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Abstract: The recent unprecedented threat from COVID-19 and past epi-
demics, such as SARS, AIDS, and Ebola, has affected millions of people in
multiple countries. Countries have shut their borders, and their nationals have
been advised to self-quarantine. The variety of responses to the pandemic has
given rise to data privacy concerns. Infection prevention and control strategies
as well as disease control measures, especially real-time contact tracing for
COVID-19, require the identification of people exposed to COVID-19. Such
tracing frameworks use mobile apps and geolocations to trace individuals.
However, while the motive may be well intended, the limitations and secu-
rity issues associated with using such a technology are a serious cause of
concern. There are growing concerns regarding the privacy of an individual’s
location and personal identifiable information (PII) being shared with gov-
ernments and/or health agencies. This study presents a real-time, trust-based
contact-tracing framework that operates without the use of an individual’sPII,
location sensing, or gathering GPS logs. The focus of the proposed contact
tracing framework is to ensure real-time privacy using the Bluetooth range of
individuals to determine others within the range. The research validates the
trust-based framework using Bluetooth as practical and privacy-aware. Using
our proposed methodology, personal information, health logs, and location
data will be secure and not abused. This research analyzes 100,000 tracing
dataset records from 150 mobile devices to identify infected users and active
users.
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1 Introduction

Epidemics such as H1N1, SARS, Ebola, and the recent coronavirus have impacted millions
of people worldwide, resulting in a large death toll. The World Health Organization (WHO) has
issued several advisories and courses for action to limit the spread of COVID-19 [1] infection by
tracing infected individuals. The tracing process requires infected individuals to share information
with governments and local medical agencies, which are tasked with tracking and quarantining
individuals who may have been in close contact with infected victims, and the subsequent collec-
tion of further information about the infected victims. Tracking involves acquiring the personal
information of each infected individual, including their travel history, locations visited, recent
contacts, and their health details [2]. While most individuals may be comfortable with sharing this
information for their own and the nation’s benefit, privacy-aware individuals may not be so willing.
This can hinder the contact tracing process, even as the virus continues to spread at alarming
rates [3]. Secure and privacy-aware contact tracing methods can inspire everyone, infected or not,
of all ages to join the contact tracing, with an assurance of the data being processed confidentially
and with no malicious intent. Globally, various contact tracing applications, such as mobile apps
and global positioning systems (GPS), are being used. The infected individual is expected to self-
test and self-report health details using mobile applications and location data [4]. However, the
sharing of data depends on local infrastructure and networks, which rely on unsecured external
technologies such as wireless access points, GPS, data networks, or even those involved in the
deployment and maintenance of the application itself. The government of Singapore has launched
a contact tracing app called “Trace Together.” The Indian government’s contact tracing app, which
is called Aarogya Setu, performs real-time tracking, as illustrated in Fig. 1.

Figure 1: Interface of Aarogya Setu contact tracing app

This study proposes the use of a mobile application with Bluetooth connectivity to perform
real-time contact tracing. The authors propose the use of mobile devices to send anonymous
beacons of encrypted random code messages via Bluetooth. This allows for foolproof data
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privacy, and individuals remain anonymous. No collection of privacy-sensitive data is involved
or dependent on external third-party IT infrastructure. The major highlights of this research are
privacy-aware contact-tracing mobile applications with the following features.

• The proposed contact tracing application does not involve any public wireless or network
infrastructure.

• No personally identifiable sensitive information, geolocation, or logs is shared or gathered.
• Real-time tracking enables the rapid identification of locations corresponding to new
infected cases.

• Focuses on complete privacy and the use of an individual’s Bluetooth connection to
determine others within a specific range.

• Around 100,000 contact tracing datasets were used, which involves 150 individual mobiles.

This technology process helps to monitor infected individuals as well as reduce the medical
costs involved during quarantine measures. The focus is on testing a framework that ensures
complete privacy. To evaluate the contact-tracing framework, T-test and regression analysis were
used to validate datasets from real scenarios.

The remainder of this paper is organized as follows: Section 1 describes in detail contact
tracing and privacy issues, and Section 2 presents the literature survey regarding the different
contact-tracing methods employed by various researchers. The proposed Contact Tracking Frame-
work (CTF) algorithm is illustrated in Section 3. Section 4 discusses the experimental results
obtained and presents the T-test validation of the dataset reviewed.

