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ABSTRACT Selective harmonic elimination (SHE) technique is used in power inverters to eliminate specific
lower-order harmonics by determining optimum switching angles that are used to generate Pulse Width
Modulation (PWM) signals for multilevel inverter (MLI) switches. Various optimization algorithms have
been developed to determine the optimum switching angles. However, these techniques are still trapped
in local optima. This study proposes an opposition-based quantum bat algorithm (OQBA) to determine
these optimum switching angles. This algorithm is formulated by utilizing habitual characteristics of bats. It
has advanced learning ability that can effectively remove lower-order harmonics from the output voltage
of MLI. It can eventually increase the quality of the output voltage along with the efficiency of the
MLI. The performance of the algorithm is evaluated with three different case studies involving 7, 11, and
17-level three-phase MLIs. The results are verified using both simulation and experimental studies. The
results showed substantial improvement and superiority compared to other available algorithms both in terms
of the harmonics reduction of harmonics and finding the correct solutions.

INDEX TERMS Power electronics, multilevel inverter (MLI), optimization algorithm, pulse width
modulation (PWM), selective harmonic elimination (SHE), total harmonic distortions (THD).

I. INTRODUCTION
The operating principle and effective performance of a mul-
tilevel inverter (MLI) highly depends on its switching opera-
tion.Moreover, the switching operation of anMLI is precisely
controlled using a specific pulse width modulation (PWM)
technique [1]. The PWM technique makes a power inverter
suitable for medium and high voltage industrial applications.
The PWM techniques can be classified into sinusoidal
PWM (SPWM), space vector PWM (SVPWM), and selective
harmonic elimination PWM (SHEPWM). The SHEPWM
can be implemented following two steps. In the first step,
Fourier analysis will be conducted on the PWMwaveform to
determine a specific number of switching angles by solving a
set of nonlinear transcendental equations. In the second step,

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhilei Yao .

these switching angles will be used in PWM which will set
certain lower-order harmonics to zero and will only keep the
fundamental at a preset value [2]. The SHEPWM provides
significant advantages over other modulation techniques such
as improves performance by reducing the ratio between
switching frequency and fundamental frequency, increases
the voltage gains and bandwidths of MLIs, reduce the
requirements of additional filters, prevents the presence of
harmonic interference in external line filtering networks,
and eliminates the triplen harmonics which can substantially
increase the performance and power quality of three-phase
systems [1].

A. RELATED WORK
The SHEPWM has been applied in numerous industrial
applications, in particular, high-voltage high-power inverters
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where power loss is a major issue. However, finding an accu-
rate implementation of the SHEPWM has introduced a lot of
challenges. One of the major concerns is the analytical solu-
tion for determining the optimum switching angles [3], [4].
In literature, numerous techniques have been proposed
such as; Newton-Raphson iterative approach [5]–[7], resul-
tant theory-based approach [8], current reference-based
approach [9], Walsh functions [10], gradient method [11],
and meta heuristic optimization techniques [12]. In the
Newton-Raphson (NR) approach, initial values need to be
set. However, there is no established formula to select the
initial values making the whole process highly unreliable
and complicated. In addition, the optimization performance
of NR is very sluggish, and it cannot produce wide range
of solutions specially for lower-level MLIs [5]. Walsh
functions for the SHEPWM was proposed in [10] to
determine the optimum switching angles. It utilizes Walsh
transformation matrix to convert transcendental equations
into linear equations. Nevertheless, the formulation of the
transformationmatrix varies for individual problemmaking it
mathematically burdensome. In addition, the characteristics
of the nonlinear equations associated with SHEPWM can
lead to multiple local-optimum of the objective function,
resulting the problem of finding global or near-global
optimum solutions.

To address the drawbacks, meta heuristic optimiza-
tion techniques also known as particle swarm optimiza-
tion (PSO) are proposed as an evolutionary algorithm for
the SHEPWM [13]. The main advantages of PSOs are their
learning ability to determine optimum switching angles with
high accuracy for a broad range of modulation indices.
Therefore, a large number of metaheuristic algorithms, such
as whale optimization algorithm (WOA) [14], differential
evolution (DE) [15], differential harmony search (DHS) [16],
genetic algorithm (GA) [17], improved immune algorithm
(IIA) [18], and bacterial foraging (BP) algorithm [19] are
utilized to enhance the performance of the SHEPWM.

Although the WOA has a broad range of solutions for
a specific benchmark, the solutions could not eliminate
the harmonics satisfactorily. DE and DHS have a similar
problem whereas, the GA provides a simple mathematical
burden-free structure. However, it has the inherent drawbacks
of optimal local and slow convergence which can affect
the performance of the MLIs. The performance of GAs
is highly dependent on the possibility of crossover and
mutation. The erroneous selection of input parameters in
the GA will reduce its performance and searchability.
To improve the performance of the conventional GA, other
variants hybrid genetic algorithms and the adaptive real
coding GA is proposed to solve the drawbacks of the
conventional GA-based SHEPWM [17]. Optimized GA
techniques were proposed by integrating an artificial neural
network (ANN) [20], [21], where the GA was initially used
to optimize the switching angles of the SHEPWM, and
then the ANN was used to select the best set of solutions.
However, the results were not satisfactory as this technique

was only applicable to high-frequencymodulation techniques
and they also suffer from the blackbox constraints of neural
networks [22], [23]. In the case of the IIA, the final results
were highly unsatisfactory as reported in [18]. As a result, this
algorithm could not produce any solution and decrease the
total harmonic distortions (THD) after the modulation index
has reached a certain value. A similar type of outcome can
also be observed for the BP algorithm where the intended
THDs could not be eliminated using the objective functions.

