
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

1-1-2021

EfficientNet-Lite and Hybrid CNN-KNN Implementation for Facial EfficientNet-Lite and Hybrid CNN-KNN Implementation for Facial

Expression Recognition on Raspberry Pi Expression Recognition on Raspberry Pi

Mohd Nadhir Ab Wahab
Universiti Sains Malaysia

Anthony Tan Zhen Ren
Universiti Sains Malaysia

Amril Nazir
Zayed University

Mohd Halim Mohd Noor
Universiti Sains Malaysia

Muhammad Firdaus Akbar
Universiti Sains Malaysia

See next page for additional authors

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wahab, Mohd Nadhir Ab; Ren, Anthony Tan Zhen; Nazir, Amril; Noor, Mohd Halim Mohd; Akbar,
Muhammad Firdaus; and Mohamed, Ahmad Sufril Azlan, "EfficientNet-Lite and Hybrid CNN-KNN
Implementation for Facial Expression Recognition on Raspberry Pi" (2021). All Works. 4515.
https://zuscholars.zu.ac.ae/works/4515

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact
Yrjo.Lappalainen@zu.ac.ae, nikesh.narayanan@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4515&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/4515?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4515&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Yrjo.Lappalainen@zu.ac.ae,%20nikesh.narayanan@zu.ac.ae

Author First name, Last name, Institution Author First name, Last name, Institution
Mohd Nadhir Ab Wahab, Anthony Tan Zhen Ren, Amril Nazir, Mohd Halim Mohd Noor, Muhammad Firdaus
Akbar, and Ahmad Sufril Azlan Mohamed

This article is available at ZU Scholars: https://zuscholars.zu.ac.ae/works/4515

https://zuscholars.zu.ac.ae/works/4515

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

EfficientNet-Lite and Hybrid CNN-KNN Implementation for Facial
Expression Recognition on Raspberry Pi
Mohd Nadhir Ab Wahab1, (Member, IEEE), Anthony Tan Zhen Ren1, Amril Nazir2,
Mohd Halim Mohd Noor1, (Member, IEEE), Muhammad Firdaus Akbar3, (Member, IEEE), and
Ahmad Sufril Azlan Mohamed1
1School of Computer Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
2Department of Information Systems, College of Technological Innovation, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
3School of Electric and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Penang, Malaysia

Corresponding author: Mohd Nadhir Ab Wahab (e-mail: mohdnadhir@usm.my), Mohd Halim Mohd Noor (halimnoor@usm.my) and
Muhammad Firdaus Akbar (firdaus.akbar@usm.my).

This work was supported in part by the Ministry of Education Malaysia Fundamental Research Grant Scheme (FRGS) under Grant 203/PKOMP/6711932.

ABSTRACT Facial expression recognition (FER) is the task of determining a person's current emotion. It
plays an important role in healthcare, marketing, and counselling. With the advancement in deep learning
algorithms like Convolutional Neural Network (CNN), the system's accuracy is improving. A hybrid CNN
and k-Nearest Neighbour (KNN) model can improve FER's accuracy. This paper presents a hybrid CNN-
KNN model for FER on the Raspberry Pi 4, where we use CNN for feature extraction. Subsequently, the
KNN performs expression recognition. We use the transfer learning technique to build our system with an
EfficientNet-Lite model. The hybrid model we propose replaces the Softmax layer in the EfficientNet with
the KNN. We train our model using the FER-2013 dataset and compare its performance with different
architectures trained on the same dataset. We perform optimization on the Fully Connected layer, loss
function, loss optimizer, optimizer learning rate, class weights, and KNN distance function with the k-value.
Despite running on the Raspberry Pi hardware with very limited processing power, low memory capacity,
and small storage capacity, our proposed model achieves a similar accuracy of 75.26% (with a slight
improvement of 0.06%) to the state-of-the-art's Ensemble of 8 CNN model.

INDEX TERMS EfficientNet-Lite, hybrid CNN-KNN, facial expression recognition, Raspberry Pi,
emotion recognition.

I. INTRODUCTION
Emotions are natural states associated with the nervous
system that influence every aspect of human behaviour,
including rationality and decision-making [1,2]. Individuals
can convey emotions through speech, body posture, gestures,
and facial expressions.

Facial expressions are effective ways to recognize one's
emotions. Facial expressions are vital for day-to-day
communication, as they convey non-verbal emotions and
feelings. With just 43 different facial muscles, humans can
make 6,000 to 10,000 expressions [3]. In 1872, Charles
Darwin hypothesized that humans had evolved facial
expressions from animal ancestors. Furthermore, certain
expressions are universal across cultures, despite differences
in race, language, and religion [4]. In the late 20th century,
Ekman and Friesen confirmed Darwin's theory and classified
six universal facial expressions: happy, fear, surprise,
disgust, sad, and angry [3].

Facial Expression Recognition (FER) is a computer vision
field that uses various techniques to identify emotions from
human facial expressions. Researchers are interested in FER,
as understanding one's emotions can improve human-
machine interaction, behavioural science, and clinical
practice. Recent advancements in computer hardware and
image classification techniques allow researchers to develop
more efficient FER systems. These FER systems are useful
in healthcare systems, social marketing, targeted
advertisements, the music industry, school counselling
systems, and lie detection.

Consequently, researchers have proposed using machine
learning and deep learning, such as Support Vector Machine
(SVM) or Convolutional Neural Network (CNN).
Unfortunately, these systems have issues, such as low
accuracy. Thus, researchers continue to investigate to
achieve higher accuracy.

Few FER systems are implemented on real-time
embedded system devices; FER systems are primarily tested

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

and implemented on computers. Implementing a FER system
on an embedded device grants FERs portability and lower
power consumption. Nevertheless, embedded devices might
lack the processing power to capture the expression from
video in real-time. The challenge is providing real-time FER
on embedded devices while maintaining acceptable
accuracy. We chose Raspberry Pi over similar devices, such
as the Nvidia Jetson Nano, as Raspberry Pi is less expensive
and provides sufficient processing power for FER
application.

Our research focuses on improving the deep learning
models currently in use in FER systems. Most FER systems
use a Convolutional Neural Network (CNN) as the deep
learning architecture to recognize facial expressions. CNN
can perform complex operations to extract features from
images and provide recognition. In machine learning, k-
Nearest Neighbour (KNN) is a simple classification
algorithm that can provide good accuracy.

 Accordingly, we propose a hybrid model combining
CNN's feature extraction ability and KNN's advantages in
classification for FER applications. We evaluated the
performance of our model's accuracy, and we compared the
accuracy of our model to other models. Our group trained
the models on the FER-2013 dataset with seven facial
expressions: angry, disgust, happy, sad, fear, surprise, and
neutral. After completing training on the computer with
TensorFlow, we transferred the model to the Raspberry Pi
for real-time FER via webcam.

A new FER system is proposed based on the EfficientNet-
Lite and the hybrid CNN-KNN model. Research in image
recognition applications showed that the hybrid CNN-KNN
model could achieve higher accuracy than CNN models.
Researchers, however, have not explored this hybrid model
in FER applications. The remainder of this paper is
organized as follows. Section II presents related work,
covering the review of currently developed FER systems.
Section III provides the design methodology and architecture
of our proposed hybrid CNN-KNN FER model on the
Raspberry Pi. Section IV illustrates the practical
experimental results and discussion. Finally, Section V
contains conclusions and future work.

