
Zayed University Zayed University 

ZU Scholars ZU Scholars 

All Works 

1-1-2021 

Detection of Freezing of Gait using Unsupervised Convolutional Detection of Freezing of Gait using Unsupervised Convolutional 

Denoising Autoencoder Denoising Autoencoder 

Mohd Halim Mohd Noor 
Universiti Sains Malaysia 

Amril Nazir 
Zayed University 

Mohd Nadhir Ab Wahab 
Universiti Sains Malaysia 

Jodene Ooi Yen Ling 
Universiti Sains Malaysia 

Follow this and additional works at: https://zuscholars.zu.ac.ae/works 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Noor, Mohd Halim Mohd; Nazir, Amril; Wahab, Mohd Nadhir Ab; and Ling, Jodene Ooi Yen, "Detection of 
Freezing of Gait using Unsupervised Convolutional Denoising Autoencoder" (2021). All Works. 4465. 
https://zuscholars.zu.ac.ae/works/4465 

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All 
Works by an authorized administrator of ZU Scholars. For more information, please contact 
Yrjo.Lappalainen@zu.ac.ae, nikesh.narayanan@zu.ac.ae. 

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4465&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/4465?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4465&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Yrjo.Lappalainen@zu.ac.ae,%20nikesh.narayanan@zu.ac.ae


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3104975, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Detection of Freezing of Gait using
Unsupervised Convolutional Denoising
Autoencoder
MOHD HALIM MOHD NOOR1, AMRIL NAZIR2, MOHD NADHIR AB WAHAB1, (MEMBER,
IEEE), AND JODENE OOI YEN LING1
1School of Computer Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
2Department of Information Systems, College of Technological Innovation, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates

Corresponding author: Mohd Halim Mohd Noor (e-mail: halimnoor@usm.my), Mohd Nadhir Ab Wahab (e-mail:mohdnadhir@usm.my).

”This work was supported by the Universiti Sains Malaysia and Ministry of Higher Education Malaysia under Fundamental Research
Grant Scheme (Grant No. 203.PKOMP.6711798).”

ABSTRACT At the advanced stage of Parkinson’s disease, patients may suffer from ‘freezing of gait’
episodes: a debilitating condition wherein a patient’s “feet feel as though they are glued to the floor”.
The objective, continuous monitoring of the gait of Parkinson’s disease patients with wearable devices
has led to the development of many freezing of gait detection models involving the automatic cueing of a
rhythmic auditory stimulus to shorten or prevent episodes. The use of thresholding and manually extracted
features or feature engineering returned promising results. However, these approaches are subjective, time-
consuming, and prone to error. Furthermore, their performance varied when faced with the different walking
styles of Parkinson’s disease patients. Inspired by state-of-art deep learning techniques, this research aims to
improve the detection model by proposing a feature learning deep denoising autoencoder to learn the salient
characteristics of Parkinsonian gait data that is applicable to different walking styles for the elimination
of manually handcrafted features. Even with the elimination of manually handcrafted features, a reduction
in half of the data window sizes to 2s, and a significant dimensionality reduction of learned features, the
detection model still managed to achieve 90.94% sensitivity and 67.04% specificity, which is comparable to
the original Daphnet dataset research.

INDEX TERMS Parkinson’s disease, freezing of gait, denoising autoencoder, unsupervised learning

I. INTRODUCTION

PARKINSON’S disease (PD) is the second most common
age-related neurodegenerative disorder. It is estimated

that more than 10 million people worldwide are living with
PD and this number is expected to increase as the elderly pop-
ulation increases [1]. PD occurs when neurons in the brain
gradually die, decreasing the neurotransmitter dopamine and
causing abnormal brain activity. Although researchers have
yet to discover the cause of PD, most of the symptoms of PD
result from the decrease in the brain’s dopamine levels. PD is
characterized by both physical and psychological symptoms,
and disease progression varies individually due to the diver-
sity of the disease [2].

Common symptoms include tremors, muscle rigidity, slow
movement, postural instability, and impairment of motor
skills. Walking or gait difficulties in PD patients are exem-
plified by slow, small steps, shuffling, or rapid short steps.

At the advanced stage, PD patients may suffer from freezing
of gait (FOG) episodes. FOG is the brief episodic absence
of forward feet progression despite the intention to walk [3].
In the words of PD patients, it is described that their “feet
feel as though they are glued to the floor” [4]. These episodes
increase the risk of falling, causing it to be one of the most
debilitating aspects of PD.

Since the progression of PD is assessed by walking char-
acteristics, various technologies have been developed to en-
hance human motion analysis. Low cost, low power, and
unobtrusive wearable devices, often comprising of small
computers and sensors, are worn by PD patients to objec-
tively capture continuous movement information [5]. This
assists diagnosis, the monitoring of daily activities of PD
patients [6], [7], and the tracking of FOG occurrences even
in their own homes [8]. In addition, medical researchers have
discovered that cueing a rhythmic auditory stimulus (RAS)
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shows promising results in improving gait, enhancing gait
speed, improving stability, and shortening or even preventing
FOG episodes all together.

In the last decade, many online FOG detection and pre-
diction models have been developed by researchers using
various techniques for the automatic cueing of a rhythmic
auditory stimulus (RAS). Many of these returned promising
results for this area of research. However, most, if not all, of
the models still face difficulties and exhibit large variations
in their performance when it comes to the different walking
styles of PD patients, such as “foot drop” or “very slow walk”
[8]. This is largely due to the design of the models using
thresholding or manual feature extraction techniques in the
classification of FOG. These models lacked salient features
to represent distinct data characteristics for the different
walking styles of PD patients.

