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Surveillance cameras are everywhere keeping an eye on pedestrians or people as they navigate through the 
scene. Within this context, our paper addresses the problem of pedestrian attribute recognition (PAR). This 
problem entails the extraction of different attributes such as age-group, clothing style, accessories, footwear style 
etc. This is a multi-label problem with a host of challenges even for human observers. As such, the topic has 
rightly attracted attention recently. In this work, we integrate trainable Gabor wavelet (TGW) layers inside a 
convolution neural network (CNN). Whereas other researchers have used fixed Gabor filters with the CNN, the 
proposed layers are learnable and adapt to the dataset for a better recognition. We test our method on publicly 
available challenging datasets and demonstrate considerable improvements over state of the art approaches.

Introduction

Being one of the active areas of research in computer vision, the 
pedestrian attribute recognition (PRA) deals with identifying several 
visual attributes from an image data. The identified attributes belong 
to different classes, e.g., clothing style, footwear, gender, age group 
etc. A successful outcome of this research can be applied to various 
domains. It can be employed for motion analysis [1, 2], where it can 
be used to identify crowd behavior attributes. Another important area 
of application is image-based surveillance or visual features extractions 
for person identification and tracking [3, 4, 5], all of which can lead 
to further applications such as video analytic for business intelligence, 
and person re-identification based on the extracted features [6].

Various factors add to the complexity of this challenge. One of the 
main factors is the changing lighting conditions. Attributes of the same 
type of clothing or objects can appear completely different under vari-

ous lighting conditions. For example, distinguishing between black and 
dark blue colors is very difficult in certain weather conditions. Both 
colors will appear very similar to the camera in a darker environment. 
Occlusion also complicates the correct visual attribution identification 
and recognition [7]. Complete or partial occlusions occur due to the 
camera orientation, or from object self-occlusions. For example, if a 
person is wearing a hat, it might appear partially in the image, or its 
shape might be completely different. Similarly, the orientation of a per-

son or a camera can hide a backpack partially or completely from the 
view. These examples clearly show that settings of an acquisition envi-
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ronment for image or video capture result in a high intra-class variation 
for the same visual attributes.

The focus of this work is the identification of visual attributes from 
image and video data. The distance of an object from the camera af-

fects how that object appears in an image. If the object is very far from 
the camera or if the image resolution is very low, a visual attribute for 
a dress, hat, backpack, scarf, shoes etc. will only occupy a few pixels in 
the image. The combination of low image resolution, in addition to the 
self or view-oriented occlusions, makes visual attribute identification 
a very challenging problem. Many of these issues can be seen in the 
most widely used pedestrian datasets. Fig. 1 shows some of the sam-

ples from the PEdesTrian Attribute (PETA) [8] and A Richly Annotated 
Pedestrian (RAP) [9] datasets. PETA is one of the largest benchmark 
datasets. It comprises of 19000 images of different resolution that cover 
more than 60 attributes. The dataset is acquired from real-world surveil-

lance camera systems and includes images of 8, 705 persons. It is a very 
challenging dataset because of the acquisition setup and scene settings. 
As can be seen in Fig. 1, the quality of images is very low as well. This 
is mainly due camera resolution, acquisition conditions producing sig-

nificant blur, and few occlusions that cause many attributes to remain 
hidden. RAP dataset comprises of 41 thousand images covering 72 at-

tributes and is acquired from multiple viewpoints. The dataset shows 
a huge variation in the attributes due to pedestrian appearances, view-

points, and severe occlusions. An analysis of these datasets reveals that 
visual attributes identification from these images is an extremely diffi-
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Fig. 1. (a) PETA [8] dataset Samples. (b) RAP [9] dataset samples.

cult task due to the very low image quality. Many of the attributes are 
largely occluded as well. Moreover, some of the objects appear quite 
blurred due to the fast motion or acquisition problems - adding more 
complexity to the problem.

Visual attribute recognition problem can be solved in different ways, 
but the predominant solutions involve a two-step process. In the first 
step, a feature extraction algorithm is employed to find a feature rep-

resentation of the attributes. Different feature extraction solutions are 
discussed in the computer vision literature. Most of these techniques re-

quire deep domain-knowledge and high-level expertise in fine tuning 
for an accurate representation of visual attributes. For feature repre-

sentation, methods like SIFT [10], HoG [11] or Haar-like features [12] 

have been employed in the field rigorously. Feature extraction is fol-

lowed by the attribute’s classification step, for which, Support Vector 
Machines (SVM) [8] has been the most widely used technique in the 
last decade.