II. RELATED WORK

Research has improved the facial expression recognition
(FER) algorithm and model performance in the last decade.
Table 1 summarises the performance of previous research on
FER. Yu and Bhamu [5] first attempted to design a FER
algorithm that learns features without hand-crafting. Jabid et
al. [6] and Yoshihiro and Omori [7] improved the algorithm
and obtained higher accuracy on the same dataset (i.e.,
JAFFE) by 90.1% and 95.3%, respectively. The JAFFE
dataset is small, as it only contains 213 images. Researchers,
therefore, attempted to develop new FER algorithms on
large-scale datasets such as the Extended Cohn-Kanade
(CK+), comprising 593 images. Shan et al. [8] conducted
initial work on the CK+ dataset, and they achieved an
accuracy of 95.1%. Mehendale [9] and Breuer and Kimmel
[10] improved accuracy to 96% and 98.6%, respectively. The

FER-2013 dataset is the most challenging dataset to apply
the FER algorithm since it contains 35,887 images.
Goodfellow et al. [11] initially set a baseline accuracy of
68% on the FER-2013 dataset. In 2018, Saeed et al. [12]
attempted to apply both the Histograms of Oriented
Gradients (HOG) feature extractor and Support Vector
Machine (SVM) to the FER-2013 dataset. Still, they only
achieved 57.7% accuracy, which is worse than the baseline.
Recently, Pramerdorfer and Kampel [13] achieved 72.7%
accuracy on the FER-2013 dataset using CNN with VGG
neural networks.

The neural network's approach has shown promising
performance for FER applications. The method, however,
requires the processing power of a high-performance
computer. To allow for portability, researchers implemented
the FER applications on embedded devices. Sun and An [14]
developed a FER system on Linux using HMM as a
framework running on an Intel embedded processor,
PXA270 and demonstrated satisfactory accuracy.
Turabzadeh et al. [15] built a real-time emotion state
detection system on FPGA. Loza-Álvarez [16] developed a
CNN for FER and applied it to an assistant humanoid robot
running on a Raspberry Pi 3.

TABLE 1. A summary of the performance of previous research done on
FER based on 3 standard datasets namely, JAFFE, CK+, and FER-2013.

Algorithm Accuracy (%)
Dataset Tested

Gabor Filter + SVM [5] 80.9 JAFFE
LBP [6] 90.1 (213 images)
CNN + SVM [7] 95.3
LBP + SVM [8] 95.1 CK+
CNN [9] 96.0 (593 images)
CNN [10] 98.6
Human Accuracy [11] 68.0 FER-2013
HoG + SVM [12] 57.7 (35,887 images)
CNN with VGG [13] 72.7

CNN-based deep learning models achieve the highest

accuracy when benchmarked across all the different FER
datasets. Moreover, these models provide feature extraction
and image classification in a single step compared to feature
extraction like HOG or LBP combined with image
classification algorithms like SVM or KNN. In image
classification applications, hybrid models using a
combination of CNN with KNN or the SVM classifier
achieved slightly higher accuracy than the standard CNN
models [20, 21, 22, 23]. According to the literature we
examined, researchers have not applied this approach to
FER, and there is little work regarding embedded devices.
Additionally, existing works' low accuracy for the FER-2013
dataset illustrates room for accuracy improvement. We
present a lightweight approach that runs efficiently and
attains higher accuracy on the Raspberry Pi.

III. METHODOLOGY

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

We outline the design methodology we used to develop the
hybrid CNN-KNN FER model. Furthermore, we explain the
methods to develop the FER system with acceptable
accuracy and performance on embedded devices.

Subsection A describes the design technique and steps
involved in developing the hybrid CNN-KNN model. KNN
is thought to be merged with CNN since it is simple and easy
to use, potentially conducting the training phase quickly and
at no cost [24]. Subsection B provides a high-level summary
of our suggested FER technique. Finally, Section C describes
the FER dataset that was utilized for training.

 A. DESIGN PROCEDURE
The steps to design the FER system are:

(i) Determine the features needed for the FER
system.

(ii) Select and prepare the FER dataset.
(iii) Design and develop a CNN-KNN model for

FER.
(iv) Code and train the model with the dataset on

TensorFlow using Google Colab.
(v) Evaluate the accuracy of the model.
(vi) Convert the model to TensorFlow lite for

Raspberry Pi.
(vii) Develop and code pre-processing image

methods for real-time webcam video on
Raspberry Pi.

(viii) Test performance of FER in terms of
inferencing time on the Raspberry Pi.

B. FEATURES
The features of the FER system are:

● Identify seven expressions: angry, disgust, happy,
sad, fear, surprise, and neutral.

● Training and evaluation were done on the FER-
2013 dataset.

● CNN model for feature extraction and KNN for
expression recognition.

● On the Raspberry Pi, a real-time FER programme
with a webcam.

C. FER SYSTEM ARCHITECTURE

Fig. 1 shows the system consists of the webcam as input, a
Raspberry Pi 4 controlling the FER system, and a display
monitor to show the predicted expression results. We chose
the Raspberry Pi 4 because it supports TensorFlow, which is

inexpensive and has sufficient computing power for the
neural network model.
The development and research of this system consist of four
parts:

● Facial expression dataset
● Image pre-processing
● CNN model for feature extraction
● KNN classifier for expression recognition

1) FACIAL EXPRESSION DATASET
We trained the CNN-KNN model using 35,887 static
grayscale images from the FER-2013 dataset [19]. The
dataset contains seven facial expressions we collected from
the real world with various faces of different ages and facial
orientations. The size of each image is 48 pixels × 48 pixels.
Table 2 shows the distribution of the training images in the
FER-2013 dataset. Naturally, the distribution of images
varies. The happy expression has the highest number with
8110 images, and the disgust expression has the lowest
number with 492 images. The happy expression has the most
images in the training dataset, with 25.11 percent of the
distribution number.

In contrast, the disgust expression has the fewest images,
with 1.52 percent of the distribution number. Table 3 shows
the distribution of testing images for evaluating the CNN-
KNN model. Similar to the training data, the happy
expression has the highest number of images available in the
test set with 24.49 percent of the distribution number. The
disgust expression has the lowest percentage in the test set
with only 1.53 percent. In conclusion, both the train and test
distributions are similar. Fig. 2 shows sample images from
the FER-2013 dataset. We chose this dataset because it has
the most images for all appropriate facial expressions, and it
provides labelled grayscale images with cropped faces.
Furthermore, the FER-2013 dataset is publicly available with
various models for comparison. The dataset images also
represent realistic conditions with variations in age, race, and
pose.

Artificially modifying the current images can increase
the dataset for training using the image augmentation
technique. In image augmentation, one can create new
images for the training dataset from the original dataset by
applying image flipping, rotation, scaling, or adding noise to
the original image in the dataset.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

FIGURE 1. FER System Overview.

FIGURE 2. Sample Images from FER-2013 Dataset.

TABLE 2. Distribution of Training Images in FER-2013 Dataset.