Many researchers attempt to resolve this problem by in-
troducing more features and parameter sets. The features are
derived directly from the sensor data by computing the sta-
tistical and heuristic measurements, such as mean, standard
deviation, and interquartile range or by deriving frequency-
domain features from the Fourier transformed signal [9].
However, these approaches still need to be manually deter-
mined by the researcher. This means handcrafting new fea-
tures and parameter sets becomes subjective, prone to error,
and relies on the skillset and experience of the researchers
in understanding the Parkinsonian gait. With the increased
numbers of features and parameter sets, the model becomes
more complex, and this often increases the latency of the
FOG detection model in the process. In addition, manually
handcrafting features is not only time-consuming, but it
increases the difficulty of selecting optimal features, espe-
cially when the features are highly correlated to each other.
Making a small change in one feature could easily affect
other features and potentially deteriorate the performance of
the model. Even if the optimal features are determined, the
feature sets may not be transferrable to similar patterns, and
the search for optimal features might have to be repeated for
each PD patient.

The current trend for this area of research is the appli-
cation of deep learning techniques in FOG detection mod-
els to reduce or eliminate the use of manually handcrafted
features.In deep learning, feature representation of the data
is automatically learned by two main operations, namely
convolution and pooling or down sampling. The convolu-
tional and pooling layers are stacked alternately to extract
salient features in a hierarchical manner whereby the first
few layers extract primitive features while the deeper layers
extract high level features that are specific the application. In
recent works, there have been several attempts to detect FOG
by classification with deep learning models [10], producing
similar and comparable results. Even if the results produced
are only similar and comparable to the ones from the use of
manually handcrafted features, the application of deep learn-
ing techniques in the model greatly increases its complexity
and its computational cost.

In this paper, an unsupervised feature learning method
based on a deep denoising autoencoder is proposed for de-
tecting FOG episodes. The proposed autoencoder exploits
the capability of convolutional and pooling layers to leverage
temporal structure and learn the salient features of gait data.
Furthermore, the deep denoising autoencoder can produce a
compact feature representation, therefore reducing the over-
fitting of the data. The proposed method is evaluated using a
benchmark public dataset. The experimental results show that
the proposed method can achieve a high detection accuracy
and its performance is comparable, if not better, than the
existing methods.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related works. In Section 3, the proposed
method is presented, and Section 4 presents the experimental
results and their discussion. Finally, the conclusions are
presented in Section 5.

II. RELATED WORKS
As one of the pioneers in Parkinsonian gait monitoring re-
search with the use of wearable devices, Moore et al have
analyzed stride data in terms of its vertical linear acceleration
and pitch angular velocity from ankle mounted sensors. They
have discovered small, variable stride lengths as gait char-
acteristics in PD patients. Furthermore, they extended their
research to include FOG detection in advanced PD patients.
From the power spectra analysis on the frequency compo-
nents of the gait acceleration data, they managed to observe
two distinct frequency bands: the locomotion band, with the
mentioned Parkinsonian gait characteristics from 0.5 to 3Hz,
and the freeze band, with high-frequency acceleration com-
ponents from 3 to 8Hz during FOG episodes [11]. Due to the
consistency of high-frequency bands during FOG episodes,
the authors defined freeze index (FI) as “the power in the
freeze band divided by the power in the locomotor band”
with selected threshold values. Any frequencies above the FI
threshold are designated as FOG episodes. The FI was then
normalized with a natural logarithm upon the multiplication
of 100 to reduce large variations in the magnitude of the
FI. With a window size of 6s, they reported a 78% FOG
detection using a global threshold for FI, indicating the strong
correlation between the high-frequency bands with FOG
episodes. Calibrating the thresholds to each of the patients
increased the FOG detection rate to 89%. Since then, the FI
has become the benchmark for assessing the severity of FOG
in PD patients.

Following that, Bächlin et al. conducted their research on
10 PD patients, each equipped with three sensors. These
sensors were located on the shank (above the ankle), the
thigh (above the knee), and the trunk (above the waist). The
patients also wore a computer to record and analyze the
3D acceleration data from the sensors. Based on the works
of [11], the authors introduced the improvement of reduced
latency for real-time online detection and the inclusion of
an energy threshold to distinguish between standing and
other states. The energy threshold, labeled PowerTH, was
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used to distinguish standing and other states of the patient.
Using 4s window sizes, a 256-point Fast Fourier Transform
(FFT) was calculated for the power spectral density of the
movement data. An algorithm was designed to detect FOG,
achieving a sensitivity of 73.1% and a specificity of 81.6%.
However, the performance of the proposed algorithm varied
with the difference in the walking styles of patients. The
proposed algorithm had difficulties distinguishing between
slow walking periods and voluntary standing with very short
FOG episodes. To further improve performance, the de-
tection parameters were calibrated to each of the patients
respectively, producing two patient-specific parameter sets
for ‘smooth’ and ‘intensified stepping’ walking styles to
achieve an average sensitivity and specificity of 88.6% and
92.4% respectively. The collected dataset was made public
and known as the Daphnet FOG dataset. Due to the diversity
in the walking styles of PD patients in the dataset, it is widely
used and considered the benchmark dataset in Parkinsonian
gait research.

With the advancement of computational power, many re-
searchers start to trend towards the application of machine
learning techniques for the detection of FOG episodes. One
of the first few works that proposed the use of machine learn-
ing techniques is reported in [12]. The authors proposed the
use of smartphones and wearable accelerometers for online
detection of FOG episodes and evaluated several machine
learning algorithms on the Daphnet dataset. The correlation-
based feature subset selection technique was performed to
select 7 distinct features for the classifier training: the mean,
standard deviation, variance, entropy of the frequency distri-
bution, energy from the sum of squared discrete FFT, and the
freeze and power thresholds from the research in [8].