In recent years, the convolutional neural networks (CNNs) have al-

most completely replaced SVMs for classification tasks. Compared to 
earlier attribute learning or image classification methods, CNNs are 
more effective and robust. In this work, we make use of the Gabor 
wavelets, which have been used in the computer vision literature exten-

sively over the last many decades. However, there have been only few 
works that use the Gabor wavelets in conjunction with the CNNs. For 
the majority of the works that do employ these wavelets, filters are pre-
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constructed and fed as filters to the convolutional network. However, 
we adopt an approach where the convolutional network is employed to 
learn the wavelet parameters along with learning other neural network 
parameters. These Trainable Gabor wavelets (TGW) [13] layers make 
up for the backbone of our network. Each TGW layer accepts a single 
channel input, with a multi-channel output, and learns the best param-

eters to generate an adaptable set of Gabor filters. TGW layer contains 
a 1 × 1 convolution layer that uses the steerability of Gabor wavelets to 
address orientation issues. We also use a regular convolutional layer to 
extract features from the input as well. These outputs from TGW and 
convolution layers are stacked together, which are referred to as mixed-

layer, and make up the building block of our network. The proposed 
network, shown in Fig. 3, undergoes a series of fully connected (𝑓𝑐) 
layers that are connected to the final network output layer. The pro-

posed network is simple and trainable with a standard gradient-decent 
method.

Our main contributions are:

• We for the first time make use of the trainable Gabor wavelets to 
the problem of pedestrian attribute recognition.

• We propose a novel network that, while learning the Gabor wavelet 
parameters, combines the learned wavelet features with the regular 
convolution layers.

• The proposed method is demonstrated to have better recognition 
results than state of the art on two of the most challenging public 
datasets.

Related work

In this section we discuss works that are in spirit similar to our 
method, a detailed survey can be found in Wang et al. recent survey 
[14]. PETA [8] is one of the most widely used pedestrian datasets. 
While introducing the dataset, the Deng et al. [8] use the luminance 
channel and apply Ensemble of Localized Features (ELF) and Gabor and 
Schmid filter on it. To address the class imbalance problem, they also 
apply ikSVMs [15] separately on each attribute. They exploit similarity 
between images using the Markov Random Field (MRF). In their rep-

resentation, each image is a node and the link between two nodes is 
determined by the similarity between neighboring images. RAP dataset 
[9] is acquired from multiple viewpoints that introduces significant 
variations for the same attributes along with severe occlusions. They 
employed two CNN models based on Caffe framework [16] to analyze 
the impact of the variations introduced by different viewpoints and 
occlusions on the overall classification of the attributes. They trained 
SVMs in addition to the adopting ELF. Additionally, they divide the im-

age into multiple blocks (three in their case) to employ a part-based 
classification scheme. For their work, the parts comprised of: upper 
body (torso), lower body, and head and shoulders. Joo et al. [17] pro-

posed another approach that also employed part-based recognition. In 
their work, they first created Histogram of Oriented Gradient (HoG) fea-

tures from an image subdivided into multiple overlapping regions. For 
attributes classification, they employed a Poselet-based approach [18]. 
Furthermore, Zhao et al. [19] proposed a solution based on a Recurrent 
Neural Network (RNN). In their work, they employed two end-to-end 
models: Recurrent Attention (RA) and Recurrent Convolutional (RC). 
The correlations between various attribute groups are mined by the RC 
model, while the intra-group attention, correlation, and spatial locality 
are used by the RA model to improve the performance and robustness 
of pedestrian attribute recognition. Nonetheless, their network has a 
very deep architecture, hence the number of parameters is quite large. 
In another part-based approach, Zhu et al. [20] proposed a CNN-based 
solution where the human body is divided into 15 parts, and a CNN 
is trained separately for each part. The contribution of each attribute 
determines the weight of the corresponding CNN. Zhou et al. [21] use 
GoogLeNet for the initial mid-level feature extraction from detection 
layers. The activation maps from these detection layers are clustered 

and fused to localize the pedestrian attributes. Only image labels are 
used to train the detected layers in order to learn the relationship be-

tween the mid-level features and the pedestrian attributes. Max-pooling 
is used in a weakly-supervised technique for object detection training. 
Similarly, Chen et al. [22] suggested a part-based network that com-

bined LOMO features [23] with CNN extracted features. They showed 
that the Scale-Invariant Local Ternary Patterns and HSV histograms 
based LOMO features are illumination-invariant texture and color de-

scriptors.