1.1 Contact Tracing and Privacy Issues
Contact tracing involves the identification, assessment, and management of persons exposed

to diseases to prevent any onward transmission. If scientifically applied, this can help break
the transmission chain of infectious diseases and can be an effective health tool for managing
outbreaks. With respect to COVID-19, contact tracing requires the identification of individuals
who may have been exposed. Steps such as the quarantining of contacts and the isolation of cases
need to be performed. The design and development involved in the contact tracing application
system needed to consider various threat vectors in terms of privacy, as presented in Tab. 1.

Table 1: Privacy threat vectors and their malicious activities

Threat vectors Unauthorized & malicious privacy activities

Software
development
team

• Perform malicious activities such as accessing and uploading the data
of individuals and other users in proximity and selling them on the
dark web.

• Snoop on data from other mobile apps running on the mobile device.
• Request additional app permissions for accessing storage, camera, SMS,
emails, location etc., without the user’s permission.

• Analyzing the app data for generating further insights, which were not
parts of the privacy or service.

Nation states • Selectively analyze individuals or the community and retaining personal,
health, or discriminative user data even after the outbreak has ended or
the app has been uninstalled.

• Perform mass surveillance.
• Analyze data for generating insights, which were not part of the service.

(Continued)
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Table 1: Continued

Threat vectors Unauthorized & malicious privacy activities

Internet service
provider

• Can perform all the malicious activities listed above if the design
involves the use of mobile data or IT infrastructure during
communication between application and server.

Privilege/Apps
dependency

• Read locally stored data and monitor network activities.
• Paired devices within Bluetooth range can leak data if not properly
encrypted.

Hackers • Can perform penetration testing to discover zero-day exploits. Release
the vulnerability worldwide to cause chaos.

• Access the user’s device without their consent or proper authorization.

Gathering personal mobility details for health application purposes presents challenges, even
if privacy ethics and issues are upheld. The analysis of any individual’s mobility and health data
can only be justified if the benefits are related to public health. Most existing contact-tracing
solutions rely on wireless infrastructure for contact tracing to preserve privacy.

2 Literature Survey

During the 2014 EBOLA outbreak, the WHO expounded on the significance of contact
tracing and even proposed protocols for tracing infected individuals. However, no mobile applica-
tion or data-gathering technologies were deployed. The WHO has proposed recommendations for
medical staff and those on the front line to improve the safety of using contact tracing applica-
tions. With COVID-19, several countries have mandated the use of mobile-based contact tracing,
thus gathering data and making use of data obtained from mobile applications. Monitoring and
regulating interactions are vital for preventing the spread of this disease. Internet-and mobile-
based technologies have aided in terms of surveillance, modeling of infection, remote sensing,
etc., to predict and control the disease spread [5]. This tactic of using new-age technology to deal
with global epidemics is classified as digital epidemiology under a new domain, as described by
Chancay-García et al. [6]. Recently, several researchers have assessed the categorization of mobile
call data records. Dede et al. [7] and Christak et al. [8] tracked user mobility patterns to model
and evaluate epidemic sickness. Tizooni et al. [9] explored the use of proxy systems for individual
users. The authors evaluated the mobility flow to predict the spread of epidemics. The accuracy of
the predictive analysis, which was performed using mobility data sources, varied with the epidemic
rate of propagation and timing of data results gathered.

Salathe et al. [10] discussed the use of wireless technologies, such as the ZigBee protocol and
Bluetooth, to detect and trace infected people. The authors obtained detailed data on the social
contacts of infected persons during the infection period. Then, the authors recreated the social
networks of potentially infected users. To evaluate the spread, diffusion, and impact, the authors
also proposed the SEIR model based on features such as susceptible, exposed, infectious, and
recovered. Mastrandrea et al. [11] presented a prototype of wearable sensors for determining
contacts amongst individuals and students. The authors matched the results with contacts from
personal records, and associated the spread of an epidemic using sensors and diaries with a
notable difference in dynamics. Interest in contact-tracing strategies has increased in recent times,
and different methods have been used to estimate the impact and rate of spread before and during
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the plagues, as well as the efficiency of measures against contiguous epidemics. In many outbreaks,
contact tracing is the only feasible option to identify infected individuals, as presented by Lima
et al. [12], Rubrichi et al. [13], and Fraser et al. [14], who also tested reasons that aid in controlling
an outbreak.