B. RESEARCH GAP AND MOTIVATIONS
Although the aforementioned techniques provide faster and
effective solutions, they suffer from the local optima, slow
convergence, and require multi-parameter tuning [17], [20].
Also, few case studies cannot validate the superiority of
an algorithm over other algorithms. This is because the
performance of these algorithms can widely vary depending
on SHEPWM parameters such as the number of voltage
levels produced by MLIs, number of targeted harmonics,
number of switching angles, and sets of nonlinear equa-
tions [4], [15]–[18]. This also demands an algorithm that can
be proven superior to other algorithms under various case
studies taking different sets of SHEPWM parameters.

C. RESEARCH CONTRIBUTIONS
Quantum-based optimization technology has been applied
to a variety of complex engineering applications through
parallel quantum mechanisms. For multimodal optimization
applications, quantum algorithms are superior to existing
metaheuristic algorithms [24]–[27]. The location of each bat
in quantum bat algorithm (QBA) relies on the best average
position. Besides, incorporating mean best can make the
search algorithm jump from the local optima [28], [29].
Therefore, QBA can easily avoid local optimal. Similarly,
opposition-based learning (OBL) is integrated with the
basic QBA algorithm to improve convergence speed and
solution quality. The reason for choosing OBL is that it
does not depends on specific algorithm to accelerate the
convergence of optimization techniques. To find a better
candidate solution, the estimated value and the corresponding
opposite estimated value can be closer to the global optimal
than the random candidate solutions.

The main contributions of this study can be summarized as
below:

1) This article adopts an effective opposition-based quan-
tum bat (OQBA) metaheuristic algorithm to solve the
nonlinear SHEPWM problem and to explore search
space more effectively. It can overcome most of the
problems that exist in other algorithms.

2) Three different case studies are considered to validate
the performance of the proposed algorithm.

3) Selective harmonics are eliminated ensuring that two
fundamental objectives are satisfied. The first objective
is to ensure that optimized switching angles can
eliminate the harmonics satisfying IEEE 519 standard.
This standard ensures that the MLI structure along
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FIGURE 1. Search technique for bats.

with its control are suitable for industrial applications.
The second objective is to have a broad range of
solutions that will ensure the flexibility of theMLI or in
other words, it can be operated at different modulation
indices seemingly.

II. PROPOSED ALGORITHM
The proposed algorithm is the combination of a quantum
bat algorithm and opposite-based learning theory. This
section gives an overview of the quantum bat algorithm,
opposite-based learning and opposition-based quantum bat
algorithm.

A. QUANTUM BAT ALGORITHM
Quantum bat algorithm (QBA) is constructed utilizing three
habitual characteristics of bats as shown in Fig. 1. The
1st characteristic is known as the echolocation technique
which is to sense the distance and measure the difference
between their prey (food) as well as background barriers.
The 2nd characteristic is to search their prey by varying their
wavelength and intensity of sound. Also, the frequency and
pace of their emitted pulses can be regulated and scaled to the
distance of their prey. The final characteristics can be built
by assuming that the intensity of sound can be varied from
a minimum constant value (Amin) to a large (A0) value. The
velocities (vi) and positions (xi) of the bats can be reformed
using the following equations:

fi = fmin + (fmax − fmin)α (1)

vti = vt−1i + (x ti − g
t )fi (2)

x ti = x t−1i + vti (3)

where fi is the frequency of the pulse, fmin is minimum
frequency and fmax is maximum frequency. α stands for
random vector, vti , denote velocity and x

t
i denotes the position,

where i is the order of bat and t is the iteration number,
and gt is the global location found by the bats until t th

iteration. vt−1i is the velocity and x t−1i is the position same bat
at (t-1) iteration.
The generation of positions for respective bat from a local

random walk is executed when a solution is picked from the
present best solutions. The recent position of the bat can be
formulated as:

xnew = xold + εAt (4)

where xnew is the new position xold is the old position of bat,
ε stands for a random number in the ranges from−1 to 1 and
At indicates the average intensity of melody of bats while t is
the iteration number. A new position of a bat is calculated in
OQBA, with the help of (5) and (6):

x t+1id = gtd × [1+ j(0, σ 2)] (5)

σ 2
=
∣∣Ati − At ∣∣+ ε (6)

where, j(0, σ 2) symbolizes a Gaussian distribution with
mean 0 as well as standard deviation σ 2, x t+1id indicates bat
position, and the bats at dimension d help to find current best
global location. The integration of ε ensures that the standard
deviation always stands positive.

The loudness of sound and pulse rate are presented by Ai
and ri that are upgraded in every iteration by these equations:

At+1i = δAti (7)

r t+1i = r0i [1− exp(−γ t)] (8)

where Ati and At+1i is the loudness of sound for ith bat
in t and t + 1 iteration, respectively, r0i represents the
preliminary pulse discharge rate and r t+1i represents the next
pulse discharge rate. Constant δ varies from 0 to 1 and γ is
another constant which is greater than zero (γ > 0).

Apart from the three fundamental characteristics or
idealized rules, two more characteristics also have been taken
into account in this algorithm. These characteristics can be
listed as: (i) the bat population will have several hunting
habitats which can be separated from each other rather than
depending on one single hunting habitat depending on a
suspected selection and, (ii) the bats will have a noteworthy
self-adaptive ability that will help them for compensating the
complication of doppler effect. The Position of virtual bats
with quantum behavior can be described as:

x tid = gtd + β
∣∣mbestd − x tid ∣∣ ln(1u

)
, u(0, 1) < 0.5 (9)

x tid = gtd + β
∣∣mbestd − x tid ∣∣ ln(1u

)
, u(0, 1) < 0.5 (10)

where x tid presents ith bat’s position in dimension d at t
iteration, β stands for contraction coefficient, u presents a
random number, mbestd is average of all bats position at d
dimension.