Furthermore, a pose-guided model was also presented [24] based on 
pedestrian body structure knowledge. In the first step, the model com-

putes transformation parameters to estimate the pose from an image. 
Based on the pose information, human body parts are localized, and 
the final attribute recognition is estimated by fusing multiple features. 
Another parts-localization method was offered by Liu et al. [25]. They 
proposed a Localization Guide Network (LGNet) that uses a CNN model 
based on Inception-v2 [26] for feature extraction. Afterwards, a global 
average pooling layer (GAP) is adopted to extract global features. The 
global and local features are fused to perform the pedestrian attributes 
classification. A visual semantic graph approach has also been presented 
[27], using ResNet-50 to for the pedestrian images feature extraction. 
Yet, having more than fifty layers, the proposed network contained a 
large number of parameters. Furthermore, a multi-branch approach has 
also been proposed using multi-colorspace input [28].

Sarfraz et al. [29] proposed an end-to-end CNN-based network 
(VeSPA). This network consists of four parts, where each part cor-

responds to a specific pose category. Pose-specific attributes of each 
category are learned by each of these network parts. Their work demon-

strated that coarse body pose information greatly influences the pedes-

trian attribute recognition. This work was extended in [30] adding a 
ternary view classifier in a modified approach as feature maps were ob-

tained using a global weighting solution prior to the final embedding. 
P-Net [31] employs a part-based approach using GoogLeNet. The lo-

cation attributes for different body parts are estimated using refined 
convolutional feature maps. A joint person re-identification and at-

tribute recognition approach (HydraPlus-Net) is presented by Liu et al. 
[32]. HydraPlus-Net is an Inception-based network and aggregates fea-

ture layers from multi-directional attention modules for the final feature 
representation. Sarafianos et al. [33] present a multi-branch network 
that addresses class imbalance problem by employing a trivial weight-

ing scheme. The network is guided towards crucial body parts using 
the extracted visual attention masks. These visual attention masks are 
used to obtain an improved feature representation by fusing them at 
varying scales. Another end-to-end method for person attribute recog-

nition that uses Class Activation Map (CAM) network [34] to refine 
attention, heat map is proposed by Guo et al. [35] where different im-

age attributes are identified using CAM network to refine the attention 
heat map for an improved recognition. A Harmonious Attention CNN 
(HA-CNN) based joint learning approach for person re-identification is 
presented in [36]. Hard regional and soft pixel attention are learned in a 
combined manner using HA-CNN. Feature representation is obtained by 
this simultaneous optimization. A Multi-Level Factorization Net (MLFN) 
that identifies latent discriminative factors from visual appearance of 
a person is proposed by [37]. The multi-semantic levels factorization 
is done without manual annotation. A Transferable Joint Attribute-

Identity Deep Learning (TJ-AIDL) model that allows for a simultaneous 
learning of an identity discrimination and attribute-semantic feature 
representation is proposed by [38]. Furthermore, Si et al. [39] pro-

posed a Dual Attention Matching network (DuATM), which is a joint 
learning end-to-end person re-identification framework. Their method 
simultaneously performs context-aware feature sequences learning, and 
attentive sequence comparison in a joint learning mechanism for person 
re-identification.

A Generative Adversarial Network based pose-normalized person re-

identification framework is presented in [40]. They learn pose invariant 
deep person re-identification features using synthesized images. A deep 
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Fig. 2. Trainable Gabor Wavelet (TGW) layer [13]: Inputs and outputs are multichannel. A neural network is used to generate Gabor wavelet hyperparameters. 
These generated Gabor filters are then applied to the input. 1 × 1 convolution layer is added to enable the steerability of the Gabor wavelets.

