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ABSTRACT Facial expression recognition (FER) is the task of determining a person's current emotion. It 
plays an important role in healthcare, marketing, and counselling. With the advancement in deep learning 
algorithms like Convolutional Neural Network (CNN), the system's accuracy is improving. A hybrid CNN 
and k-Nearest Neighbour (KNN) model can improve FER's accuracy. This paper presents a hybrid CNN-
KNN model for FER on the Raspberry Pi 4, where we use CNN for feature extraction. Subsequently, the 
KNN performs expression recognition. We use the transfer learning technique to build our system with an 
EfficientNet-Lite model. The hybrid model we propose replaces the Softmax layer in the EfficientNet with 
the KNN. We train our model using the FER-2013 dataset and compare its performance with different 
architectures trained on the same dataset. We perform optimization on the Fully Connected layer, loss 
function, loss optimizer, optimizer learning rate, class weights, and KNN distance function with the k-value. 
Despite running on the Raspberry Pi hardware with very limited processing power, low memory capacity, 
and small storage capacity, our proposed model achieves a similar accuracy of 75.26% (with a slight 
improvement of 0.06%) to the state-of-the-art's Ensemble of 8 CNN model. 

INDEX TERMS EfficientNet-Lite, hybrid CNN-KNN, facial expression recognition, Raspberry Pi, 
emotion recognition.

I. INTRODUCTION 
Emotions are natural states associated with the nervous 
system that influence every aspect of human behaviour, 
including rationality and decision-making [1,2]. Individuals 
can convey emotions through speech, body posture, gestures, 
and facial expressions.  

Facial expressions are effective ways to recognize one's 
emotions. Facial expressions are vital for day-to-day      
communication, as they convey non-verbal emotions and 
feelings. With just 43 different facial muscles, humans can 
make 6,000 to 10,000 expressions [3]. In 1872, Charles 
Darwin hypothesized that humans had evolved facial 
expressions from animal ancestors. Furthermore, certain 
expressions are universal across cultures, despite differences 
in race, language, and religion [4]. In the late 20th century, 
Ekman and Friesen confirmed Darwin's theory and classified 
six universal facial expressions: happy, fear, surprise, 
disgust, sad, and angry [3]. 

Facial Expression Recognition (FER) is a computer vision 
field that uses various techniques to identify emotions from 
human facial expressions. Researchers are interested in FER, 
as understanding one's emotions can improve human-
machine interaction, behavioural science, and clinical 
practice. Recent advancements in computer hardware and 
image classification techniques allow researchers to develop 
more efficient FER systems. These FER systems are useful 
in healthcare systems, social marketing, targeted 
advertisements, the music industry, school counselling 
systems, and lie detection. 

Consequently, researchers have proposed using machine 
learning and deep learning, such as Support Vector Machine 
(SVM) or Convolutional Neural Network (CNN). 
Unfortunately, these systems have issues, such as low 
accuracy. Thus, researchers continue to investigate to 
achieve higher accuracy. 

Few FER systems are implemented on real-time 
embedded system devices; FER systems are primarily tested 
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and implemented on computers. Implementing a FER system 
on an embedded device grants FERs portability and lower 
power consumption. Nevertheless, embedded devices might 
lack the processing power to capture the expression from 
video in real-time. The challenge is providing real-time FER      
on embedded devices while maintaining acceptable 
accuracy.  We chose Raspberry Pi over similar devices, such 
as the Nvidia Jetson Nano, as Raspberry Pi is less expensive 
and provides sufficient processing power for FER 
application. 

Our research focuses on improving the deep learning 
models currently in use in FER systems. Most FER systems 
use a Convolutional Neural Network (CNN) as the deep 
learning architecture to recognize facial expressions. CNN 
can perform complex operations to extract features from 
images and provide recognition. In machine learning, k-
Nearest Neighbour (KNN) is a simple classification 
algorithm that can provide good accuracy.  

     Accordingly, we propose a hybrid model combining 
CNN's feature extraction ability and KNN's advantages in 
classification for FER applications. We evaluated the 
performance of our model's accuracy, and we compared the 
accuracy of our model to other models. Our group trained      
the models on the FER-2013 dataset with seven facial 
expressions: angry, disgust, happy, sad, fear, surprise, and 
neutral. After completing training on the computer with 
TensorFlow, we transferred the model to the Raspberry Pi 
for real-time FER via webcam.   

A new FER system is proposed based on the EfficientNet-
Lite and the hybrid CNN-KNN model. Research in image 
recognition applications showed that the hybrid CNN-KNN 
model could achieve higher accuracy than CNN models. 
Researchers, however, have not explored this hybrid model 
in FER applications. The remainder of this      paper is 
organized as follows. Section II presents related work, 
covering the review of currently developed FER systems. 
Section III provides the design methodology and architecture 
of our proposed hybrid CNN-KNN FER model on the 
Raspberry Pi. Section IV illustrates the practical 
experimental results and discussion. Finally, Section V 
contains conclusions and future work. 

 
II. RELATED WORK 

Research has improved the facial expression recognition 
(FER) algorithm and model performance in the last decade. 
Table 1 summarises the performance of previous research on 
FER. Yu and Bhamu [5] first attempted to design a FER 
algorithm that learns features without hand-crafting. Jabid et 
al. [6] and Yoshihiro and Omori [7] improved the algorithm 
and obtained higher accuracy on the same dataset (i.e., 
JAFFE) by 90.1% and 95.3%, respectively. The JAFFE 
dataset is small, as it only contains 213 images. Researchers, 
therefore, attempted to develop new FER algorithms on 
large-scale datasets such as the Extended Cohn-Kanade 
(CK+), comprising 593 images. Shan et al. [8] conducted 
initial work on the CK+ dataset, and they achieved an 
accuracy of 95.1%. Mehendale [9] and Breuer and Kimmel 
[10] improved accuracy to 96% and 98.6%, respectively. The 

FER-2013 dataset is the most challenging dataset to apply 
the FER algorithm since it contains 35,887 images. 
Goodfellow et al. [11] initially set a baseline accuracy of 
68% on the FER-2013 dataset. In 2018, Saeed et al. [12] 
attempted to apply both the Histograms of Oriented 
Gradients (HOG) feature extractor and Support Vector 
Machine (SVM) to the FER-2013 dataset. Still, they only 
achieved 57.7% accuracy, which is worse than the baseline. 
Recently, Pramerdorfer and Kampel [13] achieved 72.7% 
accuracy on the FER-2013 dataset using CNN with VGG 
neural networks.  