In the case of the doppler effect the bats needs to initiate
its self-adaptive ability and (1), (2) and (3) can be rewritten
as follows:

fid =
(340+ vt−1i )

(340+ vt−1g )
× fid ×

[
1+ Ci ×

(gtd − x
t
id )∣∣gtd − x tid ∣∣+ ε

]
(11)

vtid = (w× vt−1id )+ (gtd − x
t
id )fid (12)

x tid = x t−1id + v
t
id (13)

x tid = x t−1id + v
t
id (14)

where fid represents the bat’s frequency in order i in
dimension d , Ci denotes constant that is positive of ith bat in

103612 VOLUME 9, 2021
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FIGURE 2. The implementation procedure of QBA.

the range of [0, 1] and vt−1g presents the global best position’s
velocity at iteration t − 1. The implementation procedure of
QBA is depicted in Fig. 2.

B. OPPOSITION-BASED LEARNING (OBL)
Opposite-based learning (OBL) is one of Tizhoosh’s impor-
tant methods for optimizing heuristic optimization [30] to
increase the convergence speed. To enforce OBL efficiently,
the opposite and existing generations of the same age
must be compared to find a better solution to a given
problem. To increase the convergence speed, the OBL
idea has been used successfully in numerous metaheuristic
methods [31], [32]. To understand the OBL, the log definition
can be described.

Let N(N ∈ [x, y]) be real number. The reverse isN 0 known
as:

N 0
= x + y (15)

The definition can be generalized as follows for
d-dimensional search spaces:

N 0
i = xi + yi − Ni (16)

where (N1N2, . . .Nd ) is the search space in d-dimensional
and (Ni ∈ [xi, yi]); i = {1, 2.3 . . . .d} .
The OBL definition is used in each iteration of the

initialization process and the use of the generated jumping

rate (Jr ) in Opposite-based learning (OBL). The following
steps demonstrate the different steps for OBL.

Step 1: Randomly initialize people within the operational
range in the population.

Step 2: Build the crowd opposite.
for j = 1: size of population
for i = 1: Number of variables power

N 0
j,i = xi + yi − Nj,i

end for
end for

Step 3: Sort from highest to lowest the existing population
and the relative population

Step 4: Select from the present and relative populations the
optimum number of solutions based on the total scale.

Stage 5: Use the recommended optimization technologies
to change the control variable for a particular issue.

Step 6: Use the jumping rate to create the opposite
population to the current population.
for j = 1: size of population

for i = 1: Number of variables
if jumping rate > rand
opposition(i,j) = min(j) + max(j) -pop(i,j)
else
opposition(i,j)= pop(i,j)
end if

end for
end for
Step 7: Filter from the best to worst whole (pop) and

opposite population (opposition) and select the best solutions
from the whole and family populations

Step 8: If the end condition is fulfilled, interrupt the
iteration. Continue to stage 5 of the next generation otherwise.

C. OPPOSITION-BASED QUANTUM BAT
ALGORITHM (OQBA)
In this study, OBL and QBA is incorporated. The current
populations update position based on QBA technique and
the opposite populations are generated from the current
population. After that fitness values of the positions are
calculated. This process will iterate until stopping criteria are
meet. The pseudocode of the proposed technique is given in
Pseudocode 1.

III. DETERMINATION OF OPTIMUM
SWITCHING ANGLES
The schematic diagram of a modular three-phase cas-
caded H-bridge multilevel inverter (CHBMLI) is shown
in Fig. 3. The mathematical expressions of the CHBMLI
for the modularity in terms of number of cells (c) can be
expressed as:

Number of voltage levels, NL = 2c+ 1 (17)

Number of switches, NS = 4c (18)

Maximum voltage, NL_max = c (19)

VOLUME 9, 2021 103613
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Pseudocode 1 Opposition-Based Quantum Bat Algorithm
Initialize probability of habitat selection (P), inertia

weight (w), compensation rates for Doppler Effect in echoes
(C), contraction/expansion coefficient (β), the frequency of
updating the loudness and emission pulse rate (G), the
number of individuals (N ) contained by the population and,
initialize the opposite points,
while (iteration < tmax)

if (rand) < 0.5)
generate new solutions using (9)
else
generate new solutions using (10)
end if
if (rand(0,1) > ri)
using equation (4) generate a local solution around the
selected best solution
end if
evaluate the objective function \
using jumping rate, the opposite population are generated
from the current population.
evaluate the objective function value of each opposite
individual.
update solutions, the loudness, and emission pulse rate using
(7) and (8)
rank the solutions and select the first N number of
populations
find gt

if gt does not improve in G time step.
re-initialize the loudness Ai and set temporary pulse rates ri
[0.85-0.9]
end if
t = t + 1;
end while

Using (17)-(19), 3 three-phase CHBMLIs are developed
in this manuscript which can generate 7-level, 11-level and
17-level output voltage. These three case studies will
confirm the accurate implementation of the proposed
OQBA.