CNN based method to learn partial descriptive features for efficient 
person feature representation is presented in [41]. They employed a 
pyramid spatial pooling module and reported an improvement of 2.71%
on the PETA dataset over [29]. [42] improved over [29] by employing a 
deeper network based on a context sensitive framework. Their proposed 
network creates a richer feature set using deeper residual (ResNet) net-

works that improved generalization and classification accuracy. The re-

sulting model achieved the best in class results on attribute recognition 
datasets. Additionally, [43] presented a visual semantic graph reason-

ing framework that modeled spatial and attribute relationships using 
two types of graphs. A Graph Convolutional Network that combines po-

tential semantic relationships of the attributes, and spatial relationship 
between local regions to be used for the training. A dual model ap-

proach was also presented for pedestrian recognition [44] using Recur-

rent Attention (RA) and Recurrent Convolutional (RC). The RC model 
employed a Convolutional-LSTM model to establish the correlations be-

tween different groups of attributes. To improve the overall robustness, 
the RA model uses both local attention correlation and global spatial 
locality.

Using Gabor wavelets with CNNs have received a tremendous at-

tention as well [13, 45, 46, 47, 48]. Gabor filter bank was proposed

as the first layer of a CNN [45], the bank gets updated using standard 
back-propagation network learning phase. Similarly, Gabor filters were 
used in the first layer [46], however, while introducing lateral inhi-

bition to enhance network performance, a n-fold cross validation was 
used to search for the best parameters. Within this approach, a combi-

nation of HOG and Gabor filters were used for feature extraction while 
CNNs were deployed for detection in [47]. Authors in [48] introduce 
a Gabor Neural Network (GNN) where Gabor filters are incorporated 
into the convolution filter as a modulation process, in spirit similar to 
the above mentioned works. In contrast to the above works where fixed 
Gabor filters are used, [13] introduce a trainable Gabor wavelet (TGW) 
layer. The authors present a method where the hyperparameters of the 
wavelets are learned from the input and a novel 1 × 1 convolution lay-

ers are employed to create steerable filters. In this paper, we propose 
using this TGW layer with our proposed CNN for a novel solution to the 
problem of PAR. Our method is tested on two of the most challenging 
datasets and shows a considerable improvement over state of the art 
approaches.

1. Main approach

In this section, we start with the description of the Gabor wavelet 
layer. Followed by the proposed architecture of the network.

1.1. Gabor wavelet layer

We make use of the Trainable Gabor wavelets (TGW) layer as pro-

posed by Kwon et al. [13] (see. Fig. 2). A neural network is used to 
generate the hyperparameters for the Gabor wavelet, and the generated 
Gabor filters are applied to filter inputs. In order to capture essential 
input features, a 1 × 1 convolution layer is added to the TGW layer to 
capture features at different orientations.

1.1.1. Hyperparameter estimation

The 2D Gabor wavelet can be described as:

𝐺(𝑥, 𝑦) = exp
(
−𝑋2 + 𝛾𝑌 2

2𝜎2

)
× cos

(2𝜋
𝜆
𝑋

)
(1)

where 𝛾 represents aspect ratio, 𝜆 represents wavelength of the sinu-

soidal, 𝜎 represents width or the standard deviation, 𝑋 = 𝑥 cos(𝜃) +
𝑦 sin(𝜃), 𝑌 = −𝑥 sin(𝜃) + 𝑦 cos(𝜃), and 𝜃 is an angle in the range [0, 𝜋]. 
Thus, in order to specify a continuous Gabor wavelet, we need to de-

termine the set of hyperparameters {𝛾, 𝜃, 𝜆, 𝜎}. In order to convert the 
continuous filter to a discrete one, sampling grids need to be defined, 
which is largely linked to 𝜎. A new parameter is thus introduced to 
compute the discrete filter:

𝐺[𝑚,𝑛] = 𝑔(𝑢, 𝑣) =
(

𝑚⌊𝜁⌋ × 𝜁,
𝑛⌊𝜁⌋ × 𝜁

)
(2)

where 𝑚 and 𝑛 are in the interval −⌊𝜁⌋, ⌊𝜁⌋ + 1, … , ⌊𝜁⌋, and by just 
varying ⌊𝜁⌋, variety of sampling grids can be achieved [13]. For a loss 
function 𝐿, we need to compute 𝜕𝐿

𝜕𝜁
in order to train for the wavelet 

layer that is cascaded with our CNN. In order to train for the 𝜁 , what 
remains is to compute 𝜕𝐺[𝑚,𝑛]