Expression Number of Images % of distribution

Angry 4462 13.82%

Disgust 492 1.52%
Happy 8110 25.11%

Sad 5483 16.98%
Fear 4593 14.22%

Surprise 3586 11.10%
Neutral 5572 17.25%

2) IMAGE PRE-PROCESSING
As part of the image pre-processing for this study, we
converted the frames captured with a webcam connected to
the Raspberry Pi from RGB to grayscale, as shown in Fig. 3.
The Haar-Cascade classifier, chosen for its low computing
cost and reasonable accuracy, next detected the faces. We
then cropped and resized the face. Python's OpenCV library

implemented the Haar-Cascade classifier and performed the
rescaling, while Python Imaging Library (PIL) converted
the image to grayscale. Minimal pre-processing ensures real-
time capability. We performed all of the image pre-
processing on the Raspberry Pi. The dataset is used as it is
without any augmentation process to balance the data

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

because we aim to see the behaviour of the proposed method
on this imbalanced dataset.
TABLE 3. Distribution of Testing Images in FER-2013 Dataset.

Expression Number of Images % of distribution

Angry 491 13.68%

Disgust 55 1.53%
Happy 879 24.49%

Sad 594 16.55%
Fear 528 14.71%

Surprise 416 11.59%
Neutral 626 17.44%

3) FEATURE EXTRACTION AND CLASSIFICATION
In the CNN model for FER, feature extraction derived
important information from an image, differentiating
between expressions. Convolutional layers, pooling layers,
and activation functions performed feature extraction. KNN
classifier is used for expression recognition based on the
features extracted from CNN.

We chose CNN as the algorithm for feature extraction
from the literature review of FER systems because it
provides the best accuracy. Since no FER dataset with
millions of images exists, training on a limited dataset might
not yield high accuracy. Thus, transfer learning solves the
problem of insufficient training samples while maintaining
accuracy.

The CNN model for transfer learning is the EfficientNet
Model. EfficientNet has a reputation for achieving high
accuracy with minimal parameters and FLOPS (Floating

Point Operations Per Second). It is suitable for use with the
Raspberry Pi, which has limited processing power. We
implemented transfer learning using the learned weights of
EfficientNet from the ImageNet dataset since both FER-
2013, and the ImageNet are image classification datasets.

Inverted Residual Block (MBConv), like MobileNetV2,
is the building block in EfficientNet. Unlike traditional
CNNs, which involve manual fine-tuning of three
dimensions: number of layers (depth scaling), number of
channels (width scaling), and image size (resolution scaling),
EfficientNet uses the model compound scaling process to
scale up the CNN. Moreover, EfficientNet uses a Swish
activation function differing from the normal ReLU function
found in the conventional CNN model. The Swish function
is a multiplication of a linear and a sigmoid activation [18].
Table 4 shows the EfficientNet CNN topology. The input
image size (48 x 48) is resized to the standard CNN input
layer (224 x 224), which are standard practice for varying
input data size [25-27].

The CNN performed the feature extraction on the input
images in various stages. In CNN's feature extraction, the
architecture consisted of 7 inverted residual blocks
(MBConv) and two residual blocks (Conv). Fig. 4 and Table
4 show a complete workflow of MBConv1, k3x3, and
MBConv6, k3x3 block. Both MBConv1, k3x3, and
MBConv6, k3x3 use depthwise convolution, which
integrates a kernel size 3x3 with a stride size of s. Batch
Normalization, activation, and convolution are included in
these two blocks, which have a 1x1 kernel size. The classifier
and the expression prediction are the two stages of the KNN
classification. The KNN took the place of the Softmax and
the traditional pooling layer in the final image categorization.

FIGURE 3. Steps for Image Pre-processing.

TABLE 4. EfficientNet-B0 CNN Topology.

Layer Size Channels Number of
Layers

Input layer 224 x 224 x 3 3 1
Conv3x3 224 x 224 x 3 32 1
MBConv1, 3x3 112 x 112 16 1
MBConv6, 3x3 112 x 112 24 2
MBConv6, 5x5 56 x 56 40 2
MBConv6, 5x5 28 x 28 80 3
MBConv6, 5x5 28 x 28 112 3
MBConv6, 5x5 14 x 14 192 4
MBConv6, 5x5 7 x 7 320 1
Conv1x1 7 x 7 1280 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

Pooling, dropout,
Softmax layer - - 1

KNN is a suitable algorithm for multiclass classification
problems. Hence, we proposed a hybrid CNN-KNN model,
as KNN provides better accuracy as a classifier, especially in
a noisy environment [17]. Since researchers have not
evaluated the hybrid CNN-KNN model in the FER
framework, we use this hybrid model to improve accuracy in
the FER-2013 dataset. In the Hybrid CNN-KNN model, the
KNN classifier replaced the pooling and Softmat later at the
output of EfficientNet.

FIGURE 4. Proposed CNN-KNN Model.

4) MODEL TRAINING AND EVALUATION

We used Python to build the FER model since Python
supports Raspberry Pi and most deep learning frameworks.
We used TensorFlow as the deep learning framework since
it is the most popular framework. Moreover, it has a lite
version (TensorFlow Lite) to support mobile and edge
devices like Raspberry Pi. The TensorFlow Lite model also
performs better than the regular TensorFlow model.

Our group used Google Colab notebooks for training and
evaluation, and we executed these notebooks in the browser

using Google's cloud server. Google Colab is free and
utilizes Google's GPU and TPU for training.

Investigators can reuse weights learned, and they can
unfreeze some layers of the CNN to perform training, thanks
to the use of transfer learning to develop the FER system.
Adam optimizer, an adaptive learning rate method for
stochastic gradient descent, accomplishes the training.
Furthermore, we used a batch size of 32 and a maximum of
100 epochs. In KNN training, we used the default k value of
5 and defaulted Euclidean distance for classification. After
that, the optimizer will do the hyperparameter tuning to
determine the best k value and distance metric to be used.

To evaluate the training, we used the Stratified k-fold
Cross-Validation method with a k-value of 5. The value 5 is
considered based on our trial-and-error approach. Several k
values are considered 1, 2, 3, 4, 5, 7 and 10. However, there
is no significant difference when the value is over 5;
therefore, 5 is considered. Cross-validation provides robust
estimates of the variance of the training data. A confusion
matrix (as shown in Fig. 5), averaged to obtain the FER
system's accuracy, evaluated each class's accuracy (as shown
in Fig. 5). We compared our model's accuracy to other
models (shown in Table 5) trained on the FER-2013 dataset.
Despite deploying the hybrid CNN-KNN model on the
Raspberry Pi hardware with very limited processing power,
low memory capacity, and small storage capacity, we
achieved similar accuracy to the state-of-the-art's Ensemble
of 8 CNN model with X time speed up of inference time.

Predicted class

Positive Negative

Actual
class

Positive True
Positive (TP)

False
Negative (FN)

TP + FN
Actual total positives

Negative False
Positive (FP)

True
Negative (TN)

FP + TN
Actual total negatives

TP + FP
Predicted
total
positives

FN + TN
Predicted
total
negatives

Accuracy
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

FIGURE 5. Sample confusion matrix.