The neural network's approach has shown promising 
performance for FER applications. The method, however, 
requires the processing power of a high-performance 
computer. To allow for portability, researchers implemented 
the FER applications on embedded devices. Sun and An [14] 
developed a FER system on Linux using HMM as a 
framework running on an Intel embedded processor, 
PXA270 and demonstrated satisfactory accuracy. 
Turabzadeh et al. [15] built a real-time emotion state 
detection system on FPGA. Loza-Álvarez [16] developed a 
CNN for FER and applied it to an assistant humanoid robot 
running on a Raspberry Pi 3. 

 
TABLE 1. A summary of the performance of previous research done on 
FER based on 3 standard datasets namely, JAFFE, CK+, and FER-2013. 

 

Algorithm Accuracy (%) 
Dataset Tested 

Gabor Filter + SVM [5] 80.9 JAFFE 
LBP [6]  90.1 (213 images) 
CNN + SVM [7]  95.3  
LBP + SVM [8] 95.1                                  CK+ 
CNN [9]  96.0 (593 images) 
CNN [10]  98.6  
Human Accuracy [11]  68.0 FER-2013 
HoG + SVM [12] 57.7 (35,887 images) 
CNN with VGG [13] 72.7  

 
CNN-based deep learning models achieve the highest 

accuracy when benchmarked across all the different FER 
datasets. Moreover, these models provide feature extraction 
and image classification in a single step compared to feature 
extraction like HOG or LBP combined with image 
classification algorithms like SVM or KNN. In image 
classification applications, hybrid models using a 
combination of CNN with KNN or the SVM classifier 
achieved slightly higher accuracy than the standard CNN 
models [20, 21, 22, 23]. According to the literature we 
examined, researchers have not applied this approach to 
FER, and there is little work regarding embedded devices. 
Additionally, existing works' low accuracy for the FER-2013 
dataset illustrates room for accuracy improvement. We 
present a lightweight approach that runs efficiently and 
attains higher accuracy on the Raspberry Pi. 
 
III. METHODOLOGY 
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We outline the design methodology we used to develop the 
hybrid CNN-KNN FER model. Furthermore, we explain the 
methods to develop the FER system with acceptable 
accuracy and performance on embedded devices.  

Subsection A describes the design technique and steps 
involved in developing the hybrid CNN-KNN model. KNN 
is thought to be merged with CNN since it is simple and easy 
to use, potentially conducting the training phase quickly and 
at no cost [24]. Subsection B provides a high-level summary 
of our suggested FER technique. Finally, Section C describes 
the FER dataset that was utilized for training.  
 
 A. DESIGN PROCEDURE  
The steps to design the FER system are: 

(i) Determine the features needed for the FER 
system. 

(ii) Select and prepare the FER dataset. 
(iii) Design and develop a CNN-KNN model for 

FER. 
(iv) Code and train the model with the dataset on 

TensorFlow using Google Colab. 
(v) Evaluate the accuracy of the model. 
(vi) Convert the model to TensorFlow lite for 

Raspberry Pi.  
(vii) Develop and code pre-processing image 

methods for real-time webcam video on 
Raspberry Pi.  

(viii) Test performance of FER in terms of 
inferencing time on the Raspberry Pi. 

B. FEATURES 
The features of the FER system are: 

● Identify seven expressions: angry, disgust, happy, 
sad, fear, surprise, and neutral. 

● Training and evaluation were done on the FER-
2013 dataset. 

● CNN model for feature extraction and KNN for 
expression recognition. 

● On the Raspberry Pi, a real-time FER programme 
with a webcam. 

C. FER SYSTEM ARCHITECTURE 
 
Fig. 1 shows the system consists of the webcam as input, a 
Raspberry Pi 4 controlling the FER system, and a display 
monitor to show the predicted expression results. We chose 
the Raspberry Pi 4 because it supports TensorFlow, which is 

inexpensive and has sufficient computing power for the 
neural network model.  
The development and research of this system consist of four      
parts: 
 

● Facial expression dataset 
● Image pre-processing 
● CNN model for feature extraction  
● KNN classifier for expression recognition 

 
1) FACIAL EXPRESSION DATASET 
We trained the CNN-KNN model using 35,887 static 
grayscale images from the FER-2013 dataset [19]. The 
dataset contains seven facial expressions we collected from 
the real world with various faces of different ages and facial 
orientations. The size of each image is 48 pixels × 48 pixels. 
Table 2 shows the distribution of the training images in the 
FER-2013 dataset. Naturally, the distribution of images 
varies. The happy expression has the highest number with 
8110 images, and the disgust expression has the lowest 
number with 492 images. The happy expression has the most 
images in the training dataset, with 25.11 percent of the 
distribution number. 

In contrast, the disgust expression has the fewest images, 
with 1.52 percent of the distribution number. Table 3 shows 
the distribution of testing images for evaluating the CNN-
KNN model. Similar to the training data, the happy 
expression has the highest number of images available in the 
test set with 24.49 percent of the distribution number. The 
disgust expression has the lowest percentage in the test set 
with only 1.53 percent. In conclusion, both the train and test 
distributions are similar. Fig. 2 shows sample images from 
the FER-2013 dataset. We chose this dataset because it has 
the most images for all appropriate facial expressions, and it 
provides labelled grayscale images with cropped faces. 
Furthermore, the FER-2013 dataset is publicly available with 
various models for comparison. The dataset images also 
represent realistic conditions with variations in age, race, and 
pose. 

Artificially modifying the current images can increase 
the dataset for training using the image augmentation 
technique. In image augmentation, one can create new 
images for the training dataset from the original dataset by 
applying image flipping, rotation, scaling, or adding noise to 
the original image in the dataset. 
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FIGURE 1. FER System Overview. 