As mentioned earlier, the SHEPWM is generally utilized
to regulate the fundamental and exterminate preset harmonic
components from the output voltage of a single-phase
MLI. The voltage waveform of an MLI is usually a
bipolar/unipolar rectangular signal which closely resembles
a staircase. The fundamental output voltage of an NLevel
MLI is depicted in Fig. 4. It can be observed that in each
edge of each rectangular wave or voltage level, there is one
switching angle that is predefined. The optimization of these
switching angles ais the key in eliminating specific harmonics
from the staircase voltage waveform of the MLI. For a
CHBMLI having the ability to produce NL voltage levels
output voltage, the number of switching angles (S) can be
verified by:

S = c =
NL − 1

2
(20)

FIGURE 3. A three-phase modular CHB MLI.

FIGURE 4. Staircase output voltage waveform of NLevel CHB MLI.

Generally, the Fourier series of the output voltage (v) of a
single-phase MLI is given by:

v (t) = x0 +
∞∑
r=1

xrcos(rωt)+ yrsin(rωt) (21)

xr =
2
T

T∫
0

v (t) cos (rωt) dt (22)

yr =
2
T

T∫
0

v (t) sin (rωt) dt (23)

where, r represents the order of the harmonics, xr denotes
even harmonics, yr denotes odd harmonics, ω depicts angular
frequency, t is the sample time and T is the period. Since a
conventional CHBMLI has an odd number of voltage levels
in a quarter-wave symmetry, only (23) is valid [1]. In other
words, only the sine components of the odd harmonics (y1, y3,
y5, . . . . . . yn) will exist in the output voltage. Mathematically,
it can be expressed as:

yr =
4
π

∫ π
2

0
v (t) sin (rωt) dωt (24)
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TABLE 1. OQBA based SHEPWM parameters for the case studies.

In this study, S is determined to be 3, 5, and 8 for the 7,
11, and 17-level CHBMLIs, respectively according to (20).
Therefore, for 7, 11, and 17-level CHBMLIs the number of
harmonics that can be eliminated is 2, 4, and 7, respectively.
The information regarding the three case studies that are
selected for this manuscript is demonstrated in Table 1.

By observing Fig. 4, it can be stated that the voltage wave-
forms have odd quarter cycle symmetry. Thus, the output
voltage waveforms of the CHBMLIs can be expressed for
the Fourier coefficient yr , the number of switching angles
of each voltage waveform S, and the order of the predefined
harmonics h.

For 7-level CHBMLI, the set of nonlinear equations can be
obtained by:

y1 =
4VDC
π

[cos (α1)+ cos (α2)+ cos(α3)] = m

y5 =
4VDC
5π

[cos (5α1)+ cos (5α2)+ cos(5α3)] = 0

y7 =
4VDC
7π

[cos (7α1)+ cos (7α2)+ cos(7α3)] = 0

(25)

Similarly, for 11-level CHBMLI:

y1=
4VDC
π

[cos (α1)+cos (α2)+· · ·+cos (α5)]=m

y5=
4VDC
5π

[cos (5α1)+cos (5α2)+· · ·+cos (5α5)]=0

y7=
4VDC
7π

[cos (7α1)+cos (7α2)+· · ·+cos (7α5)]=0

y11=
4VDC
11π

[cos (11α1)+cos (11α2)+· · ·+cos (11α5)]=0

y13=
4VDC
13π

[cos (13α1)+cos (13α2)+· · ·+cos (13α5)]=0

(26)

Finally, for 17-level CHBMLI:

y1=
4VDC
π

[cos (α1)+cos (α2)+· · ·+cos (α8)]=m

y5=
4VDC
5π

[cos (5α1)+cos (5α2)+· · ·+cos (5α8)]=0

· · ·

· · ·

· · ·

· · ·

y19=
4VDC
23π

[cos (23α1)+cos (23α2)+· · ·+cos (23α8)]=0

(27)

where VDC symbolizes each level of CHBMLI’s output
voltage and m represents the modulation index. It is worth
noting that the 1st switching angle α1 is used in (25)-(27)
to control the fundamental component of the voltage output
while all other switching angles (α2, α3, . . . . . . . . . . , αS ) are
used to eliminate the predefined harmonic components.

The switching angles for the case studies are solved by
utilizing an objective function. OQBA algorithm finds the
optimal solution using this objective function. In general,
the function can be defined by:

F(α1 . . . αS ) =

( S∑
i=1

cos(αi)− S × m

)2

+

(
4
5π

S∑
i=1

cos(5αi)

)2

. . .+

(
4
hπ

S∑
i=1

cos(hαi)

)2 (28)

Here, F represents the fitness value. The objective function
is subjected to a boundary condition depending on which
the optimum switching angles are selected. The boundary
condition is:

0 ≤ α1 ≤ α2 ≤ . . . ≤ αS ≤
π

2
(29)

The switching angles determined by (28) using OQBA
is checked whether it satisfies (29) or not. If they do not
satisfy (29), they are considered as garbage values and are
not used. In each trial for each case study, a specific amount
of iteration and swarms are selected to conduct OQBA based
SHEPWM. These values are demonstrated in Table 1. In each
iteration, the switching angle variables are updated using
OQBA alongwith the fitness value. The algorithm considered
the value of m from 0.1 to 1 with 0.001 interval. For a certain
value of m, the algorithm finds the minimum fitness value.

IV. NUMERICAL SIMULATIONS
A. CASE STUDY 1: 7-LEVEL CHB MLI
The solutions of this case study are determined for a 7-
level CHB MLI. The necessary parameters required for the
optimization are demonstrated in Table 1. It is worth noting
that the OQBA possesses the ability to evade local optima and
thus for each iteration, it can generate more than one result.
The computed switching angles are plotted in Fig. 5 under

VOLUME 9, 2021 103615



J. Islam et al.: OQBA to Eliminate Lower-Order Harmonics of MLI

FIGURE 5. Optimum switching angles under different modulation indices
for 7-level CHB MLI.