TABLE 5. Comparison of Facial Expression Recognition Model for FER-
2013 Dataset.

Algorithm Accuracy (%)

Proposed Method 75.26
Ensemble of 8 CNN [13] 75.20
CNN with VGG [13] 72.70
HoG + SVM [12] 57.70
Human Accuracy [11] 68.0

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

Other evaluation methods for the CNN models are
sensitivity, specificity, and F1-Score, calculated based on the
formulas below:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 (1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 (2)

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 0.5 ∗ (𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹)
 (3)

After training, we fine-tuned the deep learning model to

determine the best accuracy, and TensorFlow provided
model evaluation. We translated the TensorFlow model to
TensorFlow Lite and copied it to a Raspberry Pi.
Additionally, we used inference time, the time it takes the
deep learning algorithm to process the image and make
predictions, as an evaluation metric. The FER system
requires a shorter inferencing time to operate in real-time.
The system operated on a Raspberry Pi 4 using a webcam as
input.

IV. RESULTS AND DISCUSSION
We present the results and discussions regarding the

training and implementation of the hybrid CNN-KNN FER
model. Additionally, we present experimental results to
improve the accuracy during the training of the FER model.
We then perform optimization of the parameters of the
model. Finally, we present the model's final performance
regarding the accuracy, sensitivity, specificity, and inference
time.

A. Training and Evaluation of CNN Model / Image Pre-
Processing and Data Augmentation
Our group executed the training and evaluation of the CNN
model on the Google Colab platform. TensorFlow 2.4 on
Python 3.6 and Nvidia V100 GPU accelerated the training.
Moreover, Stratified 5-fold Cross-Validation validated all
training. Stratified 5-fold Cross-Validation ran two times,
and it recorded the highest accuracy from the two runs.
Before training the CNN model, image pre-processing
resized the images to the required shape, while data
augmentation techniques increased the sample size. Table 6
shows the data augmentation methods and rescaling used to
ensure images have input range from -1.0 to 1.0. The
ImageDataGenerator class in the Keras library performed the
data augmentation and image pre-processing.
TABLE 6. Settings for Data Augmentation and Image Pre-processing for
Keras ImageDataGenerator.

Settings Value

Rescale (1/127.5) – 1
Rotation Range 10
Shear Range 0.2
Zoom Range 0.2
Fill Mode Reflect

Brightness Range 0.5 to 1.5
Horizontal Flip True
Data Format Channels_last

We used EfficientNet as the model for transfer learning.

It has several versions with different parameters, and it
supports different usages. The number of trainable weights
can affect the accuracy and inference time of the model. We
used EfficientNet-Lite L0-L4 models in this FER application
instead of the full EfficientNet B0-B7 models as the
EfficientNet-Lite is optimized for edge devices.
EfficientNet-Lite removes squeeze-and-excitation networks,
and it replaces swish activation functions with ReLU6
activation to support the quantization needed for edge
devices.

EfficientNet-Lite models train on the FER-2013 dataset
with images resized to the required size of 224x224. Fig. 6
demonstrates that each model uses the same architecture.
Furthermore, we tested all models using the same settings in
Table 7 with the same image pre-processing method in Table
6. Table 8 compares the test accuracy of the 3589 test images
and inference time on Colab.

FIGURE 6. Network for EfficientNet-Lite Model Experiment.

TABLE 7. Settings Used for EfficientNet-Lite Models.

Parameters Value

Epoch 100
Batch Size 32
Learning Rate 0.01
Drop Rate 0.6
Optimiser Adam
Loss Function Categorical Cross Entropy

EarlyStopper stop training if validation accuracy stops
improving for 10 epochs

TABLE 8. Performance of EfficientNet-Lite Models.

Efficient
Net

Model

Number of
weights

Test
Accuracy

(%)

Inference
Time on

Colab (ms)

L0 3,421,991 67.79 540.9
L1 4,198,311 67.79 701.1
L2 4,820,039 68.74 771.3
L3 6,925,063 69.32 1133.1
L4 3,421,991 67.79 540.9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

From Table 8, the EfficientNet-Lite L3 model has the best
test accuracy, but its drawback is a high inference time. Since
the difference in accuracy between models is minimal, we
selected the L0 model to have the fastest inference time. The
EfficientNet-Lite L0 model provides a test accuracy of
67.79%, and it has the fastest inference time of 540.9ms. It
also has the least number of weights to train the models.

In Fig. 7, the accuracy for the validation set stabilizes at
five epochs. One can see overfitting after this point. 16
epochs provide the best accuracy. Moreover, the validation
accuracy starts higher than the training accuracy, indicating
this test data consists of "easier" examples than the train set.
Fig. 8 also illustrates the model loss with increasing epochs.
We observed the train losses steadily decrease due to the
overfitting, while the validation loss suddenly increases at
epoch 14.

FIGURE 7. EfficientNet-Lite L0 Training and Validation Accuracy vs.
Epoch.

FIGURE 8. EfficientNet-Lite L0 Training and Validation Loss vs. Epoch.

With the FER-2013 dataset as the only training data, the

maximum test accuracy we achieved with the EfficientNet-
Lite L0 model was 67.79%. Investigators can increase the
number of training images to improve accuracy. As a result,
we supplemented the FER-2013 training dataset with
additional FER training data from the JAFFE and KDEF
databases. The updated model training distribution is shown
in Table 9. The testing dataset for FER was kept the same as
the original FER-2013 dataset for benchmarking purposes.
With the additional training data and the same setup as Table

7, the L0 model's test accuracy increased from 67.79% to
69.21%.
TABLE 9. Distribution of FER Dataset with Extra Training Images from
JAFFE And KDEF.

Expression

Number of
training

images with
extra

training data

Number of
training
images

(original
FER-2013
dataset)

Number of
test images

(original
FER-2013

dataset

angry 4873 4462 491
disgust 1438 492 55
happy 9438 8110 879

sad 6286 5483 594
fear 4887 4593 528

surprise 4304 3586 416
neutral 7062 5572 626

 From Fig. 9, the Fully Connected layer for classification

has a Global Average Pooling layer, a Dropout layer, and a
Dense layer with Softmax activation function to recognize
expressions. To improve accuracy and prevent overfitting,
we explored a deeper Fully Connected layer combined with
Dropout layers, the Dense layer, and the Batch
Normalization layer.

In Fig. 10, one sees overfitting as validation loss starts to
climb higher than training loss at the 5th epoch. We
increased the Dropout layer's drop rate to prevent overfitting,
and a few Dropout layers were used. The drop rate of the
Dropout layer is the probability a node is enabled for weight
optimization during training. The Batch Normalization layer
helps standardize the inputs, reduce the generalization error,
and improve the training speed .

No correct method exists to determine the best network
design. We built the Fully Connected layer based on trial and
error from the existing CNN model's Fully Connected layer
designs. Although the KNN classifier replaced the Fully
Connected layer in the hybrid FER model, we had to
optimize the KNN classifier to improve the weight training
in the EfficientNet-Lite L0 model. We tested the Fully
Connected layer designs with the same settings as Table 7
and the extra training data. Fig. 11 shows the final design of
the network with the best accuracy. This model improved
test accuracy from 69.21% to 71.05%. Appendix A details
the full architecture of the EfficientNet-Lite L0 model.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

FIGURE 9. Design of Fully Connected Layer.