Several machine learning classifiers have been built in-
cluding Random Forests, Decision Trees and C4.5 Pruned
Decision Trees, Naïve Bayes, Bayes Net, K-Nearest Neigh-
bor, Multilayer Perceptron, and Decision Trees with Ad-
aboost and Bagging. The evaluation is divided into patient-
dependent and patient-independent experiments. The patient-
dependent experiments refer to the training and testing of
data from the same patient whereas patient-independent ex-
periments refer to the generalized training and testing from
the overall dataset. With 10-fold cross-validation on the
classification models with the features selected in the patient-
dependent experiments, the Decision Trees with Adaboost
classifier recorded the highest detection accuracy of 99.69%
and 99.96% for its sensitivity and specificity respectively for
4s window sizes. As for the patient-independent experiments,
the evaluation of classifiers with the leave-one-patient-out
technique is used. In the patient-independent experiments,
the Random Forest classifier achieved the highest average
performances of 66.25% sensitivity and 95.38% specificity
for 4s window sizes, and 62.05% sensitivity and 95.15%
specificity for 1s window sizes. The poor performance is due
to the different walking styles of the PD patients. Similar
work is reported in [13] whereby machine learning classifiers
are built for classifying PD gait data from the ankle, thigh,

and trunk sensors used in the Daphnet dataset into FOG,
walking, and pre-FOG. Thirty (30) features were extracted
from both time and frequency domains, such as entropy,
skewness, and FFT coefficients. These results show the best
performance of FOG detection, achieving sensitivity and
specificity of 87.23% and 80.00% respectively. Another sim-
ilar work is [14] wherein a k-Nearest Neighbor classifier was
built to classify FOG, pre-FOG, and non-FOG events using
ankle, thigh, and trunk sensor data from the Daphnet dataset.
The leave-one-out scheme on an individual patient is used in
the evaluation of the model. The proposed model achieved
an average sensitivity and specificity of 94.1% and 97.1% for
FOG detection.

In [15], a multistage classifier based on a support-vector
machine (SVM) with only a single tri-axial accelerometer
at the waist is proposed. The research carried out patient-
independent experiments, with the data collected from 20
PD patients, out of which only 8 patients had presented
FOG episodes. Two sets of features are built. The first set
is a reduced set that consists of FFT and the second set
contains additional features such as mean, standard deviation,
entropy, peak amplitude, and FI. The SVM classifier was
trained with sets of features according to different window
sizes and varying the SVM configurations with linear and
radial basis function (RBF) kernels on different weights and
costs. The output from SVM is aggregated over time to
determine the confidence level from the additional upper
and lower FI thresholds introduced for FOG classification.
This research concluded, although the RBF kernel favors the
reduced feature set, the linear kernel trained with FFT alone
is sufficient to achieve similar accuracies. With the use of 128
samples from the 40Hz data, equivalent to an approximate
of 3.2s window size, the linear SVM managed to achieve
an accuracy of 98.7%. That said, it is largely limited by the
one-minute lag between the appearance of the FOG episode
and its detection, rendering it unsuitable for real-time FOG
detection.

In [4], two SVM classifiers were built: one trained gener-
ically with the dataset from all patients with the leave-one-
patient-out validation in patient-independent experiments,
and the second with part of the dataset from each patient in
patient-dependent experiments. This managed to improve the
accuracy of the SVM classification to outperform the generic
patient-independent classifier by [11] and [8]. The dataset
was collected from 21 PD patients using a single tri-axial
accelerometer at the waist. Their data preprocessing steps
include signal conditioning and windowing, removing the
high-frequency noise with a low pass filter, and proposing
the use of 3.2s window sizes of 128 samples with a 50%
overlap to prevent information loss between windows. From
the data windows, a total of 55 features were extracted and
categorized within 12 groups for the data of 21 PD patients.
They also applied the Principal Component Analysis (PCA)
to identify the principal components of the data and the
Singular Value Decomposition (SVD) to identify the latent
variables in the data for the real-time implementation of
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the feature extraction process. Due to its high performance
in classifying binary data, the SVM classifier managed to
achieve an average of 79.03% sensitivity and 74.67% speci-
ficity in the patient-independent experiments and an average
of 88.09% for both the sensitivity and specificity in the
patient-dependent experiments.

Another work by [16] applied the same sensor configu-
ration and SVM technique with only slight changes in the
feature extraction and validation techniques. The dataset was
collected from 15 PD patients. Similar to previous works,
frequency features were extracted with FFT and analyzed
with PCA. However, the number of features was significantly
decreased from 55 to 28 to reduce the computational load
and cater for real-time implementation. The classifier was
validated with the stratified 10-fold-cross-validation and the
leave-out-patient-out techniques on the 1.6s window sizes
with 64 samples. Even with a reduced number of features,
the research managed to perform similarly or outperform the
previous systems in terms of accuracy. In [17], two inertial
sensors are attached to the shin of 11 PD patients for FOG
detection. The decision tree is used to select the relevant
features and SVM is used to predict the FOG episodes. The
proposed method achieved an accuracy of 92.0% on the
leave-one-subject-out cross validation.

In [18], the temporal structure of the gait data is ex-
ploited using long short-term memory recurrent neural net-
work (LSTM-RNN) by feeding the raw data directly to the
network. Subsequently, the dependencies of the sequential
data could be modelled, improving detection accuracy. To
evaluate the performance of the proposed network, the au-
thors performed a comparison of classical machine learning
methods and handcrafted features. The features were ex-
tracted using hybrid discrete wavelet transform and FFT to
distinguish between FOG and non-FOG episodes. Patient-
dependent experiments were conducted, and it was reported
that linear SVM achieved the best performance among the
machine learning algorithms with an average accuracy of
79.48%. The proposed LSTM-RNN managed to achieve a
better performance with an average accuracy of 83.83%.
Another research work by [19], utilized transfer learning to
leverage pre-trained networks for training the LSTM-RNN
network. The results show that the proposed model achieved
an average accuracy of 87.54% with a 1s window.

