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Abstract: This paper presents the explicit inverse of a class of seven-diagonal (near) Toeplitz matrices, which
arises in the numerical solutions of nonlinear fourth-order differential equation with a finite difference
method. A non-recurrence explicit inverse formula is derived using the Sherman-Morrison formula. Related
to the fixed-point iteration used to solve the differential equation, we show the positivity of the inverse matrix
and construct an upper bound for the norms of the inverse matrix, which can be used to predict the conver-
gence of the method.

Keywords: seven-diagonal matrices, Toeplitz, exact inverse, upper bound of norm of inverse
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1 Introduction

Many mathematical problems give rise to a system of equations that involves an inversion of a banded Toeplitz
or near Toeplitz matrix. For example, a second-order or fourth-order finite difference approximation to a
second-order differential operator results in a tridiagonal and, respectively, pentadiagonal Toeplitz matrix
or a near Toeplitz matrix after the inclusion of boundary conditions. Inversions of this class of matrices have
been studied extensively, and can be done very efficiently; see, e.g., [1-7]. In addition to the algorithmic de-
velopment, many authors have contributed to the inverse properties of banded Toeplitz and near Toeplitz
matrices, such as exact inverse formulas [8—12], bounds for entries of the inverse matrices, and bounds for
the inverse norm [13]. Examining formulas for determinant of such matrices can be also useful to explore the
existence and uniqueness of solution related to the ordinary or partial differential problems [14-18].

An improved numerical accuracy can be attained via a higher-order approximation, but at the expense
of increased bandwidth of the matrix in the system beyond five diagonals. This increased handwidth not only
increases the computational costs, but also complicates the analysis of the inverse properties. In many cases,
the analysis demands for additional conditions such as diagonal dominance or M-matrix [11, 19, 20]. Exact
inverse formulas, while can probably still be derived, may not be in an appealing form.

Bakytzhan Kurmanbek: Nazarbayev University, Department of Mathematics, 53 Kabanbay Batyr Ave, Nur-Sultan 010000,
Kazakhstan, E-mail: bakytzhan.kurmanbek@nu.edu.kz

Yogi Erlangga: Zayed University, Department of Mathematics, Abu Dhabi Campus, P.O. Box 144534, United Arab Emirates,
E-mail: yogi.erlangga@zu.ac.ae

*Corresponding Author: Yerlan Amanbek: Nazarbayev University, Department of Mathematics, 53 Kabanbay Batyr Ave, Nur-
Sultan 010000, Kazakhstan, E-mail: yerlan.amanbek@nu.edu.kz

8 Open Access. [cOIT2E© 2021 Bakytzhan Kurmanbek et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution
alone 4.0 License.


https://doi.org/10.1515/spma-2021-0148

68 —— Bakytzhan Kurmanbek, Yogi Erlangga, and Yerlan Amanbek DE GRUYTER

In this paper, we shall consider the inverse of n x n seven-diagonal near Toeplitz matrices associated with
a fourth-order finite-difference discretization of the fourth-order differential operator d*/dx*:

a, -a; 12 -1 0 e e e 0
-a1 a, -39 12 -1

12 -39 56 -39 12 -1

-1 12 -39 56 -39 12 -1

An=| o . e e e o |, one )

-1
-39 12

: . . -1 12 -39 a -m
0 0 -1 12 -a; ag

nxn

where ag, ai, a; > 0. The matrix (1) is symmetric, centrosymmetric, nondiagonally dominant, and is not an
M-matrix. The perturbation from the Toeplitz structure at the "corner” of the matrix can be caused by the
inclusion of boundary conditions in the underlying boundary-value problems.

An instance of application that involves (1) is related to the nonlinear boundary-value problem

Elﬂ=f(x u), xe€(0,1)cR @)
dx4 I’ I’ I’ I’

with
u(0) = u'(0) = u(1) =u’'(1) =0, €)

Approximating the derivative by the fourth-order finite difference scheme results in the nonlinear system
Anu = R*Cpif(w), u e R, (4)

where A, is a near Toeplitz matrix of the form of (1), h is the meshsize, and Cg; is a physical constant. Solution
to the nonlinear system (4) can be computed iteratively using a fixed-point method based on the iterands:

Anu’ = HCf@™), =1,2,..., ©

for some initial solution vector u® € R". For some class of the forcing term f, convergence of this method can
be shown to depend on the p-norm of the inverse of Ay, ||Ax||p, where p € {1, 2, co}.
We approximated the fourth-order derivative by utilizing the following finite difference scheme:

d*u 1

W(Xi) ~ W(‘“i—} +12u; 5 = 39u; 1 +56U; — 39U + 12Us0 — Ui3),

where x; = ih and u; = u(x;). We set the boundary condition u(0) = ug = 0. For ghost points(out of domain),
we choose u_; = u; and u_, = u, using central difference scheme based on the boundary condition u’(0) = 0.
The same reasoning applies to cases i = n — 1 and n with the boundary conditions u(1) = u’(1) = 0. For more
details of finite difference method for beam problems, we refer the reader to [21, 22].

In this paper, we first derive an explicit, non-recurrence formula for the inverse of two special cases of
the seven-diagonal matrix (1): (i) the Toeplitz case with ag = 56, a; = 39 and a, = 56, and (ii) with ay = 68,
a, = 40 and a, = 56, which corresponds to the boundary-value problem (2) and (3). The inverse formulas
are used to analyze some properties of the inverse matrices and to construct upper bounds for the norms of
the inverses, in terms of the matrix size n (which is linked to the meshsize h). While it is possible to construct
a bound which is independent of n, an n-dependent bound is desirable as it can be used to predict more
accurately the convergence of the fixed-point method (5) under mesh refinement. We then consider a more
general setting associated with (1), where ag, a;, a; satisfy certain decays in the modulus of the entries of A.
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In contrast with the tridiagonal and pentadiagonal cases, there does not exist a large body of results
on the inverse of seven diagonal (near) Toeplitz matrices. Literature on inverses of sevendiagonal matrices
include [23-25] on algorithm development and [26] on inverse properties. While the class of matrices consid-
ered in this paper is quite narrow, our results are new, helpful in analyzing the convergence of the numerical
recipe (5), and should contribute to the inverse theories of banded Toeplitz matrices.