TABLE 2. THD calculation using OQBA for case study 1.

different modulation indices. The OQBA based optimization
is carried out using MATLAB Simulink. To conduct the
simulation, each CHB cell is connected with a DC source
of 50V. Thus, in this case, the CHB MLI can generate a
maximum of 150V output voltage. The optimized switching
angles for each modulation index and the generated THD of
the output voltage are shown in Table 2. The voltage THD can
be calculated as follows:

THD (%) =

√
h∑
r
V 2
r_rms

V1_rms
(30)

where, V 2
r_rms is the RMS voltage of the r th harmonic

and V1_rms is the fundamental RMS voltage. It can be
noticed from Table 2 that under all modulation indices the
THD has reduced because of eliminating 5th and 7th order
harmonics from the output voltage. Furthermore, because
of implementing a balanced three-phase system, the triplen
harmonics (3rd, 9th, 15th . . . .) from the line voltage are also
removed which has also contributed towards the reduction of
the THD [5]. It should be mentioned that in a voltage source
inverter, the dominant low-order harmonic are 3rd, 5th, 7th,
and 9th [2]. Furthermore, for all the case studies the THD is
calculated by taking 40 lower order harmonics into account.

Observing Table 2, it is noted that only for the value
of m ranging from 0.6 to 1, the THD has followed IEEE
519 standard (i.e. THD ≤ 8%) [33]. In addition, for m =
0.1 and m = 0.2, the switching angles determined by OQBA
could not eliminate the targeted harmonics. For the lower
modulation indices, the OQBA could not generate accurate
switching angles since it required some initial conditions to
be met to determine the minimum fitness value and the global
best solutions. This issue can be resolved by increasing the
number of iteration or increasing the number of switching
angles. The first solution is not considered in this study since
it can be highly time consuming to execute the proposed
algorithm. The second solution is validated in the following
case studies which comprises of 5 and 8 switching angles,
respectively.

The simulated output voltages and harmonic spectrums
of the line voltages of the 7-level CHB MLI are shown
in Fig. 6 under 2 different modulation indices. It can be
observed from the output voltages’ harmonic spectrums that
in both instances, the OQBA based SHEPWM eliminated the
5th and 7th order harmonics effectively while the peak voltage
increased from 214.7 V to 306.7 V. In addition, the triplen
harmonics are also removed from the line voltage. As a result,
the overall THD has decreased.

B. CASE STUDY 2: 11-LEVEL CHB MLI
In this case study, OQBA based SHEPWM is executed for
an 11-level CHB MLI. Since, the number of voltage levels
is increased in this case compared to the previous case,
the effectiveness of the proposed optimization algorithm
can be further realized. The switching angles computed
using OQBA for this case study are plotted in Fig. 7 under
different modulation indices while generated THD of the
output voltage are shown in Table 3. It can be observed that
the performance of the OQBA in this case study is more
effective and improved. The generated THD has followed
IEEE 519 standard under nearly all modulation indices except
for 0.1 and 0.2.

The output voltages of the 11-level CHB MLI are shown
in Fig. 8 including the harmonic spectrums of the output
voltages under 3 different modulation indices. Utilizing 50V
DC source of each CHB cell, the 11-level MLI can generate
250V of the output voltage. Observing Fig. 8, it can be
confirmed that the OQBA based SHEPWM has successfully
eliminated 5th, 7th, 11th, and 13th order harmonics. Thus,
the overall THD in this case study has drastically reduced like
the previous case study. In fact, it can be observed that for
higher-level output voltage, the performance of the proposed
optimization algorithm is comparatively more effective and
efficient.

C. CASE STUDY 3: 17-LEVEL CHB MLI
This case study comprises the simulation results of OQBA
based SHEPWMfor a 17-level CHBMLI. A total of 8 switch-
ing angles are optimized using OQBA and 7 lower-order
harmonics are eliminated. The optimized 8 switching angles
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FIGURE 6. Simulation results of three-phase 7-level CHB MLI: (a) line voltages at m = 0.6, (b) line voltages at m = 1, (c) harmonic
spectrum of line voltage ab at m = 0.6, (d) harmonic spectrum of line voltage ab at m = 1.

FIGURE 7. Optimum switching angles under different modulation indices
for 11-level CHB MLI.

under the modulation index ranging from 0.1 to 1 are depicted
in Fig. 9. Utilizing the 8 DC sources each generating 50 V,
the 17-level CHB MLI can generate 400 V output voltage.
The generated THD of the line voltage from the 17-level MLI
is shown in Table 4. It can be observed from Table 4 that
increasing the number of switching variables have improved
the performance of the OQBA compared to the previous two
case studies. Since 7 lower-order harmonics are removed
effectively and the number of voltage levels is increased,
9 out of 10 results of this case study have followed IEEE

TABLE 3. THD calculation using OQBA for case study 2.

519 standards. The simulation results of this case study are
shown in Fig. 10

V. COMPARATIVE ANALYSIS
The advantageous and predominant characteristics of the
proposed optimization algorithms are validated in this section
by comparing it with other algorithms that have already
been applied in SHEWPWM. The comparative analysis is
conducted considering twomajor targets: the calculated THD
must follow IEEE 519 standards and algorithms must be able
to find a wide range of solutions. The proposed algorithm is
compared with five other recently proposed algorithms which
are named as PSO [13], WOA [14], DHS [16], GA [17],
and IIA [18]. To justify the comparison, the same parameters
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FIGURE 8. Simulation results of three-phase 11-level CHB MLI: (a) line voltages at m = 0.3, (b) line voltages at m = 0.6, (c) line voltages at m = 1, (d) THD
of line voltage ab at m = 0.3, (e) THD of line voltage ab at m = 0.6, and (f) THD of line voltage ab at m = 1.