With recent developments in deep learning, the ability to
extract features from time series data has improved consid-
erably. Deep learning models, particularly the convolutional
neural network (CNN) is highly appealing in time series data
analysis due to its properties for an end-to-end pipeline in
pattern classification and learning of fundamental features.
One of the first works to propose a deep learning model for
FOG detection is reported in [10]. The authors proposed a
deep learning model that exploits spatially local correlation
by encouraging the connectivity of adjacent-layer neurons.
The model was hybridized with a CNN, forming 8 layers: 5
convolutional layers, 2 fully connected layers, and one output
layer. Apart from the windowing strategy, an augmentation

strategy was proposed that randomly shifted the window
starting point and rotated each windowed signal to replicate
the patient’s movement. Furthermore, a stacking strategy
was proposed to overlap consecutive window data with a
stacking parameter and FFT to provide the model with more
data samples. The evaluation of the model did not produce
any improvements in the performance of FOG detection,
the results are only comparable to researchers using signal
processing or machine learning techniques [10]. However,
this shows that automatic feature extraction with deep learn-
ing techniques can produce results comparable to manually
extracted features from long feature extraction processes.
This allows researchers to optimize the performance of the
model to eliminate manually handcrafted feature extraction,
feature selection, and classifier boosting techniques.

In another research, a deep CNN architecture for automatic
feature learning and the detection of FOG episodes is pro-
posed [20]. The proposed CNN architecture consists of three
convolutional and pooling layers for feature learning and one
SoftMax layer for classification. In the pre-processing stage,
outliers were detected with the three-sigma rule and replaced
with the median value of the time-series data. A sliding
window is used to segment the data to a length of 256 (4s) as
the input data for the CNN. The experiments were conducted
using the Daphnet dataset. The generic patient-independent
performance of the proposed architecture is evaluated with
the leave-one-out technique, while the patient-dependent per-
formance is evaluated with the 10-fold cross-validation tech-
nique. Similar work is reported in [21] whereby a deep learn-
ing architecture is proposed for detection of FOG episodes.
The architecture consists of squeeze-and-excitation blocks
to capture the interdependencies between channels of the
feature maps and attention mechanism to encode the rela-
tionship between the features and the desired targets. These
experiments were also conducted using the Daphnet dataset.
The proposed model is evaluated with the 10-fold cross-
validation and leave-one-out cross-validation. Although the
proposed CNN improved the specificity performance, the
overall sensitivity performance was still poor. This aligns
well with the findings of [8], that the proposed architecture
did not perform equally well for all PD patients due to
the difference in the walking styles. In this case, as the
SoftMax classifier can only provide linear classification, the
performance might be improved with the use of classifiers
with a non-linear classification capability.

Based on the literature review, the limitations of manually
handcrafted features are apparent, especially in determining
the optimal feature sets and their combinations to differenti-
ate between FOG episodes and other states, such as standing
or slow walking. The limitations of manually handcrafted
features also affected the results, producing large variations
in the performance of classification models when faced with
different PD patient walking styles. Many of the researchers
attempted to resolve this problem by introducing even more
manually handcrafted feature sets from the frequency and
statistical analysis of gait acceleration signal data in addition
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to the freeze and power index thresholding methods proposed
by [11] and [8]. This leads to an explosion in the number
of features; up to 55 feature sets were categorized into 12
groups [4]. However, more features do not necessarily mean
the model will perform better as shown in [16] wherein
the authors reduced the number of feature sets to 28 fea-
tures to improve the performance of the model. Hence, the
manually handcrafted features are not only subjective and
varied throughout the works, but the different combinations
of features also produce different results, which makes it
difficult to select optimal features.

The introduction of CNN deep learning methods in re-
cent years has contributed to the elimination of manually
handcrafted features used in previous works. This reduces
many tedious steps, complex calculations, and countless dif-
ferent manually handcrafted features from the FOG detection
model. However, the use of CNN with its many hidden layers
and nodes increases model complexity, which in turn often
increases latency due to the increased delay lag between
the FOG episode and its detection. This is one of the main
concerns of researchers in many of the related works above,
as the classification models need to work in real-time for the
effective cueing of RAS.

Therefore, this research aims to propose an unsupervised
deep denoising autoencoder to eliminate the use of the man-
ually handcrafted features by learning the salient character-
istics of PD gait acceleration data. Unlike the number of
parameters, which increases in each layer of the CNN and
increases the complexity of the model, the constriction of
the hidden layer with the bottleneck layer of the autoencoder
limits the number of nodes between the encoder and the
decoder to be significantly smaller and simplifies the data
for the classification of the FOG episodes. This prevents
the autoencoder from directly copying inputs to the output
and forces the autoencoder to prioritize the importance of
the learned features, retaining only the important ones and
reducing the dimensionality of data in the process. Only
features learned from the encoder portion of the autoencoder
are retained to be used with the classification model for
the detection of FOG episodes. In the following section the
proposed methodology is briefly outlined.

III. PROPOSED METHODOLOGY
An overview of the proposed method is illustrated in Figure
1, and it can be divided into two stages. First is the feature
learning stage wherein the feature representation of the data
is learned (automatically extracted) via a deep learning au-
toencoder (Figure 1, top). The next stage is the classification
stage wherein the extracted features are used to detect FOG
episodes using the gait acceleration data. The collection
and pre-processing of this data is detailed in the following
section.