The paper is organized as follows. After stating some preliminary results in Section 2, we derive the ex-
plicit formula for the Toeplitz matrix and an upper bound for the norms in Section 3. Section 4 is devoted to
the formula for and norms of the inverse of the near Toeplitz matrix. Some numerical results are presented
in Section 5. Section 6 is devoted to the inverse properties with general parameters in the 2 x 2 corner block
of (1). We finish up the paper with concluding remarks in Section 7.

2 Preliminaries

It is well known that a Toeplitz matrix cannot be decomposed into a product of two Toeplitz matrices. Some
classes of Toeplitz matrices however admit a low-rank decomposition of the form

An =BnCn +oUVT, 0cR, (6)

where B, and Cy are (near) Toeplitz, and U and V are n x m matrices, with m < n. Furthermore, if A, is
nonsingular, the inverse matrix A,' can be computed using the Shermann-Morrison-Woodbury formula [27-
29]:
Ayl = Dyt - DA UM VDY, )
where Dy, = BpCn, My = Im + cVI D' U € R™™, and I, is the identity matrix of size m.
As we shall see later, for the seven-diagonal matrices considered in this paper, the above low-rank de-
composition involves the tridiagonal matrix

g§ -1 0 --- O
-1 8
Cn: 0 '.. '.. '-. 0 . (8)
: . . 8 -1
0 -+ 0 -1 8

Some properties of Cy are stated the following lemmas.

Lemma 1. Cj is positive definite, with the inverse C;' = [c;j],i,j = 1,..., ngiven by
-1 YjYn+1-i
Ci,f =
Tn+1

fori=j,and c;j = cj}, fori < j, where

= (r’{ - r’2<) /2V/15, keN, 9)
withry =4++15andr, = 4 — /15.
Proof. The proof can be found in [9]. O

Lemma 2. Let v, be defined as in (9). Then the following holds for any k € N.

(D Y+ -2 = 815

Gi) 4< 1 o g,
Yk
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Proof. SetrX = (4++/15)% = ay + /15 and 5 = (4 - V15)X = a; — 4/15. The parameters a; and v satisfy
the recurrence relations

ay =40 + 1571, 10)

Vi = A1 + 4k

Solving this linear equation system leads to the statement (i).

The (i) part implies ; < 8v;_1, which is the right inequality of the (ii) part. The left inequality of the (ii)
part is proved by induction. For k = 1, v, /~1 = 4. Thus, (ii) holds for k = 1. Suppose (ii) also holds for k = j—1,
i.e., j/7j-1 2 4. For k = j, by utilizing the (i) part in the process,

mzmm=<gl_1>m=8_mz4_

Yj V-1 Y Yj-1 ) Y
O
Lemma3. Foranyi € {1, 2, ..., n}, the following holds
Tn+1-i7%i+1 ~ Tn-i%i = Tn+1 (€8))
Proof. The proof is based on using the definition of ; and the fact that ryr, = 1.
(rn+1—i _ rn+1—i)(ri+1 _ ri+1) _ (rn—i _ rn—i)(ri _ ri)
Tn+1-i%i+1 ~ Vn-i7i = . 2 . éO . 2 ! 2 =
_ R i £l (oSS £ ) ISR 2D £ S 24 (2 e ) _
60
e oo A (4 rh)
60 60
_ T =) _ ~
= 60 = Tn+171 = Tn+1
O
Lemma 4. Let y; be defined as in (9). Then, forany p € N,
u 1
Yk = g('Verl ~ T~ 1), (12)
k=1
u 1
> k= ¢ @i - (0 + D), (13)
k=1
u 1
> K= 75(Bp* + Dpua - Bp* +6p +4)3p - 1), (14)
k=1
P 1
> K= (@ +pripis = (07 +3p” + 4p + 2)p). (15)
k=1

Proof. The proof uses Vieta’s formula and Lemma 2. Since the proof for each relation is similar, we shall show
the proof only for (12) and (13).

14 b k k p p+1 p+1

S-S s (o) s (e

215 2V15 \= 2/15\ n-1  n-1
- D+l P P p+l
= -+ -

12v/15 ! !

1
+ry-11) = g(’Yp+1 - - 1).
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Next,

& k _ & k(rll(_rlzc)_ 1 P kk71 P kk*l
;fyk_z Zm _Zm rlz rl _rzz r2

k=1 k=1 k=1

-t r (i r’{) -1 i r’f)
2V15 k=1 k=1

1 (pr"lJ+2 -+ ~ pré”z -+ + rz)
2v/15 (r1 -1)2 (r-1)2

1
= 36 (p7p+z -Bp+ 1)’Vp+1 +(Gp+ 2)’Yp -(p+ 1)’7})—1) .

In the above derivation, we have used the relation (12) to evaluate derivatives of the sum. The relation (13) is
obtained from the above equation by applying Lemma 2 multiple times. O

Lemma 5. Let v be defined as in (9) and ay, = (4 + v/15)X — 4;/15. Then
Ay — A3 = 30741
is true for any k € N.
Proof. By using the recurrence relations v = ay_; + 47i-1 and ay = 4 — Y-, from (10) we obtain
Vi~ Vk-2 = 2@k-1
Applying this identity to the (k - 2) and (k — 1) term, we have
2(ap = ag-2) = (e = 1) = (her = Me3) = o1 — 271 + a3
Applying Lemma 2 several times to the above equation leads to the statement in the lemma. O

Lemma 6. Forp € {0, 1, oo}, ||Cyl|p < 1/6.