FIGURE 9. Optimum switching angles under different modulation indices
for 17-level CHB MLI.

such as number of iterations, number of search agents are
considered for all the algorithms.

It can be observed from Table 5 that for the 1st case study,
most of the algorithms struggled to find global best solutions
under all modulation indices. PSO and DE could not find
solutions at m> 0.5 whereas, WOA performed the worst and
could not find solution when m > 0.3. None of these three
algorithms could generate a single result that has followed
IEEE 519 standard. Both PSO and DE requires high number
of optimizable variables or iterations to execute SHEPWM
properly as reported in [34] and [35], respectively. WOA

TABLE 4. THD calculation using OQBA for case study 3.

also performed poorly since this algorithm was developed
using the fundamentals of the PSO algorithm and they are
highly similar in nature. The results reported in [14] using
WOA based SHEPWM was done for 11-level inverters and
it shows comparatively better result than both PSO and DE
for the case study 2. This indicates that these algorithms
only perform slightly better when the optimizable variables
or switching angles are increased. It also signifies that these
algorithms are inoperative for low-level inverters which is
a huge disadvantage. DHS performed much better in 1st

case study compared to PSO, DE, and WOA. However,
it also could not produce any solution at m > 0.8 and most
of its generated THD did not follow IEEE 519 standard
except at m ≥ 0.8. On the contrary, GA performed well
and found solutions under all modulation indices similar to
the proposed OQBA. Moreover, it produced THD following
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FIGURE 10. Simulation results of three-phase 17-level CHB MLI: (a) line voltages at m = 0.4, (b) line voltages at m = 0.7, (c) line voltages at m = 1,
(d) THD of line voltage ab at m = 0.4, (e) THD of line voltage ab at m = 0.7, and (f) THD of line voltage ab at m = 1.

IEEE 519 only atm ≥ 0.8 which is similar to DHS. Therefore,
for the 1st case study, it can be easily concluded that OQBA
outperformed all other algorithms since it was not only able to
find solutions under all modulation indices but also generated
output voltages having better harmonic profiles. The THDs
generated by OQBA algorithm followed IEEE 519 standard
at m ≥ 0.6.

In the 2nd case study, all algorithms performed sig-
nificantly better. However, in this case study PSO again
performed poorly compared to other algorithms. This is
understandable since PSO is a 1st generation algorithm and
a lot of improvements in swarm optimization have been
made in recent years to enhance performance [34]. WOA
and IIA generated similar set of results as reported in [14]
and [18] respectively. WOA’s performance became much
better in this case study since this algorithmworks better with
higher optimization variables [14]. However, both WOA and
IIA could not find any solution at m > 0.8. It can be also
validated from the results in [14] and [18]. DHS performed
better in terms of finding solutions compared to both WOA
and DE, but the harmonic profile was slightly poorer. The
results shown in [16] was generated for a higher 27-level MLI
which is why the harmonic profile was better. Nevertheless,
for higher-level MLIs, the execution of SHEPWM becomes
unnecessary as reported in [7]. MLIs capable of generating
higher voltage levels generally produce better harmonic
profile even with fundamental low-frequency modulation
techniques such as nearest level control (NLC) and nearest
space control (NPC). Besides, the results generated in [16]

applied a very high number of iterations which have been
avoided in this study due to its shortcomings. In this case
study, the GA performed better than the other algorithms.
Still, the proposed OQBA outperformed the other algorithms
in this case study as it produced a better harmonic profile
following IEEE 519 standard and global solutions under all
modulation indices.

The final case study has demonstrated incremental
improvements in terms of harmonic profile for all the
algorithms. In this case, all algorithms have performed better
and the generated THDs have followed IEEE 519 standard.
This case study also implies that as the number of levels
produced by the MLIs increases the performance benchmark
of all the optimization algorithms become very similar and
highly enhanced. Therefore, the advantages of a certain
algorithm become a bit difficult to be justified by comparison.
Yet, it can be clearly observed from the results of the 3rd case
study that the proposed algorithm has produced better results
and significantly reduced the THD at m ≥ 0.3.

The entire comparative study was analyzed for a total
of 30 results applying each optimization algorithm. The
performance of all the algorithms is justified based on the two
primary objectives of this study which are shown as graphical
illustrations in Fig. 11(a) and Fig. 11(b), respectively. WOA
and PSO performed the poorest in 1st objective while only
PSO performed the poorest in the 2nd objective. On the
contrary, it can be observed that for the 1st objective shown
in Fig. 11(a), the proposed OQBA performed the finest by
producing 22 out of 30 results that have followed IEEE
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TABLE 5. THD calculation and comparison study between different optimization algorithms.

FIGURE 11. Performance of the optimization algorithms for: (a) 1st objective and, (b) 2nd objective.

519 standards. For the 2nd objective, both OQBA and GA
have found solutions for all 30 cases which is depicted
in Fig. 11(b).