A. DATA COLLECTION AND PRE-PROCESSING
To execute the proposed methodology, this research was
carried out solely based on the Daphnet FOG dataset. The PD

gait data was collected using three accelerometers that were
attached on the shank (above the ankle), the thigh (above
the knee), and the trunk (above the waist) of the patients,
transmitting the acceleration data to a base station through a
64 Hz Bluetooth link, corresponding to a 15ms time interval.
Ten (10) PD patients in a laboratory environment were asked
to perform three walking tasks that represent the different
aspects of daily walking. These tasks were done under the
supervision of therapists and assistants for observation and
safety purposes. The tasks included walking in straight lines
with 180 degree turns, random walking with several stops
and turns, and stimulating activities of daily living such as
getting drinks from the kitchen and returning to the room.
The gait data acquired were annotated with ground truths: 0
for non-experimental periods, 1 for non-FOG episodes, and
2 for FOG episodes.

In the data pre-processing, the outliers were detected and
eliminated by replacing data values exceeding three standard
deviations with the median value of each attribute and re-
moving the data if it exceeded four standard deviations. The
three-sigma rule is commonly applied to data with normal
distributions to retain at least 95% of the data. To prevent too
much information loss, this research extends the tolerance of
the outliers to the 99th percentile of the data to retain more of
the original dataset. Due to this, most of the original data are
still retained for the application of deep learning and machine
learning later in the research. The data were normalized to a
range of 0 to 1. The use of the resulting dataset for feature
learning in this research is explained in the ensuing section.

B. FEATURE LEARNING
The feature learning pipeline is based on an autoencoder
variant called denoising autoencoder [22]. An autoencoder
is an unsupervised learning neural network model trained to
learn useful features of the data to reconstruct the output
to be as similar as possible to the original input, without
the need for class labels. The autoencoder consists of two
parts: the encoder, which encodes learned features of the
input data, and the decoder, which reconstructs the output
data from the learned features. Typically, a bottleneck con-
stricts the hidden layer between the encoder and the decoder,
significantly limiting the number of nodes to prevent the
autoencoder from directly copying inputs to the output. This
also forces the autoencoder to prioritize the importance of
the learned features, and retain only the important ones,
reducing the dimensionality of data in the process. Unlike
the vanilla autoencoder (the simplest form of autoencoder),
the denoising autoencoder is trained to reconstruct the output
from corrupted inputs. This allows the autoencoder to learn
more stable and robust features of the data. In this research,
the data is corrupted with Additive White Gaussian Noise.
The target noise level will be based on the signal-to-noise
Ratio (SNR) producing more corrupted data windows, where
lower SNR indicates more noise. The target SNR is set to
20 in this research, which is deemed to be a reasonable
amount of noise to corrupt the data. The SNR is expressed
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mathematically as follows:

SNR = Psignal − Pnoise (1)

where Psignal represents the average power in the original
signal and Pnoise represents the average power in the noisy
signal. The average power is calculated in decibels (dB).
Therefore, the data is converted into decibels prior to calcu-
lating the SNR for the noise generation. The noise generated
is then added back to corrupt the original data and thereby
form the corrupted data.

While a simple autoencoder can be trained with only one
hidden layer – an input layer, a hidden encoder layer, and a
decoder output layer – it is not sufficient for solving complex
problems such as the one in this research. This requires
the composition of a multi-layered non-linearity architec-
ture to generalize complex relationships between features
efficiently. Deep architectures perform hierarchical feature
learning by first learning low-level features and increasing
the layers deeper into the network model. By convention,
a symmetrical architectural design is desired. The 15-layer
deep denoising autoencoder in this research consists of an
8-layer encoder (including the input layer) and a 7-layer
decoder as described in the summary of the architecture in
Table 1 below.

The initial input shape of the deep denoising autoencoder
is the same as the output shape of the last layer. This is
given as 128×3, representing the input dimension and the
number of channels respectively. The input dimension, 128,
comes from the 2s data windows from the data preparation
process, while the second parameter, 3, comes from the x,
y, and z channels of the accelerometer data. The output
shapes change depending on the processes within the layers
of the autoencoder. The bottleneck is the constricted layer
that can tremendously reduce the dimensionality of the data
and has dimensions 4×f where f is the number of filters in
the constricted layer. To extend the learning capabilities of
the deep denoising autoencoder, the 1D convolutional layer
is used to leverage the local temporal structure of the data and
the 1D pooling layer is used to minimize the translation of the
network invariance in the data. The encoder consists of three
stacks of 1D convolutional layers and max-pooling layer
followed by a convolutional layer that acts as the constricted
layer (bottleneck). The number of filters in the convolutional
layers increases from 16 to 48 as the network gets deeper.
This allows the network to extract the features in a hierar-
chical manner, resulting in more discriminative features. In
terms of the layer structure, the decoder is symmetric to the
encoder. Up-sampling is performed after each convolutional
layer to increase the dimension of the data to the original
size. All 1D convolutional layers use the rectified linear unit
activation function.

The mean squared error (MSE) is used to train the deep de-
noising autoencoder to reconstruct the original data from the
corrupted data. The MSE measures the average differences

FIGURE 1. Block diagram of the proposed method.

TABLE 1. The architecture summary of the deep denoising autoencoder. *
bottleneck layer of the deep denoising autoencoder.