FIGURE 10. L0 with Fully Connected Layer Training and Validation
Accuracy vs Epoch.

FIGURE 11. L0 with Fully Connected Layer Training and Validation Loss
vs Epoch.

In CNN, the loss function compares the current model's
error to the training result by calculating weights' errors. The
function minimizes the error of the model as much as
possible.

We tested the model from Fig. 11 with different loss
functions with default parameters, and Table 11 shows the
test accuracy of each loss function. Focal loss and CEFL2
loss are new loss functions to improve the imbalanced class
datasets. The Adam optimizer uses the same settings as
Table 11 to test each loss function. The system's accuracy
has improved significantly as a result of the design change,
as seen in Fig. 12. With these enhancements, we were able
to alleviate the problem of overfitting. Furthermore, we
observed a slight improvement in accuracy, as both training
and validation accuracies are similar. Finally, we observed a
consistent improvement at the 35th epoch with more than
69% accuracy.

 Fig. 13 shows the training and validation loss with Cross-
Entropy vs epochs. Based on Table 12, this model's best loss
function is the CEFL2 loss, which improved test accuracy to
71.89%. The CEFL2 loss function is:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 = −

(1− 𝑝𝑝)2

(1− 𝑝𝑝)2 + 𝑝𝑝2
 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 −

𝑝𝑝2

(1 − 𝑝𝑝)2 + 𝑝𝑝2

𝑙𝑙𝑙𝑙𝑙𝑙 (1− 𝑝𝑝)𝛾𝛾𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝
(5)

where p is the ground truth output from the model and
hyperparameter, 𝛾𝛾 = 2.

TABLE 10. Comparison of Test Accuracy with Different Loss Function.

Loss Function Test Accuracy
(%)

Cross Entropy Loss 71.05
Kullback Leibler Divergence Loss 70.52
Focal Loss 69.96
CEFL2 Loss 71.89

The optimizer calculates and updates the weights in the
model based on the loss function output. Table 11 uses
CEFL2 loss as the loss function to show the test accuracy
compared to different optimizes with default parameters.
The best optimizer for this FER model is the Adam
optimizer, which produced an accuracy of 71.89%.

TABLE 11. Comparison of Test Accuracy with Different Loss Function.

Optimizer Test Accuracy
(%)

Adam 71.89
RMSprop 68.77
SGD 71.61

We used the optimizer's learning rate to set the number of

updates the weights receive during the model's training. A
high learning rate will reduce the training loss faster, but this
high rate may cause a model to converge to a less than
optimal solution. A low learning rate may require

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

considerable time to train along with a large number of
epochs.

For the experiment, we executed training with a learning
rate reducer. It reduced the learning rate once it neared the
optimal solution for further improvement. The Adam
optimizer tested the learning rate from 0.0001 to 0.1 with the
CEFL2 loss function. Based on Table 12, the 0.001 learning
rate results in better overall accuracy and finishes at epoch
40. Moreover, Fig. 11 shows the model's training accuracy
and validation accuracy steadily increase up to 25 epochs.

Conversely, the validation accuracy increases until ten
epochs before it becomes stagnant. Like previous
observations, the validation accuracy starts higher than the
training accuracy, possibly indicating that the test data
consist of "easier" examples than the training set. The
validation accuracy surpasses 70% at 10 epochs and then
fluctuates after this point.

TABLE 12. Comparison of Test Accuracy with Different Learning Rate.

Loss Function Test Accuracy
(%)

0.0001 72.95
0.001 74.31
0.01 71.89
0.1 24.49

This FER model's test and training dataset have an

imbalanced class where some expressions are lower than
others. Including class, weights helped with the imbalanced
FER-2013 training dataset, which had fewer samples for
certain expressions, like disgust. Table 13 shows the
confusion matrix of the model without class weights used in
the training process.

FIGURE 13. Model Training and Validation Loss vs Epoch for 0.001
Learning Rate.

Fig. 12 demonstrates that overfitting is a problem of this
model, as validation loss becomes higher than training loss
at the 10th epoch. We used class weights during training to
solve this problem. The values for class weight are shown in
Table 14. With Adam optimizer and a learning rate of 0.001,
we tested with extra training data and CEFL2 loss. We
examined the performance of the dataset with the uneven
distribution using F1-Score. The F1-Score assesses the
sensitivity-to-recall ratio. The values for class weight are
shown in Table 14. With Adam optimizer and a learning rate
of 0.001, we tested with extra training data and CEFL2 loss.
We examined the performance of the dataset with the uneven
distribution using F1-Score. The F1-Score assesses the
sensitivity-to-recall ratio. The values for class weight are
shown in Table 14. With Adam optimizer and a learning rate
of 0.001, we tested with extra training data and CEFL2 loss.
We examined the performance of the dataset with the uneven
distribution using F1-Score. The F1-Score assesses the
sensitivity-to-recall ratio. We calculated F1-Score for each
expression and used the weighted-average F1-Score for
comparison.

FIGURE 12. Model Training and Validation Accuracy vs Epoch for 0.001 Learning Rate.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

TABLE 13. CNN Model Confusion Matrix on Test Dataset without Class Weight.

Predicted

Actual

Angry Disgust Fear Happy Neutral Sad Surprise

Angry 329 7 42 11 50 44 8

Disgust 9 38 5 1 1 1 0

Fear 44 2 282 23 51 80 46

Happy 9 0 14 800 27 11 18

Neutral 28 1 19 24 492 52 10

Sad 54 0 47 21 90 377 5

Surprise 5 0 25 17 15 5 349

TABLE 14. Value of Class Weights for Each Expression.

Expression Class Weights

Angry 7.8822
Disgust 26.7656

Fear 7.9424
Happy 4.0596
Neutral 5.3891

Sad 6.1907
Surprise 8.7535

TABLE 15. CNN Model Confusion Matrix on Test Dataset with Class Weight.

Predicted

Actual

 Angry Disgust Fear Happy Neutral Sad Surprise

Angry 334 3 34 13 49 56 2

Disgust 8 40 2 2 1 1 1

Fear 43 2 299 16 50 87 31

Happy 10 1 11 802 27 15 13

Neutral 21 1 18 32 479 69 6

Sad 40 5 46 19 93 385 6

Surprise 7 0 32 14 13 9 341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

TABLE 16. Performance Evaluation on Class Weights.

Performance
Without Class

Weight
With Class

Weight
Test Accuracy 74.31% 74.67%

F1-Score 0.7402 0.7456

Table 16 shows the performance of test accuracy and

weighted average in the F1-Score based metric. The test
accuracy score improved from 74.31% without class weight
to 74.67% with class weight added. Moreover, when we
added the class weights, the weighted-average F1-Score
improved from 0.7402 to 0.7456. Fig. 14 shows the
validation loss does not start to overfit until it reaches higher
validation accuracy.

The final CNN Model, based on EfficientNet-Lite L0, has
a test accuracy of 74.67%. Table 15 shows the confusion
matrix for the final CNN model. Table 17 shows the settings
we used to achieve the accuracy of 74.67% from the results
of the experiments. Table 18 shows the accuracy that each
fold in the 5-fold Cross-Validation achieved. Each fold uses
38288 images for training and validation. The inference time
for the CNN model in Colab is 716.2 ms.