 

 
FIGURE 2. Sample Images from FER-2013 Dataset. 

 

TABLE 2. Distribution of Training Images in FER-2013 Dataset. 

 

Expression Number of Images % of distribution 

Angry 4462 13.82% 

Disgust 492 1.52% 
Happy 8110 25.11% 

Sad 5483 16.98% 
Fear 4593 14.22% 

Surprise 3586 11.10% 
Neutral         5572    17.25% 

 
2) IMAGE PRE-PROCESSING  
As part of the image pre-processing for this study, we 
converted the frames captured with a webcam connected to 
the Raspberry Pi from RGB to grayscale, as shown in Fig. 3. 
The Haar-Cascade classifier, chosen for its low computing 
cost and reasonable accuracy, next detected the faces. We 
then cropped and resized the face. Python's OpenCV library 

implemented the Haar-Cascade classifier and performed the 
rescaling, while Python Imaging Library (PIL)      converted 
the image to grayscale. Minimal pre-processing ensures real-
time capability. We performed all of the image pre-
processing on the Raspberry Pi. The dataset is used as it is 
without any augmentation process to balance the data 
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because we aim to see the behaviour of the proposed method 
on this imbalanced dataset. 
TABLE 3. Distribution of Testing Images in FER-2013 Dataset. 
 

Expression Number of Images % of distribution 

Angry 491 13.68% 

Disgust 55 1.53% 
Happy 879 24.49% 

Sad 594 16.55% 
Fear 528 14.71% 

Surprise 416 11.59% 
Neutral         626   17.44% 

 
 
3) FEATURE EXTRACTION AND CLASSIFICATION 
In the CNN model for FER, feature extraction derived 
important information from an image, differentiating 
between expressions. Convolutional layers, pooling layers, 
and activation functions performed feature extraction. KNN 
classifier is used for expression recognition based on the 
features extracted from CNN. 

We chose CNN as the algorithm for feature extraction 
from the literature review of FER systems because it 
provides the best accuracy. Since no FER dataset with 
millions of images exists, training on a limited dataset might 
not yield high accuracy. Thus, transfer learning solves the 
problem of insufficient training samples while maintaining 
accuracy.  

The CNN model for transfer learning is the EfficientNet 
Model. EfficientNet has a reputation for achieving high 
accuracy with minimal parameters and FLOPS (Floating 

Point Operations Per Second). It is suitable for use with the 
Raspberry Pi, which has limited processing power. We 
implemented transfer learning using the learned weights of 
EfficientNet from the ImageNet dataset since both FER-
2013, and the ImageNet are image classification datasets. 

Inverted Residual Block (MBConv), like      MobileNetV2, 
is the building block in EfficientNet. Unlike traditional 
CNNs, which involve manual fine-tuning of three 
dimensions: number of layers (depth scaling), number of 
channels (width scaling), and image size (resolution scaling), 
EfficientNet uses the model compound scaling process to 
scale up the CNN. Moreover, EfficientNet uses a Swish 
activation function differing from the normal ReLU function 
found in the conventional CNN model. The Swish function 
is a multiplication of a linear and a sigmoid activation [18]. 
Table 4 shows the EfficientNet CNN topology. The input 
image size (48 x 48) is resized to the standard CNN input 
layer (224 x 224), which are standard practice for varying 
input data size [25-27].  

The CNN performed the feature extraction on the input 
images in various stages. In CNN's feature extraction, the 
architecture consisted of 7 inverted residual blocks 
(MBConv) and two residual blocks (Conv). Fig. 4 and Table 
4 show a complete workflow of MBConv1, k3x3, and 
MBConv6, k3x3 block. Both MBConv1, k3x3, and 
MBConv6, k3x3 use depthwise convolution, which 
integrates a kernel size 3x3 with a stride size of s. Batch 
Normalization, activation, and convolution are included in 
these two blocks, which have a 1x1 kernel size. The classifier 
and the expression prediction are the two stages of the KNN 
classification. The KNN took the place of the Softmax and 
the traditional pooling layer in the final image categorization.

 

 
FIGURE 3. Steps for Image Pre-processing. 
 
TABLE 4. EfficientNet-B0 CNN Topology. 

 

Layer Size Channels Number of 
Layers 

Input layer 224 x 224 x 3 3 1 
Conv3x3 224 x 224 x 3 32 1 
MBConv1, 3x3 112 x 112 16 1 
MBConv6, 3x3 112 x 112 24 2 
MBConv6, 5x5 56 x 56 40 2 
MBConv6, 5x5 28 x 28 80 3 
MBConv6, 5x5 28 x 28 112 3 
MBConv6, 5x5 14 x 14 192 4 
MBConv6, 5x5 7 x 7 320 1 
Conv1x1  7 x 7 1280 1 
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Pooling, dropout, 
Softmax layer - - 1 

KNN is a suitable algorithm for multiclass classification 
problems. Hence, we proposed a hybrid CNN-KNN model, 
as KNN provides better accuracy as a classifier, especially in 
a noisy environment [17]. Since researchers have not 
evaluated the hybrid CNN-KNN model in the FER 
framework, we use this hybrid model to improve accuracy in 
the FER-2013 dataset. In the Hybrid CNN-KNN model, the 
KNN classifier replaced the pooling and Softmat later at the 
output of EfficientNet. 

 

 
FIGURE 4. Proposed CNN-KNN Model.      
 
4) MODEL TRAINING AND EVALUATION 

We used Python to build the FER model since Python 
supports Raspberry Pi and most deep learning frameworks.           
We used TensorFlow as the deep learning framework since 
it is the most popular framework. Moreover, it has a lite 
version (TensorFlow Lite) to support mobile and edge 
devices like Raspberry Pi. The TensorFlow Lite model also 
performs better than the regular TensorFlow model.      

Our group used Google Colab notebooks for training and 
evaluation, and we executed these notebooks in the browser 

using Google's cloud server. Google Colab is free and 
utilizes Google's GPU and TPU for training. 