Layer Parameters Output Shape
1 Input 128 x 3
2 Conv1D filter = 16, kernel size = 5, stride = 1 128 x 16
3 Max-pool1D pool size = 4, stride = 1 32 x 16
4 Conv1D filter = 32, kernel size = 5, stride = 1 32 x 32
5 Max-pool1D pool size = 4, stride = 1 8 x 32
6 Conv1D filter = 48, kernel size = 5, stride = 1 8 x 32
7 Max-pool1D pool size = 2, stride = 1 4 x 48
8 Conv1D filter = f, kernel size = 5, stride = 1 4 x f
9 Up-sample1D size = 2 8 x 8
10 Conv1D filter = 32, kernel size = 5, stride = 1 8 x 48
11 Up-sample1D size = 4 32 x 32
12 Conv1D filter = 32, kernel size = 5, stride 1 32 x 32
13 Up-sample1D size = 4 128 x 32
14 Conv1D filter = 16, kernel size = 5, stride = 1 128 x 16
15 Conv1D filter = 3, kernel size = 5, stride = 1 128 x 3

between the predicted value (reconstruction), x̂ and the true
value (original), xi as shown in the following equation:

MSE(xi, x̂i) =
1

n

n∑
i=1

(xi − x̂i)2 (2)

where n is the dimension of the data. As the value is squared,
this loss function is sensitive to any deviation from its true
value. However, it only measures the magnitude of the error
irrespective of its direction. To improve the reconstruction
of the data, the Kullback-Leibler (KL) divergence is added
to the loss function to minimize the divergence between the
distribution of the true values and the predicted values. The
loss function is defined as follows:

J =MSE(xi, x̂i) + βD(x||x̂) (3)

where β is a small constant weight and D(x||x̂) is the KL
divergence, which is defined:

D(x||x̂) = 1

n

n∑
i=1

xi log(
xi
x̂i

) (4)

C. DETECTION OF FOG
Essentially, only salient characteristics of FOG episodes are
encoded in the constricted layers, which represent the fea-
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tures of the data after the training procedure. The decoder is
then removed from the network and replaced with a classifier
as shown in Figure 1 (bottom). The classification task is
framed as a binary classifier to detect the presence or absence
of FOG episodes. The supervised learning approach is em-
ployed to model the mapping between the encoded features
and the FOG episodes. In this research, various machine
learning algorithms are evaluated to determine the optimal
FOG detection model. The machine learning algorithms are
naïve Bayes, SVM with RBF kernel, SVM with polynomial
kernel, Random Forest, and Ensemble Voting. Each classifier
is fine-tuned accordingly to obtain the best results, and these
results are laid out in the next section.

IV. EXPERIMENTS AND RESULTS
The following subsections present a detailed analysis of the
results obtained and are divided into three sections. The first
section introduces the experimental setup, and the second
section presents the results and their discussion. The final
section is a comparative analysis of the proposed method
with the state-of-the-art methods.

A. EXPERIMENT SETUP
The Daphnet dataset was used in the experiments to evaluate
the proposed method. In the experiments, the gait data from
the thigh sensor was chosen as it gave the best performance in
the original Daphnet research. The data was segmented using
a fixed sliding window technique with the window size set
to 2s (or 128 samples per window) with no overlapping. The
dataset was partitioned into training and test sets with a ratio
of 7:3. The deep denoising autoencoder was implemented
using Keras with TensorFlow as its backend engine. Xavier
initialization was used to initialize the network weights and
the autoencoder was trained using the RMSprop optimizer.
Early stopping and dropout techniques were used to prevent
overfitting the training data. A batch size of 32 was used and
a dropout rate of 0.2 was applied to prevent sparsity, which
may lead to the loss of too much information.

B. RESULTS AND DISCUSSION
Due to the black-box nature of the neural network in the
autoencoder, several initial trial runs were performed in the
development of the deep denoising autoencoder to explore
the influence of the many different parameters on the perfor-
mance of the model. The parameters are the number of filters
in the convolutional layers of the encoder, decoder, and its
bottleneck layer. The baseline model as described in Table
2 has 8 filters in its bottleneck layer, with 16, 32, and 48
filters in the encoder layers, with the symmetrical 48, 32, and
16 number of filters for the decoder layers respectively. For
simplification, the number of filters of the model will hence
be referred to with just the number of filters from the encoder
layer, such as 16-32-48 for the baseline model. Deviating
from the baseline model, experiments are conducted by either
reducing the number of filters in the convolutional layers to 8-
16-32 or increasing the number of filters in the convolutional

layers to 32-48-64. To determine the most suitable number
of filters for the convolutional layers, the stratified 10-fold
cross-validation is applied to the supervised learning clas-
sifier of the FOG detection model. The average detection
accuracy from the experiments conducted is tabulated in
Table 2, with the best-achieved performance from the model
being 16-32-48 filters.

Extending from the first set of experiments on the number
of filters in the convolutional layers of the deep denoising
autoencoder, the number of filters in its bottleneck layer
were tuned as well, with the use of 6 and 10 filters in
each experiment respectively. The bottleneck layer is set to
a maximum of 10 filters, constricting the number of learned
features to prevent the autoencoder from copying its inputs
to its outputs. The average results for the stratified 10-fold
cross-validation experiments on the number of filters in the
bottleneck layer are tabulated in Table 3, which observes the
best performance with 8 filters in its bottleneck layer.

To summarize from Table 2 and Table 3, the deep denois-
ing autoencoder with the 16-32-48 filters for its convolutional
layers and 8 filters in its bottleneck layer learned the most
salient characteristics in the Daphnet dataset. As for the
FOG detection model, the representative classification model
is chosen from the best performing model from the naïve
Bayes, SVM with RBF and polynomial kernels, Random
Forest, and Ensemble Voting classifiers. In this case, the
Random Forest classifier produces the highest averages of
sensitivity, specificity, and balanced accuracy compared to
other classification models; therefore, it was selected as the
FOG detection model. It is surmised that the Random Forest
can generalize better as it is an ensemble learning technique
with multiple decision tree classifiers.