Contact tracing methods adopt two primary models, namely, population-based and agent-
based approaches. Klinkenberget et al. [15] proposed a population-based top-down approach for
analyzing system research data from a macroscopic perspective. Then, Kwok et al. [16] and
Müller et al. [17] presented an agent-based bottom-up approach, considering every individual as
a self-regulating agent entity. Each agent is responsible for its own infection state, movement,
and location to estimate unrelated and adaptive activities. The stochastic model introduced by
Farrahiet et al. [18] and Keelinget et al. [19] involves grouping the associated measures and
fundamental dynamics of epidemics using a deterministic approach. In previous years, contact-
tracing models have focused on a generic network of contacts. To improve the precision of such
network contact models, Huerta et al. [20] presented a similar model as part of the epidemic
regulation tactics. This method helped to estimate the impact of contact tracing and the random
tracing of complex contact networks. Yang et al. [21] proved that by tracing the contacts at a low
additional cost, the spread of an outbreak may be considerably reduced, and even eradicated. The
FluPhone project developed at Cambridge University [22] was one of the first attempts to use
mobile apps to determine contacts. Using wireless Bluetooth as a proxy, the application was able
to estimate physical contacts. The application promoted users to report symptoms to determine
the rate and risk of infection. Similar contact tracing schemes focus on privacy issues, such as
the pan-European privacy-preserving proximity tracing (PEPP-PT) [23] and the MIT project Safe
Paths [24]. Corporate enterprises such as Apple, Facebook, and Google teamed up to integrate
their web portals with handheld and sensor devices to provide similar solutions for Android and
iOS mobiles. Isella et al. [25] claimed that the practice of contact tracing and isolation did not
prevent the COVID-19 epidemic. The decreasing infection count is primarily due to asymptomatic
infected individuals who are undetected, and who it is believed contribute to the spread of the
COVID-19 outbreak. Using mobile apps to find previous contacts, we mathematically proved that
such epidemic diseases can be checked even when no one uses the mobile application.

3 Proposed Framework: CTF

A real-time contact tracking framework (CTF) was designed and developed as a secure mobile
application using the Android platform, SDK tools, and Java. Instead of using a data network
or IT infrastructure such as wireless or office networks, the lightweight application uses Bluetooth
with the need for limited computing resources of the individual’s mobile. However, there are
unauthorized and malicious privacy impacts from threat vectors. The CTF process is trust-based;
individuals own the process, and it is his/her prerogative to join or exit, and further perform
regular 15 days self-assessment to determine any infection. The generated logs comprise a unique
ID (user’s Bluetooth), timestamp (date and time), and health status code (random salted number)
for each application user. The contract tracking framework follows five phases, as shown in Tab. 2.

Entities involved in the CTF process require privacy protection. These include individuals
(mobile IMEI and number), location (IP address and geolocation), health data, and command
server communication. The proposed CTF application ensures that the data collected is never
shared with any of these entities, and keeps the individuals anonymous. The proposed workflow
is shown in Fig. 2.
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Table 2: Phases of contract tracing framework

Phase Description

Installation Interested individuals are required to opt-in to join and install the secure
contact tracing application. Only users of Android operating systems can
currently install and use this application.

Operation Each installed app enables Bluetooth, records the individual information, and
encrypts the log on the mobile SD card locally.

Report
generation

Opt-in individuals are provided with two types of reports–detailed and basic.
The basic level report is uploaded to the command server and is encrypted
with a public key with their consent, while the detailed report is encrypted
with the private key.

Handling self
infection

Infected individuals can use the detailed report to contact medical teams and
anonymously receive support. No location or mobile details are shredded by
the app.

Handling
other’s
infection

App scans and checks others Bluetooth beacons and checks the other’s basic
report using their public keys. This indicates the presence of another infected
individual in the physical vicinity of 8 to 10 m, and proximity alerts are
generated. The basic report presents only the status code, and no personal
information is shared. The process ensures that an infected individual stays
anonymous.

Analytic
option

Depending on the individual’s consent, the detailed report and data generated
are provided to medical analytics teams for further research.

Graceful
removal

Individuals opting out or who are not COVID-19 positive need to just click
and select the option, the app would gracefully uninstall and remove all logs
and encryption keys.