Investigators can reuse weights learned, and they can 
unfreeze some layers of the CNN to perform training, thanks 
to the use of transfer learning to develop the FER system.      
Adam optimizer, an adaptive learning rate method for 
stochastic gradient descent, accomplishes the training.      
Furthermore, we used a batch size of 32 and a maximum of 
100 epochs. In KNN training, we used the default k value of 
5 and defaulted Euclidean distance for classification. After 
that, the optimizer will do the hyperparameter tuning to 
determine the best k value and distance metric to be used. 

To evaluate the training, we used the Stratified k-fold 
Cross-Validation method with a k-value of 5. The value 5 is 
considered based on our trial-and-error approach. Several k 
values are considered 1, 2, 3, 4, 5, 7 and 10. However, there 
is no significant difference when the value is over 5; 
therefore, 5 is considered. Cross-validation provides robust 
estimates of the variance of the training data. A confusion 
matrix (as shown in Fig. 5), averaged to obtain the FER 
system's accuracy, evaluated each class's accuracy (as shown 
in Fig. 5). We compared our model's accuracy to other 
models (shown in Table 5) trained on the FER-2013 dataset. 
Despite deploying the hybrid CNN-KNN model on the 
Raspberry Pi hardware with very limited processing power, 
low memory capacity, and small storage capacity, we 
achieved similar accuracy to the state-of-the-art's Ensemble 
of 8 CNN model with X time speed up of inference time.      

 

      
Predicted class 

 
Positive Negative 

Actual 
class 

Positive True 
Positive (TP) 

False 
Negative (FN) 

TP + FN 
Actual total positives 

Negative False 
Positive (FP) 

True 
Negative (TN) 

FP + TN 
Actual total negatives 

 

TP + FP 
Predicted 
total 
positives 

FN + TN 
Predicted 
total 
negatives 

Accuracy 
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
 

FIGURE 5. Sample confusion matrix. 

 

TABLE 5. Comparison of Facial Expression Recognition Model for FER-
2013 Dataset. 
 

Algorithm Accuracy (%) 

Proposed Method 75.26 
Ensemble of 8 CNN [13] 75.20 
CNN with VGG [13] 72.70 
HoG + SVM [12] 57.70 
Human Accuracy [11] 68.0 
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Other evaluation methods for the CNN models are 
sensitivity, specificity, and F1-Score, calculated based on the 
formulas below: 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
  

       (1) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
  

   (2) 

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 0.5 ∗ (𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹)
     (3) 

 
After training, we fine-tuned the deep learning model to 

determine the best accuracy, and TensorFlow provided 
model evaluation. We translated the TensorFlow model to 
TensorFlow Lite and copied it to a Raspberry Pi. 
Additionally, we used inference time, the time it takes the 
deep learning algorithm to process the image and make 
predictions, as an evaluation metric. The FER system 
requires a shorter inferencing time to operate in real-time.      
The system operated on a Raspberry Pi 4 using a webcam as 
input. 

IV. RESULTS AND DISCUSSION 
We present the results and discussions regarding the 

training and implementation of the hybrid CNN-KNN FER 
model. Additionally, we present experimental results to 
improve the accuracy during the training of the FER model. 
We then perform optimization of the parameters of the 
model. Finally, we present the model's final performance 
regarding the accuracy, sensitivity, specificity, and inference 
time. 

A. Training and Evaluation of CNN Model / Image Pre-
Processing and Data Augmentation 
Our group executed the training and evaluation of the CNN 
model on the Google Colab platform. TensorFlow 2.4 on 
Python 3.6 and Nvidia V100 GPU accelerated the training. 
Moreover, Stratified 5-fold Cross-Validation validated all 
training. Stratified 5-fold Cross-Validation ran two times, 
and it recorded the highest accuracy from the two runs. 
Before training the CNN model, image pre-processing 
resized the images to the required shape, while data 
augmentation techniques increased the sample size. Table 6 
shows the data augmentation methods and rescaling used to 
ensure images have input range from -1.0 to 1.0. The 
ImageDataGenerator class in the Keras library performed the 
data augmentation and image pre-processing. 
TABLE 6. Settings for Data Augmentation and Image Pre-processing for 
Keras ImageDataGenerator. 
 

Settings Value 

Rescale (1/127.5) – 1 
Rotation Range 10 
Shear Range 0.2 
Zoom Range 0.2 
Fill Mode Reflect 

Brightness Range 0.5 to 1.5 
Horizontal Flip True 
Data Format Channels_last 

 
We used EfficientNet as the model for transfer learning. 

It has several versions with different parameters, and it 
supports different usages. The number of trainable weights 
can affect the accuracy and inference time of the model. We 
used EfficientNet-Lite L0-L4 models in this FER application 
instead of the full EfficientNet B0-B7 models as the 
EfficientNet-Lite is optimized for edge devices.      
EfficientNet-Lite removes squeeze-and-excitation networks, 
and it replaces swish activation functions with ReLU6 
activation to support the quantization needed for edge 
devices. 

EfficientNet-Lite models train on the FER-2013 dataset 
with images resized to the required size of 224x224. Fig. 6 
demonstrates that each model uses the same architecture.  
Furthermore, we tested all models using the same settings in 
Table 7 with the same image pre-processing method in Table 
6. Table 8 compares the test accuracy of the 3589 test images 
and inference time on Colab. 
 

 
FIGURE 6. Network for EfficientNet-Lite Model Experiment. 

 
TABLE 7. Settings Used for EfficientNet-Lite Models. 
 

Parameters Value 

Epoch 100 
Batch Size 32 
Learning Rate 0.01 
Drop Rate 0.6 
Optimiser Adam 
Loss Function Categorical Cross Entropy 

EarlyStopper stop training if validation accuracy stops 
improving for 10 epochs 

 
TABLE 8. Performance of EfficientNet-Lite Models. 