FIGURE 14. CNN Model with Class Weight Training and Validation
Accuracy vs Epoch.

FIGURE 15. CNN Model with Class Weight Training and Validation Loss
vs Epoch.

TABLE 17. Final Settings of Hyperparameters for CNN Model.

Parameter Value

Dataset used FER-2013 dataset with extra training
data from JAFFE and KDEF

Epoch 100
Batch Size 32
Learning Rate 0.001
Dropout rate 0.7 (Dropout layer 1) & 0.6 (Dropout

layer 2)
Optimiser Adam
Class Weights True
Loss function CEFL2 loss
Early Stopper Stop training if validation accuracy

stops improving for ten epochs

LR Reducer
Reduce learning rate by a factor of 0.1
once validation accuracy stops
improving for 10 epochs

TABLE 18. Test Accuracy for 5-fold Cross-Validation.

Fold Test Accuracy (%)

1 74.67
2 73.64
3 73.45
4 74.03
5 74.17

TABLE 19. Performance evaluation of the final CNN model.

PERFORMANCE EVALUATION OF THE FINAL CNN MODEL.

Performance Value

Test Accuracy 74.67%
Weighted-average Sensitivity 0.7467
Weighted-average Specificity 0.9375
Weighted-average F1-Score 0.7456

Table 19 shows the final CNN Model, based on

EfficientNet-Lite L0. The CNN model has 74.67% accuracy,
still lower than the benchmark of 75.2%. We converted the
CNN model to the TensorFlow Lite Model, which is
optimized for edge devices like Raspberry Pi. Post-training
integer quantization optimizes the TensorFlow Lite model,
reducing the model size by 75% with a trade-off of lower test
accuracy.

Table 20 further shows a performance comparison of
TensorFlow and TensorFlow Lite. The TensorFlow has a
0.17% improvement of accuracy compared to the
TensorFlow Lite. However, the TensorFlow Lite has a 51x
faster inference time compared to the standard TensorFlow
on the Raspberry Pi. While achieving a remarkable
improvement in inference time, a small reduction in test
accuracy is indispensable for a model running on mobile
devices.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

TABLE 20. Comparison of Tensorflow Vs Tensorflow Lite Models.

Model Test Accuracy (%) Inference Time on
Raspberry Pi (ms)

TensorFlow 74.67 326.91
TensorFlow Lite 74.50 6.39

B. TRAINING AND EVALUATION OF KNN CLASSIFIER
We performed training of the KNN classifier on Google

Colab with TPU. Fig. 16 demonstrates the removal of parts
of the Fully Connected layer to train the KNN classifier. Our
group froze the weights of the CNN model to generate
features like training input for the KNN classifier. We then
used the same training and testing data to train the KNN
classifier. Furthermore, we used the TensorFlow Lite model
with quantization for the CNN. After generating features
from the CNN model, training produced a standard scaler to
scale the feature input of the KNN classifier in the range 0 to
1. We tested the KNN distance functions to find the best
KNN distance function and optimal K value. Table 21
compares test accuracy to a variety of other types of distance
functions. Euclidean distance with a k-value of 17 is the
KNN distance function with the highest test accuracy,
improving the model's accuracy from 74.67 percent to 75.26
percent. Manhattan distance has the largest k-value of the
KNN distance function, with a value of 24, achieving 75.15
percent accuracy. The lowest k-value of the KNN distance

function is Canberra distance, which also produces a good
result with 75.20% accuracy.

FIGURE 16. CNN Model with Weights Frozen to Generate KNN

Training Input.
TABLE 21. Comparison of Test Accuracy with different KNN Distance
Function.

KNN Distance
Function Test Accuracy (%) k-Value

Euclidean 75.26 17
Manhattan 75.15 24
Chebyshev 74.14 12
Hamming 74.76 13
Canberra 75.20 7

Braycurtis 74.95 22

TABLE 22. CNN-KNN FER Model Confusion Matrix.

 Predicted

Actual

 Angry Disgust Fear Happy Neutral Sad Surprise

Angry 345 1 28 11 47 56 3

Disgust 8 40 2 2 1 1 1

Fear 43 0 297 15 49 94 30

Happy 11 0 8 803 30 16 11

Neutral 21 0 18 27 482 71 7

Sad 37 4 42 17 95 392 7

Surprise 6 0 32 15 12 9 342

The final hybrid CNN-KNN model in Fig. 17 consists of
the EfficientNet-Lite L0 model from transfer learning, a
Global Average Pooling layer, and a KNN classifier
Euclidean distance algorithm. Table 22 shows the confusion
matrix for the hybrid CNN-KNN FER model. Table 23
shows the final parameters for the hybrid CNN-KNN Model.

Table 24 demonstrates that the test accuracy of the hybrid
CNN-KNN FER model improved by 0.6% compared to
using Softmax as the output layer. Using KNN, the proposed

model's accuracy was 0.1% higher than the state-of-the-art
FER model, which uses an ensemble of 8 CNN models [13]
TABLE 23. Final Settings of Parameters for CNN-KNN Model.

Parameters Value

Dataset used FER-2013 dataset with extra
training data from JAFFE
and KDEF

Epoch 100
Batch Size 32

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

Learning Rate 0.001
Dropout Rate 0.7 (Dropout layer 1) & 0.6

(Dropout layer 2)
Optimiser Adam
Class Weights True
Loss Function CEFL2 loss
Early Stopper Stop training if validation

accuracy stops improving
for 10 epochs

LR Reducer Reduce learning rate by a

factor of 0.1 once validation
accuracy stops improving
for 10 epochs

KNN Distance Function Euclidean
KNN k-value 17

TABLE 24. Performance Evaluation of The Hybrid CNN-KNN FER Model.

Parameters Value

Test Accuracy 75.26%
Weighted -average Sensitivity 0.7526
Weighted-average Specificity 0.9393
Test Accuracy 75.26%
Weighted-average F1-Score 0.7518

TABLE 25. Comparison of Tensorflow, TensorFlow Lite, and our KNN +
TensorFlow Lite Models.

Model Test Accuracy (%)

TensorFlow 74.67
TensorFlow Lite 74.50
KNN + TensorFlow Lite 75.26

FIGURE 17. Hybrid CNN-KNN Model.

C. ANALYSIS ON RASPBERRY PI

Fig. 18 shows the Raspberry Pi FER system. The
Raspberry Pi 4 is connected to the webcam, and the monitor
displays the system's output. A connected Coral USB
Accelerator enhances the inferencing of the TensorFlow Lite
models through the Edge TPU.

Fig. 19 and Fig. 20 show the seven expressions the
Raspberry Pi FER application captures: angry, disgust, fear,
happy, neutral, sad, and surprise. We used the Haar-Cascade

classifier for face detection, and the CNN-KNN model
predicted all the expressions.

Table 25 shows the comparison of Tensorflow,
TensorFlow Lite, and our KNN + TensorFlow Lite
implementations. It can be seen that our KNN + TensorFlow
Lite implementation achieves the best test accuracy of
75.26%.