Proof. A proof for general diagonally-dominant symmetric tridiagonal matrices Ty = tril(-1, b, —1) is given
in [30]; see also [12] for alternative bounds. For b > 2,

1 2

HTH||°° = b-2 - rnzj s (16)
b
where ry, = %(b +vV b2 - 4). For Cp, setting b = 8 leads to the bound in the lemma. O

3 The Toeplitz case

In this section, we consider the case where (1) is Toeplitz (ag = 56, a; = 39 and a, = 56). The seven-diagonal
matrix A, can be decomposed into a rank-2 decomposition (6), with o = 1,

6 -4 1 0O -+ =+« 0
4 6 -4 1 4 0 10
-1 0 0
1 -4 6 -4 1 . 0 O 0 0
Bn= 0 0 1U= ;V= ’ (17)
1 -4 6 -4 1 0 0 00
0 -1 0
1 -4 6 -4 o 4) o1/ .
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and with C, given in (8). The matrix B, in the decomposition is nonsingular. The entries of the inverse matrix
B;! is derived in [8] and given for i > j by the formula
m+1-dn+2-0jG+1)

b,"]1 =- 6 Dt D+ 3) [((+1)(-1)(n+3)-i(+2)(n+1)]. (18)

Regarding the matrix By, we have the following lemma
Lemma 7. The matrix B, in (17) is positive definite.

Proof. For any vector x = (x1 ... xn)T € R",

XTBux = 6(x3 + X3 + -+ + X2) = 8(X1X2 + XoX3 + +++ + XnXn_1) + 2(X1X3 + X2 X4 + X3X5 + + + + + Xp_2Xn)
= X2+ (2x1 = 10)% + (X1 = 2X2 + X3)2 + + o+ + (Xpoa — 2Xno1 + Xn)* + (2xn — Xn-1)? + X2

>0,

with equality holding only when x = 0. O

3.1 Exact inverse formula

An explicit formula for A;! can be derived by evaluating the right-hand side of the decomposition (7).
Starting with the first term on the right-hand side, let D" := C;'B," = [d; ], with

ZC bk]
ZC b]k+zclkbk}+zcklbk1

k=j+1 k=i+1
Yk Yn+1- lb + Yk Vn+1- lb -+ ViVk b (19)
Zl Tn+1 kgl Tn+1 Z -k

due to symmetry of B, and Cy,. Furthermore, D;! is centrosymmetric, due to the centrosymmetry of By and
Cil. By using Lemmas 2-5 and after necessary simplifications, we obtain, fori = j,

- Vi Yn+1-i Tn+1-i i
dib = Ity ( + Oy —) , (20)
b 36vn+1 1 (1 (2 Tn+1 (3 Tn+1

where

1
6(n+ Dn+2)(n+3)’

G = %j(j+ 1){( - 3i - 1)n’ + (6] + 6i* — 12i — 4)n* + ((-3i* - 3i + 10)j - 31> + 18i* - 15i - 5)n

n=-

+(2i% - 3i* = 3i + 5)j - 5i° + 12i* - 6i - 2},
1 . . .
G =g+ Djln+1-jn+2-)),
1 . .
G =g+ G+ Dn+1-j).

For the second term on the right-hand side of (7), let M, = [m; ;] € R?*2, From a direct calculation and
the use of Lemmas 2-5 and (20), one can show that

_ _ 11n? +5n 1 2+ 2nyn
=my =1+4diy -dih =1 Lo S 21
i1 = M2 M " 36(n+1)(n+2) " 36vn:1 ( n+2 (21)
_ _ n+4 1 n+mn
= my = 4dyy - dyl = - ( ) 22
M1z = M2y nloEn2 T 98+ 1)(n+2)  18vynn n+2 (22)
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Lemma 8. det(M) > 0.

Proof. Note that 11n?> -9n -8 >9(n> - n-1) > 0 and 36(n + 2)vps1 — (21 = 2)vn > (21 = 2)(yps1 — ) > O.
Furthermore, v,,1 > vn and v,,1 > n. Using these inequalities, for n > 2,

mpp—mpp =1

2

N 11n°-9n-38 . 1 (ﬁ+ _(n—1)(7n—1))
36(n+1)(n+2) 18y \ 2 n+2

11n2-9n-8  an(n+2)+6n+6+36(n+2) vt - (2n - 2)yn N

- 36(n+1)(n+2) " 36(n + 2)yns1 0.

Next, for n > 2, using (22),

_ (14 D0 =) + (61 + 3)yner - 30% - Tn -4
18(n+ 1)(n + 2)yn+1
N (n+1)(ype1 —m) + (n-2)Bn+2) N
18(n+ 1)(n + 2)yp1

mia

0.

Therefore, my; > my; > 0, and hence m?; - m%, > 0. O

By combining the above results and simplifying the expressions for i > j, the explicit formula of the inverse
of Ay can be written as
1

2

4 1
a;j =dij+ 2. =
11~ My,

((m12d1,1j - myydy)adiy - diyoy) + (Miadys - mydy 5)(4d;; - dié)) . @)
where the coefficents on the right-hand side are computed using (9), (20), (21) and (22).

Theorem 9. Ay is positive definite.

Proof. Since Ay is symmetric, the proof is based on Sylvester’s criterion. In this case, we need to show that all
upper left k x k submatrices of A, have positive determinant, k = 1,...,n.Fork=1,..., 6, the determinant
can be shown to be positive via numerical calculation. For k > 7, since the submatrices retain the structure of
An, we only need to show that A, has positive determinant. Using the generalized matrix determinant lemma,
with Dy = By Cn,

det(A,) = det(Dn + UVT) = det(I, + VID ' U) det(Dy) = det(M) det(Bn) det(Cy).