 

Efficient
Net 

Model 

Number of 
weights 

Test 
Accuracy 

(%) 

Inference 
Time on 

Colab (ms) 

L0 3,421,991 67.79 540.9 
L1 4,198,311 67.79 701.1 
L2 4,820,039 68.74 771.3 
L3 6,925,063 69.32 1133.1 
L4 3,421,991 67.79 540.9 
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From Table 8, the EfficientNet-Lite L3 model has the best 
test accuracy, but its drawback is a high inference time. Since 
the difference in accuracy between models is minimal, we 
selected the L0 model to have the fastest inference time. The 
EfficientNet-Lite L0 model provides a test accuracy of 
67.79%, and it has the fastest inference time of 540.9ms. It 
also has the least number of weights to train the models. 

In Fig. 7, the accuracy for the validation set stabilizes at 
five epochs. One can see overfitting after this point. 16 
epochs provide the best accuracy. Moreover, the validation 
accuracy starts higher than the training accuracy, indicating 
this test data consists of "easier" examples than the train set. 
Fig. 8 also illustrates the model loss with increasing epochs. 
We observed the train losses steadily decrease due to the 
overfitting, while the validation loss suddenly increases at 
epoch 14.  

 

 
FIGURE 7. EfficientNet-Lite L0 Training and Validation Accuracy vs. 
Epoch. 

 

 
FIGURE 8. EfficientNet-Lite L0 Training and Validation Loss vs. Epoch.      

 
With the FER-2013 dataset as the only training data, the 

maximum test accuracy we achieved with the EfficientNet-
Lite L0 model was 67.79%. Investigators can increase the 
number of training images to improve accuracy. As a result, 
we supplemented the FER-2013 training dataset with 
additional FER training data from the JAFFE and KDEF 
databases. The updated model training distribution is shown 
in Table 9. The testing dataset for FER was kept the same as 
the original FER-2013 dataset for benchmarking purposes. 
With the additional training data and the same setup as Table 

7, the L0 model's test accuracy increased from 67.79% to 
69.21%. 
TABLE 9. Distribution of FER Dataset with Extra Training Images from 
JAFFE And KDEF. 
 

Expression 

Number of 
training 

images with 
extra 

training data 

Number of 
training 
images 

(original 
FER-2013 
dataset) 

Number of 
test images 

(original 
FER-2013 

dataset 

angry 4873 4462 491 
disgust 1438 492 55 
happy 9438 8110 879 

sad 6286 5483 594 
fear 4887 4593 528 

surprise 4304 3586 416 
neutral 7062 5572 626 

 
   From Fig. 9, the Fully Connected layer for classification 

has a Global Average Pooling layer, a Dropout layer, and a 
Dense layer with Softmax activation function to recognize 
expressions. To improve accuracy and prevent overfitting, 
we explored a deeper Fully Connected layer combined with           
Dropout layers, the Dense layer, and the Batch 
Normalization layer. 

In Fig. 10, one sees overfitting as validation loss starts to      
climb higher than training loss at the 5th epoch. We 
increased the Dropout layer's drop rate to prevent overfitting, 
and a few Dropout layers were used. The drop rate of the 
Dropout layer is the probability a node is enabled for weight 
optimization during training. The Batch Normalization layer 
helps standardize the inputs, reduce the generalization error, 
and improve the training speed     .  

No correct method exists to determine the best network 
design. We built the Fully Connected layer based on trial and 
error from the existing CNN model's Fully Connected layer 
designs. Although the KNN classifier replaced the Fully 
Connected layer in the hybrid FER model, we had to 
optimize the KNN classifier to improve the weight training      
in the EfficientNet-Lite L0 model. We tested the Fully 
Connected layer designs with the same settings as Table 7 
and the extra training data. Fig. 11 shows the final design of 
the network with the best accuracy. This model improved 
test accuracy from 69.21% to 71.05%. Appendix A details 
the full architecture of the EfficientNet-Lite L0 model.   
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FIGURE 9. Design of Fully Connected Layer. 

 
FIGURE 10. L0 with Fully Connected Layer Training and Validation 
Accuracy vs Epoch. 

 
FIGURE 11. L0 with Fully Connected Layer Training and Validation Loss 
vs Epoch. 

In CNN, the loss function compares the current model's 
error to the training result by calculating weights' errors. The 
function minimizes the error of the model as much as 
possible. 

We tested the model from Fig. 11 with different loss 
functions with default parameters, and Table 11 shows the 
test accuracy of each loss function. Focal loss and CEFL2 
loss are new loss functions to improve the imbalanced class 
datasets. The Adam optimizer uses the same settings as 
Table 11 to test each loss function. The system's accuracy 
has improved significantly as a result of the design change, 
as seen in Fig. 12. With these enhancements, we were able 
to alleviate the problem of overfitting. Furthermore, we 
observed a slight improvement in accuracy, as both training 
and validation accuracies are similar. Finally, we observed a 
consistent improvement at the 35th epoch with more than 
69%      accuracy. 

 Fig. 13 shows the training and validation loss with Cross-
Entropy vs epochs. Based on Table 12, this model's best loss 
function is the CEFL2 loss, which improved test accuracy to 
71.89%. The CEFL2 loss function is: 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 = −  

(1− 𝑝𝑝)2

(1− 𝑝𝑝)2 +  𝑝𝑝2
 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 −  

𝑝𝑝2

(1 − 𝑝𝑝)2 + 𝑝𝑝2
 

𝑙𝑙𝑙𝑙𝑙𝑙 (1− 𝑝𝑝)𝛾𝛾𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝  
(5) 

 
where p is the ground truth output from the model and 
hyperparameter, 𝛾𝛾 = 2. 
 
TABLE 10. Comparison of Test Accuracy with Different Loss Function. 
 

Loss Function Test Accuracy 
(%) 

Cross Entropy Loss 71.05 
Kullback Leibler Divergence Loss 70.52 
Focal Loss 69.96 
CEFL2 Loss 71.89 

The optimizer calculates and updates the weights in the 
model based on the loss function output. Table 11 uses 
CEFL2 loss as the loss function to show the test accuracy 
compared to different optimizes with default parameters. 
The best optimizer for this FER model is the Adam 
optimizer, which produced an accuracy of 71.89%. 

 
TABLE 11. Comparison of Test Accuracy with Different Loss Function. 
 