𝜕𝜁
, as 𝜕𝐿

𝜕𝐺[𝑚,𝑛] is handled automatically by the 
deep learning libraries:

𝜕𝐺[𝑚,𝑛]
𝜕𝜁

= 𝛿𝑔(𝑢, 𝑣)
𝜕𝑢

𝜕𝑢

𝜕𝜁
+ 𝜕𝑔(𝑢, 𝑣)

𝜕𝑣

𝜕𝑣

𝜕𝜁
(3)

= 𝛿𝑔(𝑢, 𝑣)
𝜕𝑢

𝑢

𝜁
+ 𝜕𝑔(𝑢, 𝑣)

𝜕𝑣

𝑣

𝜁
(4)

as 𝑑

𝑑𝜁
⌊𝜁⌋ = 0. The remaining parameters 𝜕𝐺[𝑚,𝑛]

𝜕𝜎
, 𝜕𝐺[𝑚,𝑛]

𝜕𝛾
, 𝜕𝐺[𝑚,𝑛]

𝜕𝜆
can 

be computed in a similar way and a similar parameterization can be 
adopted for the parameters 𝜎, 𝛾 and 𝜆.

A very significant parameter for the Gabor wavelet is the orienta-

tion (𝜃). These values are mostly chosen empirically. This parameter 
is also made trainable to better design orientations for the task at 
hand. To use the steering property, where a linear combination of 
finite set of responses can be used to represent convolution at any ori-

entation, a 1 × 1 convolution layer, working as a linear combination 
layer, is added to the output of the generated filters. For this layer, ten 
equally spaced fixed orientations are selected, working as basis filters: 
9◦, 27◦, 45◦, 63◦, 81◦, 99◦, 117◦, 135◦, 153◦, and 171◦ [13].

1.2. Attribute recognition network

The above mentioned TGW layer can be thought of as a feature ex-

tracting layer. In addition to this, we also employ it as the key building 
block of our network. Thus, in addition to functioning as the lowest 
layer, it also aids the network to learn high level features.

The proposed network is shown in Fig. 3. An input image is first 
converted to a grayscale and then passes through a series of mixed-

layers: combination of TGW layer and a 3 × 3 convolution layer. The 
input to the TGW layer starts with a 1-channel conversion, i.e., a multi-

channel input is converted to a 1-channel, which is a summation over 
the channel’s operation for all layers except the first layer where we 
perform a simple color-to-gray image conversion. The parameters for 
these layers are given in Table 1.
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Fig. 3. Our Approach: The input images go through a series of 6 mixed-layers. The output of layer six is followed by three 𝑓𝑐 layers. Size of the last layer of the 
network matches the number of dataset attributes. Parameters of the network are mentioned in Table 1.

Table 1. Parameters used for the TGW layers.

Layer 𝛾𝑜 𝜆𝑜 𝜎𝑜 𝜁𝑜 TGW Channels Conv Channels

1 0.3 6.8 5.4 6 128 128
2 0.3 5.6 4.5 5 128 128
3 0.3 4.6 3.6 4 128 128
4 0.3 3.5 2.8 3 128 128
5 0.3 2.5 2.0 2 128 128
6 0.3 2.5 2.0 2 128 128

Each mixed-layer (1 to 6) contains 128 channels from the TGW layer 
and 128 channels from a 3 × 3 convolution layer (denoted as 3Conv). 
Thus, depth of each mixed-layer block output is 256 (concatenation of 
TGW and 3Conv layer). For each 3Conv layer, as the name suggest, the 
kernel size is 3 × 3. The convolution is followed by LeakyReLU acti-

vation function, max-pool layer (size 2 × 2), and a Batch Normalization 
(BN) layer. The size of an input image to each of these stacked layers is, 
respectively: 227 × 227, 113 × 113, 56 × 56, 28 × 28, 14 × 14, and 7 × 7.

The mixed-layers are followed by three fully connected layers, i.e., 
𝑓𝑐1, 𝑓𝑐2 and output, of size 512, 512 and 35 for PETA or 51 for RAP, 
respectively. Each 𝑓𝑐 layer uses LeakyReLU(0.01) as the activation 
function, followed by a dropout layer (𝑝 = 0.5), to minimize the number 
of parameters in the network. The final layer size matches the number 
of attributes of the dataset.

