

3
2
,

C ′

2 = −
3
2
n4

− 6n3
− 12n2

− 12n −
9
2
,

C ′

3 = n3
+ 3n2

+ 5n + 3.

The only acceptable solution of the above equation is i = (n+1)/2. The other solutions are rejected: i = −
1
2 (

√
n2 + 2n + 5

− (n+ 1)) < 0 and i =
1
2 (

√
n2 + 2n + 5+ (n+ 1)) > n+ 1 > n. One can verify that i = (n+ 1)/2 maximizes the rowsum.

Let n be odd. With i = (n + 1)/2,

∥A−1
∥∞ = max

i

n∑
j=1

|a−1
i,j | =

n∑
j=1

a−1
(n+1)/2,j =

n+1
2∑

j=1

a−1
(n+1)/2,j +

n−1
2∑

k=1

a−1
k,(n+1)/2

=
(
n4

+ 4n3
+ 14n2

+ 20n + 9
)
/384

= (n + 1)2((n + 1)2 + 8)/384.

If n is even, then i = (n + 1)/2 is not a row of the matrix A; the maximum of the rowsum will then be attained at
i = ⌈(n + 1)/2⌉ or i = ⌊(n + 1)/2⌋. Either case satisfies

∥A−1
∥∞ ≤ (n + 1)2((n + 1)2 + 8)/384.

Symmetry of A−1 leads to ∥A−1
∥1 = ∥A−1

∥∞. Using Hölder’s inequality, the above inequality holds also for p = 2. □

4. Numerical results

In this section, we provide numerical examples to verify the theoretical results. Table 1 shows the computed norms of
the inverse and compares them with the estimate given by the upper bound in Theorem 3.3. For odd n and p ∈ {1, ∞}

the norms are exact. For even n, Theorem 3.3 gives an estimate that leads to a small gap. This gap relative to the estimate
becomes negligible with an increase in n. To support this statement, the reader is referred to Figs. 1 and 2 in log scales. The
numerical tests are performed for all even n from 10 to 1000. The relative error is computed as |∥A−1

∥p − UBound|/∥A−1
∥p,

where UBound = (n + 1)2
(
(n + 1)2 + 8

)
/384 from Theorem 3.3. As shown in Fig. 2 (left), the relative error decreases as

n increases for p = 1 or p = ∞. On the other hand, according to the numerical observation the difference between ∥A∥2
and the upper bound become constant relative to the norm as n increases, see Fig. 2 (right).

For n > 5, we note that the factor(1 + 8/(n + 1)2)/384 is lower than 11/3474. So, alternatively, if k satisfies the
condition, k < 384(n + 1)2/((n + 1)2 + 8), we can have a simpler bound: Lp < 11/3474. This factor approaches 1/384
from above as n → ∞. Since the latter is slightly less than the former, for a fixed k, one can expect a slight improvement
of convergence by increasing n.

Next, we present numerical results from solving (1) with (2) or (3) using the fixed point method (8). We compare
the observed convergence with the theoretical bound given by (10) and Theorem 2.4 (for the clamped–free case) or
Theorem 3.3 (for the clamped–clamped case). The fixed point method (8) is declared to have reached a convergence

Table 1
Computed ∥A−1

∥p and the estimates, for the clamped–clamped case.

n p = Upper bound from

1 2 ∞ Theorem 3.3

49 16,328 12,527 16,328 16,328
50 17,658 13,558 17,658 17,672

99 260,625 199,939 260,625 260,625
100 271,150 208,055 271,150 271,203

150 1,354,225 1,038,976 1,354,225 1,354,343

11
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Fig. 1. The upper bound and actual norm p = 1 or p = ∞(left) and p = 2(right) in log scale.

Fig. 2. The relative errors in log scale.

Fig. 3. Solution at convergence with k = 1 and n = 100.

if ∥uℓ+1
− uℓ

∥p < 10−6, where p ∈ {1, 2, ∞}. Solutions at convergence are shown in Fig. 3 for the clamped–free and
clamped–clamped case, with k = 1.

12
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Table 2
Observed maximum convergence rate for clamped–free case, with n = 50. In brackets
there are the theoretical rates, which are upper bounds of Lp based on Theorem 2.4.

k p =

1 2 ∞

1/8 0.010 [0.016] 0.010 [0.016] 0.010 [0.017]
1 0.074 [0.125] 0.074 [0.125] 0.074 [0.125]
8 0.400 [1.000] 0.400 [1.000] 0.402 [1.000]

Table 3
Observed maximum convergence rate for clamped–free case, with n = 99. In brackets
there are the theoretical rates, which are upper bounds of Lp based on Theorem 2.4.

k p =

1 2 ∞

1/8 0.010 [0.016] 0.010 [0.016] 0.010 [0.017]
1 0.074 [0.125] 0.074 [0.125] 0.074 [0.125]
8 0.400 [1.000] 0.400 [1.000] 0.402 [1.000]

Table 4
Observed maximum convergence rate for the clamped–clamped case, with n = 49.
In brackets there are the theoretical rates, which are upper bounds of Lp based on
Theorem 3.3.
k p =

1 2 ∞

1/8 0.0003 [0.0033] 0.0003 [0.00033] 0.0003 [0.00033]
1 0.0020 [0.0026] 0.0020 [0.0026] 0.0020 [0.0026]
8 0.0158 [0.0209] 0.0159 [0.0209] 0.0161 [0.0209]
32 0.0615 [0.0836] 0.0619 [0.0836] 0.0627 [0.0836]
128 0.2223 [0.3344] 0.2237 [0.3344] 0.2262 [0.3344]

Table 5
Observed maximum convergence rate for the clamped–clamped case, with n = 100.
In brackets there are the theoretical rates, which are upper bounds of Lp based on
Theorem 3.3.
k p =

1 2 ∞

1/8 0.0002 [0.00033] 0.0002 [0.00033] 0.0003 [0.00033]
1 0.0020 [0.0026] 0.0020 [0.0026] 0.0020 [0.0026]
8 0.0157 [0.0208] 0.0159 [0.0208] 0.0160 [0.0208]
32 0.0614 [0.0834] 0.0618 [0.0834] 0.0625 [0.0834]
128 0.2218 [0.3336] 0.2232 [0.3336] 0.2257 [0.3336]

For both cases, the actual convergence rates (Lp) are lower than the estimate (Tables 2–5), with increasing gaps between
the two as k increases. As ∥A−1

∥p is exact, except for p = 2, (due to the explicit inverse of A), this suggests that the gap
in the convergence rate is mainly due to the estimate ∥G∥p < 1. The numerical experiments suggest that the simple
fixed-point method (8) can be used for a wider range of k than suggested by the theoretical results. For instance, with
k = 386 and n = 99, we have Lp = 1.006. The method still however converges to the solution at the maximum rate of
0.5278.

5. Conclusion

The explicit inverse formula for pentadiagonal matrices arising in the fourth-order nonlinear beam boundary value
problem were constructed. The explicit formula helped computing some norms of their inverse, used to estimate the
convergence of a fixed-point iteration for solving the nonlinear system of equations. Further research on the convergence
upper bounds is necessary to extend our knowledge of the convergence rate in the fixed point method.
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