Positive definiteness of B, and C, (Lemmas 7 and 1, respectively) implies det(B,) > 0 and det(C,) > 0. To-
gether with Lemma 8, we have det(A,) > 0, which proves the theorem. O

3.2 Bound of norms of inverse

In this section we derive a bound of ||A;!||p, for p = 1, 2, co. The result is summarized in Theorem 10 below:

Theorem 10. Let A, be given as in (1), with ag = 56 and a; = 39. Then the following inequality holds for
p €{1,2,00}:
(n+1)%(n +3)? s (n+1)? L nth

2304 432 24

-1
[An"|lp =

Proof. By the symmetry of An, [|[A7}|l1 = |[A ™Y and |[A7Y2 < v/JJA1[1]]A " jee = ||A™}||o. Therefore, it
suffices to prove the result for p = oc.
The positive definiteness of A, (Theorem 9) implies that A,' > 0. With

-1 -1 -1 -1
m12d1,j - mudn,j = mlzdn,myj - mlldn,j’

1 1 1 1
Midy,j —myidyj = Mipdyj — Midy i,
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due to centrosymmetry of D, and M, for the i-th rowsum of A,!, we have

Zla\—EZd

n n
1 _ _ _ _ _ _ _ _
+—5——— | (4dy, - di}l—l)Z(mlzdl,lj - myid, ) + (4d; 7 - di) Z(mlzdn,lj - my1di))
mi, —mMn i1 i1
d;} Yjea 4(dih d d}
—Z m11+m12(( 11) (1n1+ i,2))~
Then
n n
-1y = -1 1, -
[4n* oo = max D _[ai | < max ) mJ,mlHMZEZMJmuau (24)
j=1 j=1 1 S——
— W—’ 3
m m
where

g() = 4(diy +di1) - (din1 +di)).

01 02
First of all, with d; ), = d31_; 1
_ ; i 1 n(yi + Yne1-1) . )
9. = d-1 d'1=71(’71+7n+11)_ i Inei-i) L5013 1- ,
! ne1-i F i 36741 36(n +2) Tn+1 +2 in+ )
; _; 1 2(n — 1)(v; + yne1-i) . .
9, = 201+ Mmeri) _ Lol b 6(n+3-3i(n+1-1) ).
2 36vn+1 36(n+2) Tn+1 ( ( )
Hence,
(i) = (61 +10)(yn+1 = 71 — Yns1-1) + i(n+1-1i)
36(n + 2)yn1 6(n+2) °
Note that

= (r’1 —r§>/ _rilnr-rbinr, _alnr
"\2v15 2v15 V15

andInr; +Inr, = 0; Thus, rir, = 1.
Consider i € [1, n] C R. Differentiating g(i) with respect to i and solving the equation, we get

(6n+10)Inry
36(n + 2)’Yn+1 vat

Due to monotonicity of g’(i), there is only solution of the above equation, given by i = ”T*l, This critical point
is also the maximum point of the g(i). Thus,

3 = max g(i) = n+l
3 1<isn g g 2 ’

( n+1—i_ai)+M:O

g = 6+ 2)

where

n+1\_ 6n+10 20n+107m  (n+1)? 3n2+18n+23 3(n+2)(n+4) _n+4
£\ 2 36(n+2)  36(n+ v | 24n+2) - 72(n+2) - 72(n+2) 2%

For m1,, we first note that

-1
Cn,j 1

dn.j 36 36(n+1)(n+2)(n+3

)(fl +f2)

where

n+1-j)jn+1)
Tn+1

fi= (Mne1-i(n+2 = j) +~( + 1)),
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fr=j(+1)QG-1i-3in+ 1D +ij+j+Mm+2)(n+1-2i)
+(n+1) ((n+1)(n+2)G-1)+j2n +3))).

Therefore,

n n n n
_ 1. 0m e 1
) = ledn,] 367n1 le’}/} 36(n n 1)(n T 2)(n n 3) lefl + ZfZ

j=1
Using Lemma 4,

. 1
Z’Yj= g(’YnJrl_’Yn_l)-
j=1

n n
" Z(f - 2j%n =352 +jn® +3jn + 2j) + Z(—j3 +i°n+jn+j)
j=1 j=1

n
n+1
> fi=
i1 Tn+1

_n(n+1)%(n+2)(n+3)(y1 + )
- 12vp41 ’

_n(n+1)(n+2)(n+3)(7n+1)
12 ’

n n
S £ =Y @Pn+57 -72n% - 4°n+ 377 - 7jn® - 11jn - 2j) =
j=1 j=1

Substitution of all terms gives

1y = o —m=1) 1 (n(n+1)(n+7n) B n(7n+1)>

2167341 36 12741 12
_ 1 +n(7n+1)_(n2+n+2)(yn+1)
216 © 432 4327mn

From Lemma 2(ii), y,41/8 < yn < yn + 1. Thus,

1 n7n+1) (*+n+2) 55n*+7n+14 _56(n+1)? (n+1)°

) £ — = < <
216 432 432 x8 3456 3456 432
Lastly,
n
my =max Y "[dij| = [[Dn' oo < [|Cn’ lloo]| Bn' |-
j=
By using Theorem 4 of [8]
1 (n+1)%*(n+3)?2
and Lemma 6,
_ _ _ n+1)%(n+3)?
1= 105 e = Gt By oo = PF LGSV
Summing up 711, 71>, and 713 and using the fact that my; + m1, > 1 leads to the statement in the theorem.

O

4 The near Toeplitz case

We now consider the seven-diagonal near Toeplitz matrix (1) with ag = 68, a; = 40 and a, = 56. We shall
denote this matrix by A, and use “ "+ ” to indicate perturbed matrices relevant to An. It can be shown that A
admits rank-2 decomposition”

En = EnCn + ZUVT, (25)

* In fact, there exist two a rank-2 decomposition of A n. We choose this version as it shares many same components in the decom-
position as in the Toeplitz case.
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where Cp, U, and V are given in (8) and (17), and

Bn = O 0 . (26)
1 -4 6 -4 1
S L 1 -4 6 -4
0 cee cee 0 1 -4 7

nxn
The inverse of By, is discussed in [13] and is given entry-wise by the explicit formula, for i > j,
bil=p [e + (G2 - 1)(26% + 1)} , 27)
with
= n+1-1i,

dj
6(n+1)(n2+2n+3)°

€ = 3[1+68(mn+ DI +3E-
and E}} = B{} for i < j. Furthermore,
Lemma1ll. By is positive definite.
Proof. For any nonzero vector X = (x; ... xn)" € R", xX"Bx = x"Bx + x} + x3 > 0. O

4.1 Exactinverse formula

Let D = ByCn = [Ei,,-]. The general inverse formula of Dy is given by (19), with dand b replacing d and b,
respectively. If A is invertible, its inverse can be expressed as
Ayl =D;t - 2D,'uM'vTD,, (28)

where M = [mijl=1 + 2VID1U € R??2 with

My =1+ 8di)y - 2d1Y = 1= 2dy ey + 8dyly = Mo, (29)

M = =2di -1 +8dih = 8y - 2dy5 = Moy (30)
An explicit form for mq1 and m1, can be obtained via direct calculations using the formulas (19) and (27) and
Lemma 4, and is given by

3 +3n2 +n+ Dyper - 33 + 302 +4n+ )y - 3(n+ 1)
9Yns1(n +1)(n% +2n + 3) ’

_ 6(2n + 1)yns1 - 3(n+ yn - 3(n+ D((n+ 1) + 1)

miqp = 5 .