Both the SVM with RBF and SVM with polynomial
kernels also achieved good results. This is in line with the
reputation of SVM in this area of research, as discussed in
Section 2. Besides the efficient feature learning, the high
performance of the SVM also shows that it is capable of
mapping complex non-linear relationships with its use of the
RBF and polynomial kernels. It is robust to outliers with
the use of its regularization penalty error, and it can handle
imbalanced datasets with the introduction of class weights as
a cost-sensitive function.

For a more detailed analysis of the FOG detection model,
the confusion matrix of the Random Forest classification
model shows the predicted results of the test samples in Table
4. From the confusion matrix, the number of false negative
instances are rather high, leading to the low specificity of the
classification model and signifying incorrectly predicted non-
FOG episodes. Reflecting the real-life use case for the cueing
of RAS, this means some FOG episodes may not be detected
by the FOG detection model, occasionally failing to cue RAS
to help the PD patient to continue walking. One of the reasons
for this is the different walking styles of the PD patient, as
indicated by past researchers such as [8], [12], [23].

While the deep denoising autoencoder can learn the salient
characteristics of the Daphnet data, it tries to learn all the
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TABLE 2. Average results for the stratified 10-fold cross-validation with different numbers of filters in the convolutional layers of the deep denoising autoencoder
(number of filters in the bottleneck layer: 8). *indicates the baseline model

Number of filters Evaluation
metrics

Naive
Bayes

SVM
(RBF)

SVM
(Polynomial)

Random
Forest

Ensemble
Voting

8-16-32
Sensitivity 100 80.09 64.43 87.88 22.55
Specificity 33.04 70.72 79.16 64.77 96.90
Accuracy 66.52 75.41 71.80 76.32 59.73

*16-32-48
Sensitivity 98.43 87.12 85.20 90.94 50.31
Specificity 39.99 63.44 65.68 67.04 87.84
Accuracy 69.21 75.28 75.44 78.99 69.07

*32-48-64
Sensitivity 98.44 94.14 94.14 90.63 1.95
Specificity 34.04 50.79 50.45 57.15 99.34
Accuracy 66.24 72.46 72.30 73.89 50.65

TABLE 3. Average results for the stratified 10-fold cross-validation with different numbers of filters in the bottleneck layer of the deep denoising autoencoder
(number of filters in convolutional layers: 16-32-48). *indicates the baseline model

Number of filters Evaluation
metrics

Naive
Bayes

SVM
(RBF)

SVM
(Polynomial)

Random
Forest

Ensemble
Voting

6
Sensitivity 97.69 93.73 93.34 89.42 2.77
Specificity 36.93 51.41 52.61 60.51 99.50
Accuracy 67.33 72.57 72.98 74.96 51.14

*8
Sensitivity 98.43 87.12 85.20 90.94 50.31
Specificity 39.99 63.44 65.68 67.04 87.84
Accuracy 69.21 75.28 75.44 78.99 69.07

*8
Sensitivity 98.43 80.43 69.89 90.54 45.32
Specificity 38.38 70.64 74.98 64.97 91.03
Accuracy 68.40 75.54 72.44 77.76 68.17

TABLE 4. Confusion matrix for the model with 16-32-48 filters in its
convolutional layer and 8 filters in its bottleneck layer from the Random Forest
classifier

Actual Positive
(FOG)

Actual Negative
(non-FOG)

Predicted
Positive (FOG)

1621 23

Predicted
Negative (non-
FOG)

797 233

characteristics of the different walking styles of the PD
patients as well. For example, an indication of an oncoming
FOG episode may be the slowed down movement to the point
of freezing, but a high volume of movement data from PD
patients walking very slowly without FOG episodes leads
the autoencoder to assume the patients are just walking very
slowly and it isn’t flagged as a FOG episode. Due to the
volume of data for non-FOG episodes and the minority of
patients with different walking styles exceeding the volume
of data for FOG episodes, the autoencoder may not learn
the characteristics of FOG episodes from the data well. This
problem can be resolved with the collection of more data
from both the different walking styles of the PD patients and
data with FOG episodes. In order to compare this method
with similar existing models, the following section will pro-
vide a discussion of how each method measures up against
the proposed method.

C. COMPARISON WITH EXISTING METHODS

For the objective evaluation of the feature learning and FOG
detection model proposed in this research, its performance
is benchmarked by the FOG detection models contributed
by other researchers. However, due to the non-uniformity in
the use and placement of sensors, along with the different
methods of data collection and processing, the performance
of this proposed model only benchmarks with models tested
with the Daphnet dataset. This significantly narrows down
the potential benchmarking reference to only three, which
coincides with the three main techniques discussed in Section
2.

The first reference is by [8], the original research in which
the Daphnet dataset originates. It uses the thresholding tech-
niques for the detection of FOG episodes. The references
reported in [12], [13], applies manually handcrafted fre-
quency features extracted into a Random Forest supervised
learning classifier. While the first three references rely on
manually handcrafted features, the fourth by [18] attempts
the detection of FOG episodes through modelling the se-
quence of input signals without the manual feature extraction
process. Similarly, the fifth by [20] attempts the detection of
FOG episodes through a deep learning convolutional neural
network. Table 5 below summarizes the three references in
the order of their publication year with the applied methods,
window size, and the evaluation of sensitivity, specificity, and
balanced accuracy for each reference respectively along with
the proposed model.