The comparative analysis is extended by comparing
the proposed algorithm with hybrid-PSO (HPSO) based
SHEPWM implemented in two switched capacitor based
MLIs [36], [37]. It should be addressed that the topological
difference of MLIs will not have any impact on the THD.
In other words, the 11-level inverter proposed in [36] will
produce same THD as an 11-level CHB MLI provided
that the optimization technique used for determining the
switching angles is same for both MLIs. Besides, conducting
comparative analysis between different MLI topology is
not an objective of this manuscript. The switching angles
provided in [36] for an 11-level CHBMLI has produced THD
of 6.57% at m = 0.8 which is almost close to the THD of
6.65% for PSO as shown in Table 5. OQBA has produced
only 4.05% THD at m = 0.8 for an 11-level CHB MLI. The
proposed algorithm is also compared with 2 other algorithms
which are Flower Pollination Algorithm (FPA) [38], and
Teaching Learning Based Optimization (TLBO) [39] for an
11-level CHB MLI. The results are shown in Table 6 and
it can be noticed that OQBA has produced less THD than
these 3 algorithms for different modulation indices which
shows its superiority over these algorithms. A combinational
optimization algorithm between conventional PSO and GA is
proposed in[40], which is named as Asynchronous Particle
Swarm Optimization Genetic Algorithm (APSOGA). The

TABLE 6. Extensive comparative study with PSO.

switching angles determined by APSOGA for a 7-level MLI
has produced THD of 31.47%, 10.44% and 7.17% atm= 0.3,
m = 0.6 and m = 0.8, respectively. At the same modulation
indices, OQBA has produced THD of 17.76%, 7.68% and
5.64%. These results again prove the preeminence of the
proposed algorithm.

VI. EXPERIMENTAL RESULTS
The results obtained through simulation is further verified
in this section by conducting an experimental analysis. The
experimental results were obtained by developing a hardware
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FIGURE 12. Experimental setup for the three-phase CHB MLI.

prototype as shown in Fig. 12. The proposed OQBA based
SHEPWM is executed by using TMS320F28335 digital
signal processor. A three-phase resistive-inductive load of
(253�−0.53H) is connected at the output. The CHB MLI’s
output voltage and load current are measured for all case
studies. On the other hand, the THD is measured using Fluke
43B power analyser tool. The DC source voltages for all CHB
MLIs are adjusted to 50 V which is similar to the simulation
model. The experimental results or the 1st case study (7-level
CHBMLI) are shown in Fig. 13(a). In addition, the harmonic
spectrum of the output voltage is shown in Fig. 13(d). The
results are generated with modulation index, m = 1 and
fundamental frequency, f = 50 Hz. The output voltage is
illustrated by yellow color while the load current is depicted
by green color. The harmonic spectrum measured by the
power quality analyzer is given for 50th harmonic order. It can
be observed from the harmonic spectrum that the targeted
5th and 7th harmonics have been eliminated. Furthermore,
the overall THD is 5%which is almost same as the simulation
result and it is following IEEE 519 standard. Here, the most
significant harmonic appeared to be 23rd and 25th. The triplen
harmonics are also eliminated due to the implementation of
a balanced three-phase system. Although the frequency was
low, the quality of the output voltage was maintained because
of eliminating the lower-order harmonics.

The performance of the OQBA technique for the 2nd case
study is shown in Fig. 12(b) and Fig. 12(e). The results,
in this case, are also obtained for m = 1 and f = 50 Hz.
In this case, the output voltage is increased to 250.77 V
because of implementing 11-level CHB MLI. The THD of
the output voltage has decreased from 5% to 3.07% as shown
in Fig. 12 since four lower-order harmonics are removed. The
highest harmonics has emerged 17th and 19th for the 11-level
CHB MLI. The results also showed high similarity with the
obtained results in the simulation.

Finally, the performance of the OQBA based SHEPWM is
analyzed for the 17-level CHBMLI. The output voltage along
with the load current and the harmonic spectrum are shown

in Fig 12(c) and Fig. 12(f), respectively for m = 1 and f =
50Hz. It can be observed that the output voltage has increased
to the maximum value of 400.87 V. Additionally, because of
eliminating 7 lower-order harmonics, the overall THD in this
case study has significantly decreased to only 1.8% which is
well below the required IEEE 519 benchmark.

VII. PERFORMANCE ANALYSIS UNDER TRANSIENT
CONDITIONS
The performance of the proposed algorithm is further
justified in this section under two types of transient condi-
tions: (i) sudden fluctuation of DC voltage and (ii) sudden
fluctuation of the modulation index.

A. VOLTAGE FLUCTUATION
The performance analysis of OQBA under sudden fluctuation
of DC voltage is conducted using MATLAB simulation.
7-level CHB MLI is considered for this analysis. The line
voltage of the CHB MLI is shown in Fig. 14. It can be
observed that the DC fluctuation is imposed on 0.5 sec.
The DC voltage is varied from 50 V to 25 V and therefore,
the line voltage has decreased from 300 V to 150 V. However,
no other difference can be observed in the output voltage
after the fluctuation. Furthermore, the harmonic spectrums
of the line voltage before and after the fluctuation are shown
in Fig. 15(a) and Fig. 15(b), respectively. It can be noticed
that the voltage fluctuation did not alter the THD of the line
voltage and it remained constant at 5.08%. This also verifies
the consistent performance of OQBA under fluctuation in DC
voltage.