Figure 2: Process flow for secure contact tracing framework

This application was designed for Android mobile devices. The reports are saved locally on
the mobile, and are encrypted with a private key in the form of two reports. The first report is a
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detailed description accessible only to individuals. If the individual is infected, he can share with
the medical teams all of the details in full confidence using a private key in order to determine
the treatment. The second report is a basic-level code encrypted with a public key and uploaded
to the command server. Whenever an individual goes outside, the application scans other mobile
devices using Bluetooth. This sends and receives anonymous encrypted beacons to and from other
mobile devices. If the application can decrypt the basic report of other individuals, Bluetooth
alerts are generated immediately.

3.1 Bluetooth Beacons
• Should not reveal any personal information, location, reports, or other individual informa-
tion.

• While scanning, any personally identifying information should not be revealed to other
users.

• Should be arranged, encrypted with a symmetric key to prevent any log being revealed to
any other user.

• Should be randomly generated every 24 h to prevent the identification of transmitted
information.

3.2 Uninfected Individuals
These are individuals who were or are infected, and who are never:

• Mandated to upload their details on the command server.
• Notified by the command server to verify potential contact with other non-infected.
• Receive medical certificate encrypted with medical teams’ public key.

3.3 Infected Individuals
These are individuals who are infected:

• Are given the option to opt-in so that others can determine if they are near to any infected
user.

• Can check if they are close to others or those who opted to join.
• Can stay anonymous even from the admin teams of the command server.
• Can find an infected user and determine when or where the actual contact happened.
• Should be assured of their IMEI number or MAC address.
• Can use the TOR browser to upload or download their logs and reports, thus remaining
anonymous.

These alerts warn about an infected person in an individual’s proximity. This indicates the
presence of an infected individual within a range of 8–10 m. The flow of the secure contact
tracing process is shown in Fig. 3. In this case, the user should then proceed to be tested. This
process is anonymous, and no information about the individual is shared with the command
server or other individuals. Individuals can opt-in or opt out as the process is trust-based. Only
those who shared the reports on the command server and individual infections were verified using
Bluetooth. The authors formally prove that the application guaranteed privacy-sensitive features
and trust verification for the individuals observed correctly. The following features were considered
when designing the framework.
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Figure 3: Bluetooth and command server communication

3.4 Proposed Algorithm: CTF
Algorithm 1 presents the proposed secure application workflow and the CTF process. Tab. 3

lists the notations used in the proposed algorithm.

Table 3: Notations in proposed algorithm

U Exposed individuals to hotspots, infected victims or have travel history

X Individual under contact tracing
T Individuals with travel history
I (App) Install proposed contact tracing application
S (Mon) Individuals who are self-monitoring for 15 days
L Application log generated (User ID, Timestamp, Code)
U Unique Bluetooth ID → generated from user’s Bluetooth
T 15-min timestamp → date/time of log from mobile device
C Code → Sorted random number for individual status
R1 Individual’s detailed private report
R2 Basic level public report (Infected or not)

Algorithm 1: Contact Tracing Framework (CTF)
1. Start
2. Assuming U(i) = Exposed individual with exposure to corona hotspots, infected victims, or

travel history
3. U (i)n =∑n

k=0
(n
k

)
XkTn−k

4. I(App) = Install proposed contact tracing application & S(Mon) = perform self-monitoring
for 15 days

(Continued)
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5. |I(App)| =
{
True, X(i)
False, X(i)

and |S (Mon)| =
{
True→X (i)≤ 15 days
False→X (i) < 15days

6. L = Application log generated (User ID, Timestamp, Code)
7. L (i)=∑ {Un+Tn+Cn}
8. E = Encrypted Log {L} stored locally on user’s mobile SD Card, encrypted with symmetric