The method proposes using Gabor wavelets merged with a deep 
neural network. Whereas other methods construct Gabor filters man-

ually, proposed network learns the wavelet parameters, suitable to the 
dataset. Generated Gabor filters are stacked with convolution layers to 
build the overall network. As we shall show next, the proposed network 
is efficient and learns the structure of the dataset well to perform at par 
with state of the art.

2. Evaluation

As mentioned above, following the channel conversion, the grayscale 
image is processed through mixed-layers. Each mixed-layer consists of 
equal number of channels from TGW and 3Conv layer. Depth of each 
mixed layer output is 256. The mixed-layers are followed by a series of 
fully connected layers before the final output layer. LeakyReLU(0.01) 
is used as the activation function for all the layers. The output layer 
uses sigmoid as the activation function.

To evaluate our method quantitatively, we compute various mea-

sures and report the results below. Although mean accuracy has been 
widely used in the attribute recognition literature, it treats each at-

tribute independently of the other attributes. This might not necessarily 
be the case and an inter-attribute correlation might exist. Therefore, re-

searchers also report example-based evaluations, namely accuracy (𝐴𝑐𝑐), 
precision (𝑃𝑟𝑒𝑐), recall (𝑅𝑒𝑐), and F1 score (𝐹1) [9].

2.1. Dataset

RAP and PETA are the most widely used datasets for the problem 
of pattern attribute recognition. Collected from real-time surveillance 
cameras, the PETA dataset contains 19, 000 images collected from 10
publicly available datasets. The resolution of the images ranges from 
17 × 39 to 169 × 365. Collected from a multi-camera setup of around 

26 cameras, the RAP dataset contains 41, 585 pedestrian samples. Each 
attribute is annotated independently, and the size of the images range 
from 36 × 92 to 344 × 554.

Most of the previous works [24, 29] report results on the PETA 
dataset using only 35 attributes. Similarly, for the RAP dataset, results 
are reported on 51 datasets. In order to make a fair comparison, we 
adopt the same scheme and test/train on the same attributes. Similarly, 
for a fair comparison, experiments are conducted on 5 random splits: 
we allocate 9, 500 samples for training, 1, 900 samples for validation, 
7, 600 samples for testing on the PETA dataset. For the RAP dataset, 
we split it randomly into 33, 268 training images and 8, 317 test images 
[29]. We adopted the weighted-cross entropy loss function [24] in or-

der to mitigate the class imbalance problem. Similarly, following other 
researchers, images are resized to an image resolution of 144 × 48.

Pre-processing: we start with what is known as the mean subtraction

where mean is computed for all images (for each of the color channel) 
and subtracted from the image data. Similarly, we compute the standard 
deviations, the normalization step, for images (and their color channels) 
and divide image values by this statistic. These steps are crucial and are 
equivalent to centering the data around its origin.

2.2. Setup

For deep learning, we adopted the KERAS [49] library, which is 
based on the TensorFlow backend. All experiments were performed on 
a cluster node with 2 x Intel Xeon E5 CPU, 128 GB Registered ECC 
DDR4 RAM, 32TB SAS Hard drive storage, and 8 x NVIDIA Tesla K80 
GPUs.

2.3. Implementation details

We train the network for 50 epochs. LeakyReLU was used as the 
activation function for all layers of the network with the parameter 0.01. 
We used the Adam for update optimizer using the parameters: learning 
rate = 1𝑒−4, 𝛽1 = 0.9 and 𝛽2 = 0.999.

We added the dropout layers to the 𝑓𝑐 layers to prevent model over-

fitting. We adopt weight decay by a factor of 0.1 after 15 epochs. The 
batch size was set to be 8. All weights in the network are initialized 
using He Normal initialization.

For the TGW layers with a steering block, we use the scheme sug-

gested by [50]: we fix the parameters {𝛾, 𝜎, 𝜆} as shown in Table 1 while 
training for 𝜁 . This setup yields the best results in our experiments.