Ivps1(n+1)(n? +2n + 3)

ﬁl11=1+

Lemma12. Misa positive, diagonally dominant matrix. Moreover, det(M) > 0.

Proof. Writing 11 = 1+ T11/9ve1(n+1)(n% +2n+3) with 111 = 3n® +9n? +3n+3)ype1 - 3(0° +3n% +4n +
2)vn - 3(n + 1), we have, forn = 1,

711 = 3[(n® + 3% + n+ Dyner — ) - Gn+ Dy — (n + 1)]
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>3[(n’ +3n” + n+ 1)(ne1 — ) - 30 + 1)y + 1)]

=3yl +3n° + n+ Dyper/m = 1) - 3(n + DA + 1/)]

> 3yp[(n® +3n2 +n+ )4 - 1) - 3(n+ 1)1 + 1/n)] (Lemma 2(ii))
2383 +3n® +n+1)-6(n+1)]

> 9yn(n® +3n% - 2n-1) > 0.

Thus, ﬁl11 > 1.

Let 715 = 6(2n+1)yy41-3(n+1)yn-3(n+1)((n+1)?+1), the numerator term of m; ,. By using Lemma 2(ii),
we have 715 = 6(2n + Dype1 = 3(n+ Dy = 3(n+ D((n + 1)* + 1) 2 %21 , —3(n+ 1)((n + 1)* + 1) >
3(n+1)(ype1 - (n+1)? = 1) > 0, where the inequality v,,1 - (n + 1)> = 1 > 0 can be proved by induction. Thus,
my, > 0, which shows the positivity of M.

Moreover,

T11-T12 = B +9n? = 9n = 3)ype1 - 3> +3n% +3n+ Dy + 3(n + 1)(n + 1)%)

3(n+ 1)3'Yn+1

3
4 +3(n+1)

>3(n° +3n°-3n- Dyne1 —

_33n% +9n° - 15n - 5)ynn
4
2 3'7n+1(n2 -3n)>0

+3(n+1)°

for n = 3. Hence, 711 > 71> and consequently, my; > my,. O
Theorem 13. A, is positive definite.

Proof. Let us denote an upper-left kxk matrix of A as ﬁk,k. By Silvester’s criterion, we need to show det A Kk >
Oforke{1,2,...,n}.Forke1,...,6,det(A; ) > 0 by numerical calculation. For k = n, detZln,n = detﬁn =
det M det By, det Cr > 0, due to Lemmas 6, 11, and 12.

Forke {7,...,n-1}, A k. k is a seven-diagonal nearly Toeplitz matrix (1), with perturbed top-left corner.
For any nonzero vector x € R¥, then

xTﬁk’kx = 68X +56(X5 +---+ x,2<) —80x1x — 78(X2X3 + *++ + Xp_1Xy)

+ 24(X1X3 + ¢+ + XpoaXg) = 2(X1 X4 + -+ + Xpe_3Xp)-

Consider
k-3

2
S= Z(axi = bxj1 + CXjip — dXiy3)
i-1

where a = \/4 -+/15, b = (6 +/15)a, ¢ = (9 + 2v/15)a, and d = (4 + v/15)a, with properties

a’+b?+c?+d? =56,
ab+bc+cd=39,
ac+bd=12,

ad = 1.

Then
xTﬁk,kx =S+(68-a®)x? +(c*+d*)x3 + d2x§ + azxi_2 +(a® + bz)xi_1 +(@+b*+ cz)xf
- (80 - 2ab)x1x; - 2cdxrx3 — 2abxy_yXxi_1 — (2ab + 2bc)xy_1 X + 2bdx1x3 + 2acx;_ Xy
=S+ (68 -a’-bH)x} +d*x5 + (bx1 - cxa + dx3)? - (80 - 2ab - 2bc)x1 x>
+(axg_y - bxp_q + cx)? + azxi,1 —2abxj_1x; + (a® + bz)xf

=S+ 12+ +dHx3 +d*x3 + (bxq — cx2 + dx3)* — (2 + 2cd)x1x2 + (ax_y — bxp_q + CXi)?
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+(axeq - bx)* + a’x;

Vi d 1+cd 2 2 (+cd)? 5 2
- 24 A2y, — _ _
S+(V12+c2+d2xq 12+c2+d2X2) +(d 12+C2+d2)X2+(bX1 cxy + dx3)

+(axg_y — bxp_q + cx)* + (axi_q - bxi)* + a’xp = 0,

with equality holding only when x = 0. (Note that d2 — -3+<@’ < 2 50> 0) O

12+c2+d?

4.2 Bounds of norms of inverse matrix

In this section, we shall derive an upper bound for norms of ;1;1. As we did for A;;!, the derivation will be
given only for p = co.
Positive definiteness of A, implies that A! is positive. Consequently,

n n
Z'a;,]' =Zai Zd m11 +m12 Zdn] (4(dll’l+dl 1) (dln 1+d;,12)) .
j=1 j=1

The following inequality can be derived using the above expression:

~ -1
A7t maxz HE max Z d;} “WiiTn ]z; d (4(dl n+ dl - (d, n-1+ dl,z))
no 2 no
< m?xz d; R > dy) max g(i), (1)
j=1 j=1 —
mq 3
where
8() = 4 (diy + di}) - iy + 7). (32
6, 6,

With ||Bp|jeo < (n + 1)%((n + 1)? + 8)/384 (see [9]) and Lemma 6, we have

(n+1*((n+1)?*+8)
2304

7y = made = D" foo < [|BH|oo||C " |oo <

Next,
51
dpj= Z’kakJ + Z Wbij | = ZkaJkJr Z bk
k=j+1 k=j+1

By using the explicit formula for E{}, i = j and Lemma 4, after tedious calculation we get

dyl = uvsj® + vaj? + vij +vom), (33)
where

"N
36me1(n+1)(n? +2n+3)°

Vo=n>+3n>+5n+3,

U=

vi=202n+ Dype - (n+ Dyn — (n® +3n +4n+2),
Vo = (4n° + 51 = 3)yne1 — (N + )y + 20 + 4n + 3,
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v3==-22n+ Dy + (n+ Dyp - (n+ 1).