Optimizer Test Accuracy 
(%) 

Adam 71.89 
RMSprop 68.77 
SGD 71.61 

 
We used the optimizer's learning rate to set the number of 

updates the weights receive during the model's training. A 
high learning rate will reduce the training loss faster, but this 
high rate may cause a model to converge to a less than 
optimal solution. A low learning rate may require 
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considerable time to train along with a large number of 
epochs. 

For the experiment, we executed training with a learning 
rate reducer. It reduced the learning rate once it neared the 
optimal solution for further improvement. The Adam 
optimizer tested the learning rate from 0.0001 to 0.1 with the 
CEFL2 loss function. Based on Table 12, the 0.001 learning 
rate results in better overall accuracy and finishes at epoch 
40. Moreover, Fig. 11 shows the model's training accuracy 
and validation accuracy steadily increase up to 25 epochs. 

Conversely, the validation accuracy increases until ten 
epochs before it becomes stagnant. Like previous 
observations, the validation accuracy starts higher than the 
training accuracy, possibly indicating that the test data 
consist of "easier" examples than the training set. The 
validation accuracy surpasses 70% at 10 epochs and then 
fluctuates after this point. 

 
TABLE 12. Comparison of Test Accuracy with Different Learning Rate. 
 

Loss Function Test Accuracy 
(%) 

0.0001 72.95 
0.001 74.31 
0.01 71.89 
0.1 24.49 

 
This FER model's test and training dataset have an 

imbalanced class where some expressions are lower than 
others. Including class, weights helped with the imbalanced 
FER-2013 training dataset, which had fewer samples for 
certain expressions, like disgust. Table 13 shows the 
confusion matrix of the model without class weights used in 
the training process. 

 

 

 
FIGURE 13. Model Training and Validation Loss vs Epoch for 0.001 
Learning Rate. 
 

Fig. 12 demonstrates that overfitting is a problem of this 
model, as validation loss becomes higher than training loss 
at the 10th epoch. We used class weights during training to 
solve this problem. The values for class weight are shown in 
Table 14. With Adam optimizer and a learning rate of 0.001, 
we tested with extra training data and CEFL2 loss. We 
examined the performance of the dataset with the uneven 
distribution using F1-Score. The F1-Score assesses the 
sensitivity-to-recall ratio. The values for class weight are 
shown in Table 14. With Adam optimizer and a learning rate 
of 0.001, we tested with extra training data and CEFL2 loss. 
We examined the performance of the dataset with the uneven 
distribution using F1-Score. The F1-Score assesses the 
sensitivity-to-recall ratio. The values for class weight are 
shown in Table 14. With Adam optimizer and a learning rate 
of 0.001, we tested with extra training data and CEFL2 loss. 
We examined the performance of the dataset with the uneven 
distribution using F1-Score. The F1-Score assesses the 
sensitivity-to-recall ratio. We calculated F1-Score for each 
expression and used the weighted-average F1-Score for 
comparison.  

 

FIGURE 12. Model Training and Validation Accuracy vs Epoch for 0.001 Learning Rate.  
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TABLE 13. CNN Model Confusion Matrix on Test Dataset without Class Weight. 
 

 
Predicted 

Actual 

 
Angry Disgust Fear Happy Neutral Sad Surprise 

Angry 329 7 42 11 50 44 8 

Disgust 9 38 5 1 1 1 0 

Fear 44 2 282 23 51 80 46 

Happy 9 0 14 800 27 11 18 

Neutral 28 1 19 24 492 52 10 

Sad 54 0 47 21 90 377 5 

Surprise 5 0 25 17 15 5 349 

TABLE 14. Value of Class Weights for Each Expression. 
 
 

Expression  Class Weights 

Angry 7.8822 
Disgust 26.7656 

Fear 7.9424 
Happy 4.0596 
Neutral 5.3891 

Sad 6.1907 
Surprise 8.7535 

TABLE 15. CNN Model Confusion Matrix on Test Dataset with Class Weight. 
      

 
Predicted 

Actual 

 Angry Disgust Fear Happy Neutral Sad Surprise 

Angry 334 3 34 13 49 56 2 

Disgust 8 40 2 2 1 1 1 

Fear 43 2 299 16 50 87 31 

Happy 10 1 11 802 27 15 13 

Neutral 21 1 18 32 479 69 6 

Sad 40 5 46 19 93 385 6 

Surprise 7 0 32 14 13 9 341 
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TABLE 16. Performance Evaluation on Class Weights. 
 

Performance  
Without Class 

Weight 
With Class 

Weight 
Test Accuracy 74.31% 74.67% 

F1-Score 0.7402 0.7456 

 
Table 16 shows the performance of test accuracy and 

weighted average in the F1-Score based metric. The test 
accuracy score improved from 74.31% without class weight 
to 74.67% with class weight added. Moreover, when we 
added the class weights, the weighted-average F1-Score 
improved from 0.7402 to 0.7456. Fig. 14 shows the 
validation loss does not start to overfit until it reaches higher 
validation accuracy. 

The final CNN Model, based on EfficientNet-Lite L0, has 
a test accuracy of 74.67%. Table 15 shows the confusion 
matrix for the final CNN model. Table 17 shows the settings 
we used to achieve the accuracy of 74.67% from the results 
of the experiments. Table 18 shows the accuracy that each 
fold in the 5-fold Cross-Validation achieved. Each fold uses 
38288 images for training and validation. The inference time 
for the CNN model in Colab is 716.2 ms. 

FIGURE 14. CNN Model with Class Weight Training and Validation 
Accuracy vs Epoch. 

 

 
FIGURE 15. CNN Model with Class Weight Training and Validation Loss 
vs Epoch.  
 

TABLE 17. Final Settings of Hyperparameters for CNN Model. 
 

Parameter  Value 

Dataset used FER-2013 dataset with extra training 
data from JAFFE and KDEF 

Epoch 100 
Batch Size 32 
Learning Rate 0.001 
Dropout rate 0.7 (Dropout layer 1) & 0.6 (Dropout 

layer 2) 
Optimiser Adam 
Class Weights True 
Loss function CEFL2 loss 
Early Stopper Stop training if validation accuracy 

stops improving for ten epochs 

LR Reducer 
Reduce learning rate by a factor of 0.1 
once validation accuracy stops 
improving for 10 epochs 

 

TABLE 18. Test Accuracy for 5-fold Cross-Validation. 
 