B. FLUCTUATION IN MODULATION INDEX
To validate the performance of OQBA under variable
modulation index, the three-phase 11-level CHB inverter
of case study 2 is connected with a three-phase induction
motor drive. The experimental analysis is performed by
executing an open loop speed control technique of motor
known as constant V/f technique [41]. The analysis is
executed by running the induction motor at 3 different
reference speeds regarded as 3 operating modes. The change
of speed contributed to the change in the frequency and
in the modulation index. At every operating mode, OQBA
based SHEPWM is utilized to generate 3 sets of switching
angles. The switching angles are already calculated and shoed
in Table 4. The speed of the induction motor is varied
from 450rpm → 900rpm → 1500rpm and therefore, the
modulation index is also increased to 0.3 → 0.6 →1. This
range of modulation indices is selected to keep a similarity
with the simulation results. It facilitated to verify whether the
experimental results are accurate or not.

The transient line voltage and current of the 11-level CHB
MLI is shown in Fig. 16. The harmonic spectrums of the
3 operating modes are shown in Fig. 17(a), Fig. 17(b) and
Fig. 17(c), respectively. It can be observed that under the
variablemodulation index the THDs produced by the 11-level
CHB MLI in each operation mode are almost reminiscent
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FIGURE 13. Experimental results at m = 1 and f = 50Hz for: (a) line voltages and current of 1st case study, (b) line voltages and current of 2nd case study,
(c) line voltages and current of 3rd case study, (d) harmonic spectrum of 1st case study, (e) harmonic spectrum of 2nd case study, (f) harmonic spectrum
of 3rd case study.

FIGURE 14. Output voltage of 7-level CHB MLI under voltage fluctuation.

FIGURE 15. Harmonic spectrums of 7-level CHB MLI: (a) before voltage fluctuation (50 V), (b) after voltage fluctuation (25 V).

of the THDs produced in the simulation results which
validates the accuracy of this analysis. Some small noises
can be observed in the output which is due to the transition
of switching angles keyed in by OQBA. Thus, it can be
concluded that the proposed OQBA has performed without
any issue under the sudden fluctuation in the modulation
index.

VIII. FITNESS VALUE ANALYSIS
In this particular application of optimization algorithms,
different modulation indices will create different convergence
curves. Hence, the objective fitness value versus modulation
index is plotted in Fig. 18. It can be observed that the
minimum objective fitness value is obtained by the OQBA
technique for different modulation indices compare to all
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FIGURE 16. Output voltage of 11-level CHB MLI under fluctuation in modulation index.

FIGURE 17. Harmonic spectrums of 11-level CHB MLI: (a) at m = 0.3, (b) m = 0.6, (c) m = 1.

FIGURE 18. Fitness value of the optimization algorithms under different modulation indices: (a) 1st case study, (b) 2nd case study, (c) 3rd case study.

FIGURE 19. Convergence curves of the optimization algorithms: (a) 1st case study, (b) 2nd case study, (c) 3rd case study.
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FIGURE 20. Cumulative distribution function of the optimization algorithms: (a) 1st case study, (b) 2nd case study, (c) 3rd case study.

FIGURE 21. THD generated by OQBA under different modulation indices.

other optimization algorithms. The solutions (switching
angels) of (28) that provide minimum fitness value have
provided minimum THD in the output voltage. Fig.18 shows
that for almost all modulation indices the minimum objective
value is achieved by the proposed OQBA technique. In each
case study, the OQBA technique provided better fitness value.
Hence, the switching angels which providedminimumfitness
value in the OQBA technique have decreased the THD of
the output voltage. The convergence curves under different
number of iterations are plotted in Fig. 19. It can be observed
that under all case studies the minimum objective value is
achieved by the proposed OQBA technique compared to all
other algorithms.

The cumulative distribution function (CDF) of the obtained
solutions for different algorithms are shown in Fig. 20.
It can be observed from Fig. 20 that the proposed algorithm
has clearly obtained high probability of convergency for
the 1st case study. For the 2nd and 3rd case studies,
although OQBA achieved comparatively better convergence
probability, the results are very close. This proves the
previous statement that as the number of optimization
variables increase, the performance of the algorithms become
similar.

Finally, the THD of 3 different case studies generated
by OQBA under different modulation studies are shown
in Fig. 21. In addition, the 5th and 7th order harmonics for
1st case study under different modulation indices are also
shown. It can be noticed that OQBA has kept these harmonics
to almost zero in the range of 0.4 ≤ m ≤ 1. It also verifies
the superior optimization quality and the accuracy of the
algorithm.

IX. CONCLUSION
The opposition-based quantum bat algorithm (OQBA) is
proposed to optimize switching angles and eliminate selective
harmonics of multilevel inverters. The performance of the
proposed algorithm was verified by both simulation and
DSP-based experimental prototype. This algorithm effec-
tively overcomes most of the drawbacks hold by the other
metaheuristic algorithms as well as mathematical strategies
applied for SHEPWM. Three separate case studies verified
that OQBA successfully accomplished two predefined objec-
tives and outperformed other recently proposed algorithms.
It also verified that the proposed strategy is applicable for
any multilevel inverter topology. Statistical analysis is also
conducted to show that the performance of the proposed
algorithm stays almost same even with multiple iterations
and run times. The performance of the proposed algorithm
is also analyzed under transient conditions and it performed
excellently. The simulation and experimental results showed
that in 73% of the total data, OQBA successfully kept the
THD of the output voltage below the permissible THD
set by IEEE 519 standard. Therefore, it can be concluded
that OQBA can enhance the performance of any multilevel
inverter topology and can be a real candidate to replace other
available modulation strategies in industrial applications. The
main concluding remarks are as follows:
• Quantum bat algorithm is incorporated with
oppositional-based learning to avoid local optima and
premature convergence.

• Comparative analysis shows that the standalone search
algorithms cannot perform well.

• In each case study, the OQBA technique provided better
fitness value.
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