A quick glance from Table 5 shows that, for models using
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TABLE 5. The proposed method in comparison with the methods from other references

Method Window Size Sensitivity Specificity Accuracy
Bachlin et al. [8] Thresholding 4s 81.60 73.10 77.35

Mazilu et al. [12] Manually handcrafted features with
Random Forest

4s 95.38 66.25 80.82
1s 95.15 62.05 78.67

Kleanthous et al. [13] Manually handcrafted features with
Gradient Boosting

4s 87.23 80.00 79.55

Ashour et al. [18] Long short-term memory recurrent
neural network

An input se-
quence with
9 values

Not reported Not reported 83.83

Xia et al. [20] Deep convolutional neural network 4s 90.60 69.29 79.95
Li et al. [21] Deep convolutional neural network 4s Not reported Not reported 91.90
Proposed method Deep denoising autoencoder with

Random Forest
2s 90.94 67.04 78.99

4s window sizes, the best performance with the highest
sensitivity, specificity, and accuracy was achieved by [18],
followed by [12], [13], [20] and [8]. Although the FOG
detection model proposed in this research only uses 2s win-
dow sizes, its performance is comparable to those models
using the 4s window size and surpassed the performance of
the thresholding model contributed by [8] and the 1s and
2s window size models contributed by [12] and [13]. That
said, the classification metrics from Table 5 only provides
the comparison at a superficial level. Due to the difference in
the data processing and FOG classification methods, a more
in-depth analysis is required for an objective benchmarking
of the performances of the proposed FOG detection model
against the models contributed by other researchers.

Both the thresholding and the manual feature extraction
techniques from the frequency and statistical features of the
gait acceleration data applied by [8], [12] and [13] respec-
tively are manually handcrafted features. This means the
researchers had to manually produce a generalizing formula
for the detection of FOG episodes, and the model relied
heavily on that formula to detect the next FOG episodes. As
discussed earlier, this typically involves the use and combina-
tion of many handcrafted features for the right generalization
formula and it is highly dependent on the skillset and experi-
ence of the researcher. As there is no singular generalization
formula for all the different walking styles of PD patients, the
manually handcrafted features cannot be transferred to others
who walk differently. In contrast, the feature learning of the
proposed model that simply learns salient characteristics of
the data can be transferred to other walking styles as well.

While the 4s window size classification models by [12],
[13] had a slightly better performance, this may be due to the
training of the data from all three sensor placements in their
research, compared with only the thigh sensor placement
from the Daphnet dataset in this research. As discussed in
Section 2, the study in [12] also focused more on patient-
dependent experiments; that is, they calibrated the detection
models with manually handcrafted features specifically de-
signed for the training and testing of the dataset from the
same patient for each of the patients in the detection of
FOG episodes. There is not much description provided on the

data processing and classification techniques for the testing
and training of the overall dataset in the patient-independent
detection of FOG that contributed to the results. Furthermore,
a study in [13] demanded heavy computation due to the
complexity of the features and the number of features needed
to be extracted. Hence, it is hard to conclude if the models
contributed perform better.

The models reported in [18], [20], [21] eliminated manu-
ally handcrafted features with the use of deep learning meth-
ods. Although the evaluation of its performance produced
results with a high detection accuracy, it is not comparable to
the proposed model of this research due to its data processing
techniques. The authors handled the outlier by performing
the three-sigma rule; any data three standard deviations away
from the mean of the data was considered an outlier. The
research replaces the data within the range of three-sigma to
four-sigma with the median of the data and removes outliers
beyond four-sigma. As acceleration data do not typically fall
within the normal distribution, this data processing method
removed a lot of data from the training and testing of the
model, including the data representing the different walking
styles of the PD patients. With the removal of too much data,
the model may have been evaluated based on the general
walking styles of PD patients; there is no evidence the
contributed model can generalize the different walking styles
of the PD patients.

That aside, the use of CNN and LSTM-RNN typically
involves the use of large feature vectors for feature extraction
and classification. In the case of [20], at least 20 filters were
used with a kernel size of 33 in its convolutional layers
while the LSTM-RNN [18] used 100 neurons in its hidden
layer. The proposed model reported in [21] consists of three
convolutional layers and two squeeze-and-excitation blocks
followed by LSTM, which adopted the attention mechanism.
This results in the increased dimensionality of the data, which
in turn increases the computational cost of the model as well.
In comparison, the size of feature vectors of the proposed
deep denoising autoencoder is relatively small, using only 8
filters with a kernel size of 5 in its bottleneck layer. This con-
tributes to a significant dimensionality reduction in the data
for a reduced computational cost that is not only desirable in
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any learning algorithms but crucial in this research for low
latency-period detection.

Additionally, this research proposes a window size of
only 2s, half the common window size practiced by all the
benchmarked references, further contributing to the reduction
in the model latency. Another added advantage for the use of
autoencoder-based representation learning is in the freedom
of choice in selecting preferred classification techniques.
Unlike the classification of CNN, which uses the fully con-
nected layer, the proposed method allows any classification
technique to be used to model the encoded representation
by the deep denoising autoencoder. That is the case in this
research, which uses the balanced Random Forest ensemble
learning classifier.

V. CONCLUSION
This paper proposes a feature learning method using deep
denoising autoencoder for detecting FOG episodes in PD gait
acceleration data. The proposed method automatically learns
feature representation of the data in an unsupervised manner,
eliminating the need for manually handcrafted feature engi-
neering. The deep denoising autoencoder is trained to min-
imize the cost function with Kullback-Leibler divergence,
which improves the reconstruction outputs. As a result, more
salient features can be learned, improving the accuracy of
the FOG detection model. We evaluate the proposed method
on a benchmark Daphnet dataset. The results showed that
the proposed method managed to achieve 90.94% sensitivity
and 67.04% specificity. These results are comparable to the
original Daphnet dataset research. The low specificity results
are due to the significant lack of data from the FOG class
label compared with non-FOG class label data, which hinders
feature learning of the deep denoising autoencoder.
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