Fold Test Accuracy (%) 

1 74.67 
2 73.64 
3 73.45 
4 74.03 
5 74.17 

 

TABLE 19. Performance evaluation of the final CNN model. 
 

PERFORMANCE EVALUATION OF THE FINAL CNN MODEL. 

Performance Value 

Test Accuracy 74.67% 
Weighted-average Sensitivity 0.7467 
Weighted-average Specificity 0.9375 
Weighted-average F1-Score 0.7456 

 
Table 19 shows the final CNN Model, based on 

EfficientNet-Lite L0. The CNN model has 74.67% accuracy, 
still lower than the benchmark of 75.2%. We converted the 
CNN model to the TensorFlow Lite Model, which is 
optimized for edge devices like Raspberry Pi. Post-training 
integer quantization optimizes the TensorFlow Lite model, 
reducing the model size by 75% with a trade-off of lower test 
accuracy.  

Table 20 further shows a performance comparison of 
TensorFlow and TensorFlow Lite. The TensorFlow has a 
0.17% improvement of accuracy compared to the 
TensorFlow Lite. However, the TensorFlow Lite has a 51x 
faster inference time compared to the standard TensorFlow 
on the Raspberry Pi. While achieving a remarkable 
improvement in inference time, a small reduction in test 
accuracy is indispensable for a model running on mobile 
devices. 
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TABLE 20. Comparison of Tensorflow Vs Tensorflow Lite Models. 

 

Model Test Accuracy (%) Inference Time on 
Raspberry Pi (ms) 

TensorFlow 74.67 326.91 
TensorFlow Lite 74.50 6.39 

B. TRAINING AND EVALUATION OF KNN CLASSIFIER 
We performed training of the KNN classifier on Google 

Colab with TPU. Fig. 16 demonstrates the removal of parts 
of the Fully Connected layer to train the KNN classifier.  Our 
group froze the weights of the CNN model to generate 
features like training input for the KNN classifier. We then 
used the same training and testing data to train the KNN 
classifier. Furthermore, we used the TensorFlow Lite model 
with quantization for the CNN. After generating features 
from the CNN model, training produced a standard scaler to 
scale the feature input of the KNN classifier in the range 0 to 
1.  We tested the KNN distance functions to find the best 
KNN distance function and optimal K value. Table 21 
compares test accuracy to a variety of other types of distance 
functions. Euclidean distance with a k-value of 17 is the 
KNN distance function with the highest test accuracy, 
improving the model's accuracy from 74.67 percent to 75.26 
percent. Manhattan distance has the largest k-value of the 
KNN distance function, with a value of 24, achieving 75.15 
percent accuracy. The lowest k-value of the KNN distance 

function is Canberra distance, which also produces a good 
result with 75.20% accuracy. 

 

 
FIGURE 16. CNN Model with Weights Frozen to Generate KNN 

Training Input.               
TABLE 21. Comparison of Test Accuracy with different KNN Distance 
Function. 

 

KNN Distance 
Function Test Accuracy (%) k-Value 

Euclidean 75.26 17 
Manhattan 75.15 24 
Chebyshev 74.14 12 
Hamming 74.76 13 
Canberra 75.20 7 

Braycurtis 74.95 22 

      
TABLE 22. CNN-KNN FER Model Confusion Matrix. 

 
 Predicted 

Actual 

 Angry Disgust Fear Happy Neutral Sad Surprise 

Angry 345 1 28 11 47 56 3 

Disgust 8 40 2 2 1 1 1 

Fear 43 0 297 15 49 94 30 

Happy 11 0 8 803 30 16 11 

Neutral 21 0 18 27 482 71 7 

Sad 37 4 42 17 95 392 7 

Surprise 6 0 32 15 12 9 342 

The final hybrid CNN-KNN model in Fig. 17 consists of 
the EfficientNet-Lite L0 model from transfer learning, a 
Global Average Pooling layer, and a KNN classifier 
Euclidean distance algorithm. Table 22 shows the confusion 
matrix for the hybrid CNN-KNN FER model. Table 23 
shows the final parameters for the hybrid CNN-KNN Model. 

Table 24 demonstrates that the test accuracy of the hybrid 
CNN-KNN FER model improved by 0.6% compared to 
using Softmax as the output layer. Using KNN, the proposed 

model's accuracy was 0.1% higher than the state-of-the-art 
FER model, which uses an ensemble of 8 CNN models [13] 
TABLE 23. Final Settings of Parameters for CNN-KNN Model. 
 

Parameters Value 

Dataset used FER-2013 dataset with extra 
training data from JAFFE 
and KDEF 

Epoch 100 
Batch Size 32 
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Learning Rate 0.001 
Dropout Rate 0.7 (Dropout layer 1) & 0.6 

(Dropout layer 2) 
Optimiser Adam 
Class Weights True 
Loss Function CEFL2 loss 
Early Stopper Stop training if validation 

accuracy stops improving 
for 10 epochs 

  
LR Reducer Reduce learning rate by a 

factor of 0.1 once validation 
accuracy stops improving 
for 10 epochs 

KNN Distance Function Euclidean 
KNN k-value 17 

TABLE 24. Performance Evaluation of The Hybrid CNN-KNN FER Model. 
 

Parameters Value 

Test Accuracy 75.26% 
Weighted -average Sensitivity 0.7526 
Weighted-average Specificity 0.9393 
Test Accuracy 75.26% 
Weighted-average F1-Score 0.7518 

 
TABLE 25. Comparison of Tensorflow, TensorFlow Lite, and our KNN + 
TensorFlow Lite Models. 
 

Model Test Accuracy (%) 

TensorFlow 74.67 
TensorFlow Lite 74.50 
KNN + TensorFlow Lite 75.26 

 

 
FIGURE 17. Hybrid CNN-KNN Model. 