Therefore,

n n
ﬁz=23;5~='< V3Zj3+v Z] +vlz]+VOZWJ ’
j=1 j=1

j=1 j=1

2 2 e
. <v3 n (n4+ 1) . n(n + 1)6(2n +1) . n(n2+ 1) v Vn+1 6’yn 1)

12
2(n2+2n+3) 12 T
2

n 1 2
_ - 2 2 .
2(n2+2n+3) 12(n Fent )V")

g6t 1., 5
= ~(@ 1 -1
367m1 (6( n“+n+1)(ya-1)+

7 1.5
< ~(2n“+n+1 +
36%”1 (6( )'7n+1

With Lemma 2(ii) and vps1 = 4n = 4%yp-1 = 4™, forn = 2,

ﬁ25316(é(2n2+n+1)+27n+1(n2n12n+3) 96(n +2n+2))
=1<31n2+14n+14+ n’ )
36 96 29p41(N2 + 2n + 3)
1(31n2+14n+14+ 1 )
36 96 2-43
ﬁ(?»ln +14n +15).

We now construct an estimate for 775. Using (19), we have

i n-i
3-1 _ In+l-i -1 Vi -1
dij = > b + > bk
o1 T+l 1

Tn+1
. n+1-i i-1 B
at= ~ b 4 Jnii ~ bl ,
i,n ’Yn+1 Z k o kz:; kPn+1-k,1
’ka ’ l = 1,
~1 'Yn+1 Z k-1
di,z = n-i
Tn+1-i E—l i Vi 'I;—l J<i<n
7'Yn+1 Z’Yk k,2 7’Yn+1 Z’Yk n+1-k,2» ’
k=1 k=1
n+1-i i-1
1 i —i 7-1 .
> bih + e > wbpiia, lsisn-1,
~1 ’7n+1 Tn+l
d: = k k=1
i,n-1
o bt ., i=n.
’7n+1 Z kY k,n-1
Hence
N n-i ) i-1
0, = Bi(k) + 7’7"+1 ’(b + bty ) + Lot Bi(k)},
" Z'Vk 1 n+1-i,1 el Z {'Vk }
0, = - Z{'YkEZ(k)} i 'Yz'VnJrl z(b 3 +b 1 12)+ ’Y’;Hl i Z {'YkBZ(k) }
n+ n+

where, fork=1,...,n,

-k +(n+ 1Dk

Ba(k) = 52,11 + 55114@1 = 2n+1)
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2k +2(n+Dk-(n+1)

By(k) = Ei,lz + E;z}fl—k,z = N+l

>

after direct calculations of each b using (27). Furthermore, 4B (k) — B, (k) = 1.
We shall now use the above intermediate results and Lemmas 4 to derive an expression for g:

g(0) = 461 (i) - 6,(D)
i e Vi, v —
=N 4B1(k) - Bo(K)} + 1M=L (4B (k) — B,(k)) + 11t 4B, (k) - B, (k
- ;{w( 1) - By (k) } — (4B1(k) - B, (k) - kz:;{vk( 1) - By (k) }
- n-i iy ~ i-1
_ i + i Tn+1-i + n+1-i
Tn+1 ;’Yk Yn+1 Tn+1 ;ryk
_ Ay - 1yimei - 1 vicamensi - %t Yeeicn (34)
3 T 6 Tn+1 6 Tn+1 6'Yn+1

Considering i € [1, n] C R and with

1 r
(’Yi’Yn+1—i)/ = ﬁ’ynﬂ_ﬁ In (i) s

/ 1 r
iTnei) = ——="mo2iln [ = |,
(vivn-1) 2\/E'Yn 2i (rz)

(v: Y = 1 In(™
Yi-1Yn+1-i 2\/ﬁ7n—21+2 r s

we have

§’(i) _ ﬁ (’Yi'le—i)/ _ 1 (’Yﬁn—z)l _ 1 <’Yi—1'Yn+1—i)/ _ (71' + 7i+1)/
3 Tn+1 6 \ Yn+1 6 Tn+1 6Vn+1
- )Inr - -7 )Inr,
- 12\/ﬁ’7n+1
_Inri(apa-i - @)

- 6V 15741

The critical pointis i = (n + 1)/2, which is also the maximum of g(i). Therefore,

2
- ~ V1 Ynt1 Y n-1 Y1
F<R(n+1)2) -2 1 17
3941 3 Ynet 3 Y1
2 2 2 ml omel
_4dm 1 v 3 31 (2 -7 )’

h §'le+1 - 274’)’n+1 - 2441 - 48+/15 r{”l — r;”l
_ 31 1-1mt 31
48415 1+ 1/r+1 = 48./15°

Theorem 14. For the matrix (1), with ap = 68 and a, = 40, the following inequality holds for p € {1, 2, oo}:

(n+1%((n+ 1) +14)
2304

7-1
[[An"llp <

Proof. Notice that

3% +3n% + 150+ Dyper - 3 +3n%2 +5n+ 3)ym + 3(n+ 1)(n? + 2n + 3)
9vns1(n +1)(n2 +2n + 3)

ﬁ111+ﬁ112=1+

=1+1+ 10n+6 1 N 1
3 3n+1(n2+2n+3) 3ymaa 3vma

4 1w 4 115

3 37 3 3 4 4
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after applying Lemma 2(ii). By using 711, 71>, 713 as given above, the bound (31) reads, forn > 1,

31(31n? + 14n + 15)

||Z"1\|N < L((n +1)2((n+1)>+8)+

2304 103680v/15
L+ DX ((n+r1)+8)  6(n+1)? _ (n+1D*((n+ 1)’ +14)
i} 2304 2304 2304 '

5 Numerical examples

We have computed the norms of exact inverses of A, and A for various size n and the proposed upper bounds
from Theorem 10 and 14. The computational results are presented in Figure 1 various matrix size n, which
suggests a good estimate provided by the theorem.