Table 26 further shows the accuracy comparison for our
proposed hybrid FER model on the Raspberry Pi 4 compared
to the state-of-the-art models. Our proposed hybrid CNN-
KNN model achieves 75.26% accuracy, which is slightly
better than the state-of-the-art Ensemble of 8 CNN with
75.2% accuracy. Moreover, Table 27 compares inference
time for the FER model on the Raspberry Pi 4. Post-training
quantization optimizes the TensorFlow Lite model with the
Softmax output layer. It provides the best inference time
among the models. The proposed CNN-KNN model requires
a longer inference time due to the KNN classifier, but the
inference time is still acceptable.

It is also notable that the performance of our proposed
method is better than the shallow CNN by [25] for the same
dataset (FER2013), including the comparison methods
(AlexNet, HOG+CNN, Xception, VGG-8. FaceLiveNet)
where their accuracy results vary between 61-69%.

TABLE 26. Comparison of Tensorflow, TensorFlow Lite, and our KNN +
TensorFlow Lite Models.

Model Test Accuracy (%)

Proposed Hybrid CNN-KNN
Model

75.26

Ensemble of 8 CNN [13] 75.2
CNN with VGG [13] 72.7
HoG + SVM [12] 57.7
Human Accuracy [11] 68.0

FIGURE 18. Raspberry Pi Setup for Facial Expression Recognition
System.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

TABLE 27. Comparison of CNN Model in terms of Inference Time.

Model Test Accuracy
(%)

Inference time on
Raspberry Pi (ms)

TensorFlow 74.67 326.91
TensorFlow Lite 74.50 6.39
KNN + TensorFlow Lite 75.26 74.15

V. CONCLUSIONS
In conclusion, we have tested a new hybrid CNN-KNN

model for FER. We discussed image pre-processing and data
augmentation techniques. Aside from data augmentation to
increase the sample size, we combined extra training data

from JAFFE and KDEF with the FER-2013 training dataset.
Additionally, we discussed optimizing the Fully Connected
layer, loss function, optimizer, learning rate, class weights,
KNN distance function, and KNN k-value. A hybrid model
using CNN for feature extraction and KNN as the classifier
can improve FER model accuracy on the FER-2013 dataset.
The hybrid CNN-KNN model produced an accuracy of
75.3%, a 0.6% improvement from the CNN model and a
0.1% improvement in accuracy compared to state-of-the-art
FER models. The proposed model has a sensitivity of
0.7526, specificity of 0.9393, and inference time on the
Raspberry Pi 4 is 74.15ms.

FIGURE 19. Output of Facial Expression Recognition System.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

Figure 20. Prediction of Expression from FER System.

Investigators have developed FER systems with different

feature extraction techniques, such as LBP or Gabor Filter,
combined with traditional machine learning like SVM or
KNN and deep learning models like CNN. While many FER
systems on the FER-2013 dataset have good accuracy, the
main goal is improving the existing models and evaluating
the embedded device's performance.

We researched methods to recognize facial expressions
with deep learning models using embedded devices.
Training a hybrid CNN-KNN model for FER, using CNN for
feature extraction and KNN for expression recognition, can
achieve this goal. We based our model on the EfficientNet
model and benchmarked on the FER-2013 dataset. Finally,
we compared the different pre-trained EfficientNet models,
and we selected the most suitable model for the FER.

We have also shown the KNN classifier can improve the
accuracy of the CNN model. Our implementation of the
hybrid model on the Raspberry Pi, with webcam and Coral
USB Accelerator for model inferencing, demonstrated
improved accuracy. The system has a reasonable inference
time of 74.15ms when tested on the Raspberry Pi and test
accuracy of 75.3%, which is a 0.1% improvement on the
state-of-the-art model accuracy and improvement of 0.6%
compared to the CNN model without the KNN classifier.

The proposed FER model produced a reasonable accuracy
and inference time on the Raspberry Pi. Further research on
the proposed CNN-KNN FER model's accuracy can
experiment with more Fully Connected layer designs.
Moreover, further research can try different Batch
Normalization arrangements and Dropout layer designs.
Increasing the number of neurons for the Dense layer in the
Fully Connected layer can improve accuracy. Combining
more FER datasets can create a larger sample size for
training. With limited time to train the model on the Colab
platform, we cannot use more training data as there will be
insufficient time for the training. We can improve the tuning
process of parameters by sweeping through a range of
possible values to find the optimal values, instead of
manually selecting the value to test.

Further research can perform the model's testing and
benchmark on different FER datasets, as the FER-2013
dataset contains a few misclassifications of the images. We
could also discuss on the performance comparison of the
proposed method against the variants of CNN itself such as
Fast-RNN, Faster-RNN, YOLO and SSD. Considering the

Haar-Cascade classifier is used in this application, we could
explore a more sophisticated face detection algorithm limited
to only frontal faces. Since wearing face masks has become
a norm during COVID-19, future work can explore a FER
dataset focusing on features of the eyes.

REFERENCES
[1] J. Panksepp, Affective Neuroscience: The Foundations

of Human and Animal Emotions, USA: Oxford
University Press, Sep. 2004.

[2] CE. Izard, The Psychology of Emotions, New York,
USA: Springer Science & Business Media, Nov. 1991.

[3] P. Ekman, and W. Friesen, Facial Action Coding
System, Volume 1, Consulting Psychologists Press,
1978.

[4] NR. Carlson, Physiology of behavior, USA: Pearson
Education, Feb. 2012.

[5] J. Yu & Bir Bhanu, "Evolutionary feature synthesis for
facial expression recognition," in Pattern Recognition
Letters, Volume 27, Aug. 2006, 1289–1298.

[6] T. Jabid, MH. Kabir, and O. Chae. "Robust facial
expression recognition based on local directional
pattern," ETRI journal, Oct 2010, 32(5):784-94.

[7] Y. Shima and Y. Omori, "Image augmentation for
classifying facial expression images by using deep
neural network pre-trained with object image database,"
in Proceedings of the 3rd International Conference on
Robotics, Control and Automation, Aug 2018, pp. 140-
146.

[8] C. Shan, S. Gong, and PW. McOwan, "Facial expression
recognition based on local binary patterns: A
comprehensive study," in Image and vision Computing,
May 2009, Vol. 27, No. 6, pp. 803-16.

[9] N. Mehendale, "Facial emotion recognition using
convolutional neural networks (FERC)," in SN. Applied
Sciences, Mar 2020, Vol. 2, No. 3, pp. 1-8.

[10] R. Breuer and R. Kimmel, "A deep learning perspective
on the origin of facial expressions," arXiv preprint, May
2017, arXiv:1705.01842.

[11] S. Saeed, J. Baber, M. Bakhtyar, I. Ullah, N. Sheikh, I.
Dad, and AA. Sanjrani, "Empirical evaluation of svm
for facial expression recognition," Int. J. Adv. Comput.
Sci. Appl., Vol. 9, No. 11, pp. 670-3, Nov. 2018.

[12] I. J. Goodfellow, D. Erhan, P. L. Carrier, A. Courville,
M. Mirza, B. Hamner, . . . J. Shawe-Taylor, "Challenges
in Representation Learning: A Report on Three Machine

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

Learning Contests," presented at International
Conference on Neural Information Processing, Nov.
2013, pp. 117-124.