private Key
9. if Symptoms Detected = False
10. Confirm no symptoms
11. No follow-up or review required
12. U(i) = User can opt-out & uninstall application
13. Else
14. Consider case = Suspected
15. Isolate and use personal protection equipment
16. Provide user option to open-in or opt-out
17. Endif
18. if U(i) = opt-out
19. Exit
20. Else
21. U(i) = opt-in
22. Receives Private Key from Command Server
23. Encrypts and Upload logs to Command Server
24. Encrypted info available on Server Portal
25. Endif
26. U(i) receives two reports → R1(i) & R2(i)
27. U(j) are other individuals reporting infection also receive similar decryption keys & reports
28. App on U(i, j) constantly check for decryption of other’s basic report, duration (15 min/24 h)
29. if U(j) → Decrypt R1(i) = Success
30. if U(i) within range
31. U(i) Bluetooth → Generate Proximity Alert
32. U(i) and U(j) →in vicinity of infected user or maybe infected
33. Recommend Lab Testing
34. Access Lab Results
35. Endif
36. Endif
37. if Results R(i) = Negative
38. Download Covid19 free certificate
39. Stop Contact Tracing
40. Exit
41. Else
42. if R(i) = Positive
43. Confirmed Case
44. Isolation for 15 days
45. Recheck Lab Testing
46. Endif
47. Endif
48. if U(I, j) = exit and opt-out
49. U(i)opt-out & Delete L(i) ± Exit_App = Graceful Uninstall
50. Endif
51. End
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The proposed contact detection runs as a service utilizing Bluetooth beaconing. This confirms
the proximity detection of data exchange with nearby phones, even as the advertisements are non-
connectable and undirected. Fig. 4 illustrates the flow of advertisements between the application
and remote Bluetooth devices. Contact detection and advertisement services are run on devices
with a Bluetooth 16-bit UUID 0 x FA5F to enable proximity sensing between devices. Devices
advertise and scan using a 128-bit proximity identifier that is periodically modified. Each adver-
tisement scan is timestamped, and the discoverable bit is initially set to 1 and captured. The scan
interval window is 5 min, which is sufficient to provide the discovery of advertisers and coverage.
The advertiser address and proximity are changed so that they cannot be linked in any way. The
advertising intervals are changed every few hundred milliseconds. The scanning internal window
performs periodic sampling for every few minutes.

Figure 4: Dataflow for advertisement between mobiles

Fig. 5 illustrates the dataflow process and behavior for the device scans, which ensure that
privacy is maintained as the most critical specification while designing the application. This is
utilized with the Bluetooth protocol, which is location independent, yet it uses the Bluetooth
beacon to detect the device proximity. The user proximity ID correlates and obtains IDs of other
devices every 15 min. This reset window reduces the loss from privacy advertisements and is
processed exclusively on the local device. If any user is detected to have COVID-19 symptoms,
the user can consent to the sharing of the diagnosis keys with the main server. Thus, users have
control and transparency regarding their participation for contact tracing. These precautions are
implemented in the framework design to ensure user privacy.

4 Experimental Results

The results varied between randomly selected individuals and those infected. Moreover, this
research considered different time slots during which users turn ON their Bluetooth to evaluate
the effectiveness of our protocols in different scenarios. The validations were repeated to capture
the randomness of the simulations for 150 devices.
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Figure 5: Dataflow and behavior of device scan process

Initial research focused on the infection rate among individuals depending on the initial
infection and contagiousness probability. These datasets were obtained from infections reported
by individuals who had installed the contact tracing application, and who were using it.

Subsequent research focused on three scenarios (i1–i3) as follows:

• i1: Individuals who randomly turn ON/OFF their Bluetooth anytime
• i2: Individuals who turn ON Bluetooth when outside their homes, in a market, or in
crowded places

• i3: Individuals who turn ON their Bluetooth only at specific hours and for set durations.

The authors conducted a parametric statistical t-test and regression analysis to ensure that the
datasets had no violations of the information presented in random samples from 100,000 records.
The use of regression validated the prediction of continuous dependent variables from independent
variables in the datasets. The deviations from the linear point line are the errors. The distribution
of the sample mean is normal, and the variances of the different parameters are similar. The
null hypothesis assumes that if the data violate these assumptions, then it can be safely assumed
that the results obtained have committed a Type I error, which is more or less than the alpha
probability, and the T-Test validation parameters are interpreted as presented in Tab. 4.

Table 4: Test validation parameters

T T-Test

DF(x) Degree of freedom from samples
x.xx Calculated value as ‘T-Static’
p ≤ 0.05 A �= B → Not likely to be result by chance which implies → Difference is

significant → Null hypothesis is incorrect
Null is rejected → relationship between A and B

p ≥ 0.05 A = B → Likely chance which implies no significant difference → Null hypothesis
is correct
Fail to reject the null → no relationship between A and B
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The requirement for performing the T-Test is the use of two independent samples with nor-
mally distributed data and samples with the same variance. The authors take the null hypothesis,
H0: H1 − H2 = 0, where H1 and H2 are the means for the two datasets. The null hypothesis
is that there is no difference between the means of the two datasets, or more formally, that the
difference is zero. Tab. 5 presents the T-test validation of the CTF dataset sample.