= T — A, E — 1A

= ] -

£ —— Upper bound for ||A7Y(|» £ —— Upper bound for [|A3]],

g 5x10° %

B 2

5 axw0 5

E E

5 o

£ =

3Ix10° p—yn Sx 10
n n

(a) A;! (Toeplitz case) norm and the upper bound (b) A,;* (nearly Toeplitz case) norm and upper
computations bound computations

Figure 1: Evaluation of norm of inverse of matrices and bound in the log scale.

By utilizing the fixed point iteration (5) and assuming f(u) = e™ we have computed the convergence
rate, Lp := h*Cg||A™!||p; see for more details in [13]. In our setting the iteration convergence was achieved
when [|[u’*! - u’|, < 107 for p € {1,2,00}. Forn = 50 and Cz; = 1 we obtained L1 = 4.69 x 10™* and
L2 =3.60 x 10~ the upper bound from Theorem 14 is 4.72 x 10~“. The solution of (4) is presented in Figure
2.

%107

0 . L . I . I I I .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure 2: The solution of (4) is presented in blue forn = 50 and Cgy = 1.
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6 Generalization to perturbed 2 x 2 corner blocks

In this section, we analyze exact inverse properties of A, given by (1), with n > 7. To proceed with the analysis,
we assume that ag, a1, a; > 0 and are chosen such that A;! exists, and consider the rank-2 decomposition of
Aj as follows:

Ap=BnCn+UVT, (35)

where By, and Cp, are given in (17) and (8), respectively, with

u, u, 0 -+ 0 O
0 0 0 U ux

vi v 0 -+ 0 O

0 e 0 Vo Vi
nx2

Ut =

} , and vl =
nx2

The inverse of A, is given by the Sherman-Morrison formula
At =Dy - DRtuMz VT D,

where D = ByCnpand M, = I, + VID,'U € R?*2. The inverse of By, Cn, and Dy are given entry-wise by the
formula (18), Lemma 1, and (20), respectively. From (35), relations between ao, a1, a,, ui, U, vi, and v, can
be established: u;v, = ag — 52, u1v, =39 -ay, upvy = 38 —ay,and uv, = a, — 56.

6.0.0.1 Explicit inverse formula.
Let M, = [m; j]; j-1,>. The entries of M, are determined explicitly by the formula

mi1 = 1+(ao - 52)diy + (38 - a1)diy + (39 - a1)ds )y + (a2 - 56)d3)5;
My, = (38 - a1)dih 1 + (ao - 52)d1 % + (@2 = 56)d3 4 1 + (39 — a1)daly;
ma1 = (39— a1)dyly 1 +(az - 56)dpl1; + (a0 - 52)dyYy + (38 — ar)dns;
M,y = 1+ (@ - 56)dy 1 n1 + (39 - a1)dly n + (38 - ar)diin 1 + (@0 - 52)dy)n.

(36)

Due to centrosymmetry of Dn, we have that my,; = my,; and my,, = my 1. Thus, M, is symmetric. The d Vs

in the above formulas for mi‘} are given as follows:

4oL (n(n +1)? ym  nn+1) v nn+1)@n+ 1))
1,1 = + — |
’ 36vn+1 6 Tn+1 3 Tn+1 3

dih = d} REGLE R <(n s DL nn-1)n+1) y» nn-1)>13n+ 7)) ’

mn-1 = 36’7/r|+1 Yn+1 3 Tn+1 6
g5l = M (n(n +1)? 1 nn+1) 4 (n+1)(6n*-8n+ 3))
2,1 = + + - )
’ 36’Yn+1 6 Tn+1 3 Tn+1 3
dz,lz _ 201 +n (n(n - 1)(n + 1) Tn-1 + (T’l + 1)(Yl _ 1) 72 n(n _ 1)(57’1 _ 3)) ,
36vn41 3 Tn+1 n+1 (37)
diti=dih =2 4p <n(n “D+D m (m+1)(n-1)-"" —7n®+3n+ 8) ,
’ ’ 36Yn+1 3 Tn+1 Tn+1
gloglo o, (n(n +1? y n(+1) g (n+1)(7n- 3))
L 1 36vn+1 6 Tn+1 3 Tn+1 3 ’
Ay =il = 222 (n(n ~Vn+1) v i+ D) -1D1"L — 1902 + 24m + 27) ’
’ ’ 36’Yn+1 3 Yn+1 Tn+1
4 _ 1 M nn+1)? 7o nn+1) g _(n+1)(19n-24)
d2,n = dn—l,l = + + - .
369n+1 6 Tn+1 3 Tn+1 3

Via direct calculations, 4;' = [ai"ll-] can be determined entry-wise by the following formula:

-1 -1
a;j = d
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— d;iImi1((ao - 52)d1 )y + (39 — a1)d3) + mi5((39 — a1)dyly j + (ao - 52)d,, )]

— di3[m7h (38 - ay)dy + (az - 56)d35) + mih((az - 56)dy,"y ; + (38 — a1)dy,})]

— di -1 [mi5((38 — ay)dy)y + (az - 56)d3 ) + mij1((az - 56)dy!y j + (38 - ar)dy )]
= d;plmi5((ao - 52)di)s + (39 - a1)dyy) + mih((39 - ar)dyty j + (a0 - 52)d, ).

We note here that the above exact inverse formula holds for any choice of ag, a;, and a,, provided that they
lead to an invertible A,.