[13] C. Pramerdorfer and M. Kampel, "Facial expression
recognition using convolutional neural networks: state
of the art," arXiv preprint, Dec 2016, arXiv:1612.02903.

[14] Y. Sun and Y. An. "Research on the embedded system
of facial expression recognition based on hmm,"
presented at 2010 The 2nd IEEE International
Conference on Information Management and
Engineering, Chengdu, China, Apr 2010, pp. 727-731.

[15] S. Turabzadeh, H. Meng, RM. Swash, M. Pleva, and J.
Juhar, "Real-time emotional state detection from facial
expression on embedded devices," presented at 2017
Seventh International Conference on Innovative
Computing Technology (INTECH), Luton, UK, Aug
2017, pp. 46-51.

[16] A. Loza-Álvarez, AE. Monroy-Meza, RA. Suárez-
Rivera, GI. Pérez-Soto, LA. Morales-Hernández, and
KA. Camarillo-Gómez, “Facial expressions recognition
with CNN and its application in an assistant humanoid
robot,” presented at 2018 XX Congreso Mexicano de
Robótica (COMRob), Ensenada, Mexico, Sep 2018, pp.
1-6.

[17] AJ. Gallego, A. Pertusa, and J. Calvo-Zaragoza,
"Improving convolutional neural networks' accuracy in
noisy environments using k-nearest neighbors," Applied
Sciences, Valencia, Spain, Nov 2018, Vol. 8, No. 11, pp.
2086.

[18] M. Tan and Q. Le, "Efficientnet: Rethinking model
scaling for convolutional neural networks," in Proc. of
The 36th International Conference on Machine
Learning, PMLR.

[19] FER-2013 Dataset, Accessed on: May 01, 2020.
[Online]. Available:
https://www.kaggle.com/c/challenges-in-
representation-learning-facial-expression-recognition-
challenge/data

[20] B. Srinivas and G. Rao, "A Hybrid CNN-KNN model
for MRI brain tumor classification" in International
Journal of Recent Technology and Engineering
(IJRTE), Vol. 8, No. 2, pp. 20-25.

[21] Khamael Raqim Raheem, Israa Hadi Ali, "Facial
Expression Recognition using Hybrid CNN-SVM
Technique", IJAST, vol. 29, no. 04, pp. 5528 - 5534,
Jun. 2020.

[22] A. Gallego, J. Calvo-Zaragoza and J. R. Rico-Juan,
"Insights Into Efficient k-Nearest Neighbor
Classification With Convolutional Neural Codes," in
IEEE Access, vol. 8, pp. 99312-99326, 2020, doi:
10.1109/ACCESS.2020.2997387.

[23] X. Sun, J. Park, K. Kang and J. Hur, "Novel hybrid
CNN-SVM model for recognition of functional
magnetic resonance images," 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC),
2017, pp. 1001-1006, doi: 10.1109/SMC.2017.8122741.

[24] A. E. Mohamed, "Comparative Study of Four
Supervised Machine Learning Techniques for
Classification," in International Journal of Applied
Science and Technology, vol. 7, no. 2, pp. 5-18.

[25] S. Miao, H. Xu, Z. Han and Y. Zhu, "Recognizing Facial
Expressions Using a Shallow Convolutional Neural
Network," in IEEE Access, vol. 7, pp. 78000-78011,
2019.

[26] L. Zahara, P. Musa, E. Prasetyo Wibowo, I. Karim and
S. Bahri Musa, "The Facial Emotion Recognition (FER-
2013) Dataset for Prediction System of Micro-
Expressions Face Using the Convolutional Neural
Network (CNN) Algorithm based Raspberry Pi," 2020
Fifth International Conference on Informatics and
Computing (ICIC), 2020, pp. 1-9.

[27] K. Shirisha, M. Buddha, "Facial Emotion Detection
Using Convolutional Neural Network," in International
Journal of Scientific & Engineering Research, 2020,
vol. 11, no. 3, pp. 51-54.

MOHD NADHIR AB WAHAB (GS'13-M'21)
is a lecturer at the School of Computer
Sciences, Universiti Sains Malaysia. He
received his B.Eng. (Hons.) Mechatronics
Engineering in 2010 and M.Sc. Mechatronics
Engineering in 2012 from Universiti Malaysia
Perlis. After that, he received his Ph.D. in
Robotics and Automation System in 2017 from
the University of Salford, UK. His main
research interests are mobile robotics, computer
vision, artificial intelligence, optimization,
navigation, and path planning.

ANTHONY TAN ZHEN REN received his
B.Eng. (Hons) Electrical and Electronic
Engineering from INTI International College
Penang in partnership with University of
Bradford, UK in 2017 and M.Sc. Embedded
System Engineering from Universiti Sains
Malaysia in 2021. His main research interests
are artificial intelligence and computer vision.
He is currently working as a product
development engineer at Intel Corporation,
Penang.

AMRIL NAZIR is an Associate Professor at
the College Technological Innovation, Zayed
University, and the Consulting Director / Chief
Architect at CODECOMPASS LLP. He was
formerly a Senior Research Scientist for the
Malaysian R&D institute. His research interests
include Artificial Intelligence (AI), Machine
Learning, Data Science, and Big Data.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3113337, IEEE Access

VOLUME XX, 2017 9

MOHD HALIM MOHD NOOR received the
B.Eng. (Hons.) degree in 2004 and the M.Sc. in
2009. In 2017, he received his Ph.D. degree in
Computer Systems Engineering from the
University of Auckland, New Zealand. He is
currently a Senior Lecturer with the School of
Computer Sciences, Universiti Sains Malaysia.
His research interests include machine learning,
deep learning, computer vision and pervasive
computing.

MUHAMMAD FIRDAUS AKBAR (GS'16-
M'21) received the B.Sc. degree in
communication engineering from the
International Islamic University Malaysia
(IIUM), Malaysia, in 2010 M.Sc. and Ph.D.
degree from the University of Manchester,
Manchester, U.K, in 2012 and 2018,
respectively. From 2010 to 2011, he was with
Motorola Solutions, Penang, Malaysia, as
Research and Development Engineer. From

2012 to 2014, he was an Electrical Engineer with Usains Infotech Sdn Bhd,
Penang, Malaysia. He is currently a Senior Lecturer at Universiti Sains
Malaysia (USM). His current research interests include electromagnetics,
microwave nondestructive testing, microwave sensor and imaging.

AHMAD SUFRIL AZLAN MOHAMED
received the BIT degree (Hons.) from
Multimedia University, Malaysia, the M.Sc.
degree from the University of Manchester, U.K.,
and the Ph.D. degree from the University of
Salford, U.K. He is currently with the School of
Computer Sciences Universiti Sains Malaysia,
Pulau Pinang, Malaysia. His research interests
include image processing, video tracking, facial
recognition, and medical imaging.

	EfficientNet-Lite and Hybrid CNN-KNN Implementation for Facial Expression Recognition on Raspberry Pi
	Recommended Citation
	Author First name, Last name, Institution

	EfficientNet-Lite and Hybrid CNN-KNN Implementation for Facial Expression Recognition on Raspberry Pi