C. ANALYSIS ON RASPBERRY PI 
 

Fig. 18 shows the Raspberry Pi FER system. The 
Raspberry Pi 4 is connected to the webcam, and the monitor 
displays the system's output. A connected Coral USB 
Accelerator enhances the inferencing of the TensorFlow Lite 
models through the Edge TPU. 

Fig. 19 and Fig. 20 show the seven expressions the 
Raspberry Pi FER application captures: angry, disgust, fear, 
happy, neutral, sad, and surprise. We used the Haar-Cascade 

classifier for face detection, and the CNN-KNN model 
predicted all the expressions. 

Table 25 shows the comparison of Tensorflow, 
TensorFlow Lite, and our KNN + TensorFlow Lite 
implementations. It can be seen that our KNN + TensorFlow 
Lite implementation achieves the best test accuracy of 
75.26%. 

Table 26 further shows the accuracy comparison for our 
proposed hybrid FER model on the Raspberry Pi 4 compared 
to the state-of-the-art models. Our proposed hybrid CNN-
KNN model achieves 75.26% accuracy, which is slightly 
better than the state-of-the-art Ensemble of 8 CNN with 
75.2% accuracy. Moreover, Table 27 compares inference 
time for the FER model on the Raspberry Pi 4. Post-training 
quantization optimizes the TensorFlow Lite model with the 
Softmax output layer. It provides the best inference time 
among the models. The proposed CNN-KNN model requires 
a longer inference time due to the KNN classifier, but the 
inference time is still acceptable. 

It is also notable that the performance of our proposed 
method is better than the shallow CNN by [25] for the same 
dataset (FER2013), including the comparison methods 
(AlexNet, HOG+CNN, Xception, VGG-8. FaceLiveNet) 
where their accuracy results vary between 61-69%.  

 
TABLE 26. Comparison of Tensorflow, TensorFlow Lite, and our KNN + 
TensorFlow Lite Models. 
 

Model Test Accuracy (%) 

Proposed Hybrid CNN-KNN 
Model 

75.26 

Ensemble of 8 CNN [13] 75.2 
CNN with VGG [13] 72.7 
HoG + SVM [12] 57.7 
Human Accuracy [11] 68.0 

 
 

      
FIGURE 18. Raspberry Pi Setup for Facial Expression Recognition 
System. 
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TABLE 27. Comparison of CNN Model in terms of Inference Time. 
 

Model Test Accuracy 
(%) 

Inference time on 
Raspberry Pi (ms) 

TensorFlow 74.67 326.91 
TensorFlow Lite 74.50 6.39 
KNN + TensorFlow Lite 75.26 74.15 

V. CONCLUSIONS  
In conclusion, we have tested a new hybrid CNN-KNN 

model for FER. We discussed image pre-processing and data 
augmentation techniques. Aside from data augmentation to 
increase the sample size, we combined extra training data 

from JAFFE and KDEF with the FER-2013 training dataset. 
Additionally, we discussed optimizing the Fully Connected 
layer, loss function, optimizer, learning rate, class weights, 
KNN distance function, and KNN k-value. A hybrid model 
using CNN for feature extraction and KNN as the classifier 
can improve FER model accuracy on the FER-2013 dataset. 
The hybrid CNN-KNN model produced an accuracy of 
75.3%, a 0.6% improvement from the CNN model and a 
0.1% improvement in accuracy compared to state-of-the-art 
FER models. The proposed model has a sensitivity of 
0.7526, specificity of 0.9393, and inference time on the 
Raspberry Pi 4 is 74.15ms. 

 
FIGURE 19. Output of Facial Expression Recognition System. 
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Figure 20. Prediction of Expression from FER System. 

 
Investigators have developed FER systems with different 

feature extraction techniques, such as LBP or Gabor Filter, 
combined with traditional machine learning like SVM or 
KNN and deep learning models like CNN. While many FER 
systems on the FER-2013 dataset have good accuracy, the 
main goal is improving the existing models and evaluating 
the embedded device's performance.  

We researched methods to recognize facial expressions 
with deep learning models using embedded devices. 
Training a hybrid CNN-KNN model for FER, using CNN for 
feature extraction and KNN for expression recognition, can 
achieve this goal. We based our model on the EfficientNet 
model and benchmarked on the FER-2013 dataset. Finally, 
we compared the different pre-trained EfficientNet models, 
and we selected the most suitable model for the FER.  

We have also shown the KNN classifier can improve the 
accuracy of the CNN model. Our implementation of the 
hybrid model on the Raspberry Pi, with webcam and Coral 
USB Accelerator for model inferencing, demonstrated 
improved accuracy. The system has a reasonable inference 
time of 74.15ms when tested on the Raspberry Pi and test 
accuracy of 75.3%, which is a 0.1% improvement on the 
state-of-the-art model accuracy and improvement of 0.6% 
compared to the CNN model without the KNN classifier.  

The proposed FER model produced a reasonable accuracy 
and inference time on the Raspberry Pi. Further research on 
the proposed CNN-KNN FER model's accuracy can 
experiment with more Fully Connected layer designs. 
Moreover, further research can try different Batch 
Normalization arrangements and Dropout layer designs. 
Increasing the number of neurons for the Dense layer in the 
Fully Connected layer can improve accuracy. Combining 
more FER datasets can create a larger sample size for 
training. With limited time to train the model on the Colab 
platform, we cannot use more training data as there will be 
insufficient time for the training. We can improve the tuning 
process of parameters by sweeping through a range of 
possible values to find the optimal values, instead of 
manually selecting the value to test. 

Further research can perform the model's testing and 
benchmark on different FER datasets, as the FER-2013 
dataset contains a few misclassifications of the images. We 
could also discuss on the performance comparison of the 
proposed method against the variants of CNN itself such as 
Fast-RNN, Faster-RNN, YOLO and SSD. Considering the 

Haar-Cascade classifier is used in this application, we could 
explore a more sophisticated face detection algorithm limited 
to only frontal faces. Since wearing face masks has become 
a norm during COVID-19, future work can explore a FER 
dataset focusing on features of the eyes.  
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