2.4. Results

We evaluate the effectiveness of the proposed method on both PETA 
and RAP datasets. Table 2 shows a comparison of the proposed method 
with six current state of the art methods. For the PETA dataset, 𝐴𝑐𝑐
obtained from our method is 80.04%. This is higher than all the other 
methods that we compare with. The obtained results for the other mea-

sures (𝑃𝑟𝑒, 𝑅𝑒𝑐 and 𝐹1) is 86.49%, 80.1%, and 82.32% respectively. 
Class-wise accuracy chart for the PETA dataset is shown in Fig. 4. In-

terestingly, the lowest accuracy is that for the class upperBodyOther. 
Considering the image resolutions in the dataset, this is indeed a very 
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Table 2. Quantitative results (%) on PETA and RAP datasets. Results are compared 
with the other benchmark methods. As can be seen, we have comparable results, with 
considerable improved accuracy for both the datasets.

PETA [8] RAP [9]

𝐴𝑐𝑐 𝑃 𝑟𝑒𝑐 𝑅𝑒𝑐 𝐹1 𝐴𝑐𝑐 𝑃 𝑟𝑒𝑐 𝑅𝑒𝑐 𝐹1
Chen et al. [24] 75.07 83.68 83.14 83.41 62.02 74.92 76.21 75.56
Li et al. [9] − − − − 63.67 76.53 77.47 77.00
Sudowe et al. [51] 73.66 84.06 81.26 82.64 62.61 80.12 72.26 75.98
Liu et al. [21] 74.62 82.66 85.16 83.40 53.30 60.82 78.80 68.65
Sarfaraz et al. [29] 77.73 86.18 84.81 85.49 67.35 79.51 79.67 79.59
Li et al. [32] 76.13 84.92 83.24 84.07 65.39 77.33 78.79 78.05

ours 𝟖𝟎.𝟎𝟒 𝟖𝟔.𝟒𝟗 80.1 82.32 𝟗𝟏.𝟏 𝟗𝟐.𝟑𝟗 𝟗𝟏.𝟏 𝟗𝟏.𝟓𝟔

Fig. 4. Class-wise Accuracy - PETA dataset: the figure shows the obtained class-wise accuracy. The highest accuracy is for the class upperBodyThinStripes,up-

perBodyVNeck. The lowest accuracy is 66.0% for the class upperBodyOther.

difficult class to accurately measure. On the other hand, the highest 
accuracy is that of the classes upperBodyThinStripes and upper-

BodyVNeck.

For the RAP dataset, similar to the PETA dataset, the obtained results 
are exceedingly encouraging. The obtained accuracy is 91.1%, while we 
obtained 92.39%, 91.1%, and 91.56% for the remaining measure pre-

cision, recall, and F1-score. The obtained results are a considerable 
improvement over state of the art. One significant reason for this differ-

ence is primarily the large size of the RAP dataset. For the RAP dataset, 
class-wise accuracy is shown in the Fig. 5. The class BaldHead is rec-

ognized with a highest accuracy score while the two class that had a 
low score were that of Age17-30, Age31-45. These two classes, nat-

urally, are very difficult to judge, even for experience human observers. 
Other low performing classes are: Jacket, OtherAttachments.

The proposed method makes a novel use of the Gabor wavelet layers. 
Instead of manually constructing Gabor filters, the layers are trainable 
and are able to correctly estimate wavelet parameters. The method con-

verts the input image into grayscale and then passes it through a series 
of six mixed-layers blocks that learn the best parameters for the gener-

ated Gabor filters. These mixed-layers are a combination of TGW and

3Conv layers. Output from the last mixed-layer passes through three 𝑓𝑐
layers. We have obtained very encouraging results for the key measures. 
The method is novel and unique in the sense that it does not resort to 
data augmentation or part-based computations, as employed by [9]. We 
eliminate the need to compute pose estimation [24], or construct any 
hand-crafted features [22]. The discussed results demonstrated superi-

ority over state of the art and justifies the novel use of Gabor wavelet 
layers.

3. Conclusion

In this paper, we present a novel application of trainable Gabor 
wavelets to the problem of pedestrian attribute recognition. In contrast 
to creating offline Gabor filters for image feature extraction, the pro-

posed network learns Gabor wavelets parameters from the data in our 
deep learning architecture. The network is simple, and has been tested 
extensively on two of the most challenging publicly available datasets. 
The results are encouraging and surpass state of the art over many key 
measures. For the future work, we intend to use these trainable Gabor 
wavelets with other emerging deep network architectures.
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