Table 5: Infection count (in thousands) for three options

Probability
percentage (%)

Infection count observed on individuals

Randomly turn ON
bluetooth (i1)

Only when outside homes,
market place (i2)

Only at certain specific
hours and duration (i3)

0 5 11 18
10 11 17 31
20 13 26 39
30 19 34 47
40 21 43 55
50 24 49 66
60 28 53 73
70 31 57 79
80 34 65 83
90 37 74 88
100 39 79 91

Considering the datasets for i1 and i2, the authors used a significance level of 0.05 with a
two-tailed hypothesis. The difference scores that were calculated are presented in Tabs. 6 and 7
below.

Table 6: Difference scores for i1 dataset

i1 Diff (X −M) Sq. Diff (X − M)2

5 −18.82 354.12
11 −12.82 164.31
13 −10.82 117.03
19 −4.82 23.21
21 −2.82 7.94
24 0.18 0.03
28 4.18 17.49
31 7.18 51.58
34 10.18 103.67
37 13.18 173.76
39 15.18 230.49

M: 23.82 SS: 1243.64
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Table 7: Difference scores for i2 dataset

i2 Diff (X −M) Sq. Diff (X − M)2

11 −35.18 1237.76
17 −29.18 851.58
26 −20.18 407.31
34 −12.18 148.4
43 −3.18 10.12
49 2.82 7.94
53 6.82 46.49
57 10.82 117.03
65 18.82 354.12
74 27.82 773.85
79 32.82 1077.03

46.18 SS: 5031.64

T-Test calculations are performed for validation on datasets, and are presented in Tabs. 8
and 9.

Table 8: Test calculation for i1 dataset

N1: 11
df1 =N− 1 = 11 − 1 = 10
M1: 23.82
SS1: 1243.64
s21 = SS1/(N− 1) = 1243.64/(11 − 1) = 124.36

Table 9: Test calculation for i2 dataset

N2: 11
df2 =N− 1 = 11 − 1 = 10
M2: 46.18
SS2: 5031.64
s22 = SS2/(N− 1) = 5031.64/(11 − 1) = 503.16

For T-Value Calculation:

s2p = ((df1/(df1 + df2)) ∗ s21) + ((df2/(df2 + df2)) ∗ s22) = ((10/20) ∗ 124.36) + ((10/20) ∗
503.16) = 313.76
s2M1 = s2p/N1 = 313.76/11 = 28.52
s2M2 = s2p/N2 = 313.76/11 = 28.52
T = (M1 – M2)/

√
(s2M1 + s2M2) = –22.36/

√
57.05 =−2.96
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T-value is −2.96089 and the P-value is 0.007726→ Result is significant at p < 0.05.

Because the P-value is less than the significance level, alpha 0.05 → Null Hypo (H0) is
rejected and the Alternative Hypo (Ha) is accepted.

Further, validating with regression analysis:

Sum of X = 262
Sum of Y = 508
Mean X = 23.8182
Mean Y = 46.1818
Sum of squares (SSX ) = 1243.6364
Sum of products (SP) = 2485.3636

Regression Equation= ŷ = bX + a

where b = SP/SSX = 2485.36/1243.64 = 1.99846, and a=MY − bMX = 46.18 − (2∗23.82)
=−1.41798
ŷ = 1.99846 X− 1.41798

From the graph shown in Fig. 6 below, individuals who randomly turn on their Bluetooth
when going out or in crowded places display better performance and contagiousness probability
than those who turn on Bluetooth only when outside their homes or only at certain specific hours
of for a set duration.
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Figure 6: Infected users vs. contagiousness probability

5 Conclusion

The presented research work successfully demonstrates the real-time, trust-based contact
tracing framework (CTF) as a feasible privacy-aware solution. Nation-states need not use meth-
ods or applications that pose privacy-related risks or face issues when an individual’s personal
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information or health logs can be misused. This study considers the features and entities that are
related to protecting the privacy of an individual. The focus is to build a trust-based framework
with a lightweight Bluetooth-based mobile application. Using sample datasets, the authors have
shown how contact tracing with three options can mitigate the spread of COVID-19. Existing
contact tracing applications do not provide open-source software for research or experimentation
purposes. In the future, the authors plan to release this research as an open-source software
implementation for both Android and iOS devices.
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