6.0.0.2 Bound of norms of the inverse.
To derive a bound for norms of A;;!, we start by writing the inverse as A,! = D' (I, - UM5'VTDy!). Then,
A7t Ip = |IDR (I - UM VI DY)
<||Da [Ip 12 - UM3' VI DR |
< DRt Ip(1 + | UM VT p[ID7 " |p)
-1 -1 —1y,T -1 -1
< 1B llpllCn [lp(L + [[ UMy V7 [|p [ Bu " [Ip [ Cr [Ip)

for p € {1, 2, oo}. From Theorem 4 of [8], ||By}||p < (n + 1)?(n + 3)?/384, and from Lemma 6, ||Cy,}||, < 1/6.
So, we need to construct a bound for || UM;' VT||,. First, notice that, using the symmetry of M5,

[(ao-52)m1Yy (39-a)miy 0 0 (ap-52)mi’, (39-aymi}]
(B8-aymily (ay-56)myY; 0 0 (38-aymih, (az-56)m,
0 0 0 -+ 0 0 0
UM?lVT = . . . . . .
0 0 0 -+ 0 0 0
(B8-aymi’, (a-56)miy 0 --- 0 (38-a))myy (az-56)miY
(a0 -52)m;Y, (39-a)mi, O 0 (ao-52)myy (39-ay)my}
Forp =1,

| UM VT ||y = max{colsumy, colsum,, colsum,_y, colsumy} = max{colsumy, colsum,}

- (’m;}l‘ + ‘m;}z() max{|ao - 52| + |a1 - 38|, |a1 - 39| + |as - 56}. (38)
Note that [m7Y | + |m7%| = [M3(|1. Similarly, for p = o, one can show that
HUM_lVTHw = |\M§1||oomax{\a0 -52|+|ay -39|,|a; - 38| +|ay - 56|}, (39)

where [|M5" [l = | M3 |1

For the remaining part of this section, we shall focus on the derivation of bound for a specific choice of
ap, ai, and a,, as set in Theorem 15; The cases presented in Sections 3 and 4 are two specific cases under
this choice. We remark, however, that it is possible to derive a bound for wider options of ag, a1, a,. Due its
lengthy details, this will be reported separately in a follow-up report.

Theorem 15. For the matrix (1), with ag = a, > 56, a; = 39 and 6ag - 35a; + 28a, > 494, the following
inequality holds for p € {1, 2, 00}:

-1
[An"llp <

(n+1)%(n+3)32 14 42(ag + a1 - 90) (n+1?*(n+3)?
2304 6ag —35a1 + 28a, - 494 2304

Proof. With A = m2 | - m? ,, the determinant of M,, we have

1 ‘ _Imaual+mas| _ 1

-1 -
m +|m = . 40
) 1’1‘ ‘ 1.2 4| Imy 1+ my .| (40)
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From (36),

myqtmys=1+(ao-52)(dis £dih) + (38 - ay)(dih +dil )

+(39 - a1)(dy}y £ dyly) + (az - 56)(dy5 + dyhy q).

Direct calculations using (37) result in

_ _ 3n-1)
d1+d1=vn+%+7n+1( ,

b L 18'Yn+1(n +2)
dLedl - (-1 +92)(+2) = 20y +y1)(n = 1) + y41(13n - 16)

1,2 tA1,n-1= >

36n41(n +2)

_ _ _ 6n-7)
d1+d1=7n1+72+7n+1( ,

>t o 18yp+1(n +2)
F (-1 +72)(n +3) + Y41 (5n - 9)

’ o 67ne1(n +2)

>

and

e e (yn = 71)(M + 1) + ype1(n - 1)?
Lo Thn 6y +2)(n+3)

gl gt _mamm  (1-3)A3rn°-9n-16) _ (m-y)n-3)n-1)
1,2 1,n-1 7

36ms1 36(n+1)(n+2)(n+3)  18ypa(n+2)(n+3)°

&L —d5t - (-1 =) +1) +yp1(n-3)(2n - 3)
a1 e 6vner(n + 2)(n +3) ’
_ (-1 —72)(n+ 7)(n + 1)2 +ye1(5n+3)(n - 3)2
61 (n+1)(n+2)(n +3) '

-1 1
dy,» —dan1

Using Lemma 2(ii) and with n > 7, the above sums can be bounded as follows:

1 1

-1 -1
< d1,1 + dl,n < g,

[N

-1 -1
<diptding < 3
a1
s 3 ’

<dyhtding <1

WIN QP W[~

N
Q
!\JI
e
+
N

=

N

The above bounds, together with ag > a, > 56 and a; > 39 leads to the inequality

mq1 % ml’z >1+

DE GRUYTER

00—52 +38—(11 +39—(11 + 2(02—56) _ 6(10—3501+28{12—494

7 2 3 3 42

When 6ag - 35a; + 28a; > 494, wehave 0 < my 1 + my 5 = |[my,1 + my »|. Thus,

6ag —35aq1 +28a, — 494

m +tm >
[my,q £ my 5 ™)

or
42

< .
6ag —35a1 +28a, — 494
Next, we use the fact that the maximum of any two positive real numbers can be written as

-1 -1
’m1,1‘ + ‘m1,2’

X+y+x-y|

max{x,y} = 5

Thus, forp =1,

max{|ao - 52|+ |a; - 38|, |a; —-39| + |ay - 56|} =

_ lao =52 +|a1 - 38| +|a1 - 39| +|az - 56[ +||ao — 52| + |a; — 38| - |a1 — 39| — |a; - 56|

2
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With ag > a, > 56 and a; > 39, we obtain

max{|ap - 52| + |a; - 38|, |a1 - 39| +|ay - 56|} = ap + a; — 90.
Similarly, for p = oo, we get

max{|ao - 52|+ |a1 - 39|, |a; - 38| + |ay - 56|} = ap + a; - 91.
Since ag + a; — 90 > ag + a; — 91, for (38) and (39), we have

42(00 +dy — 90)

“1+,T -1y;T
UMVl < IUMVE L < o35 4+ 28a, - 494"

Finally, substitution of Lemma (6) and Theorem 4 of [8] in

A lp < 1B~ lp |7 Ip (1 + |UM ™ VT B~ lp[IC™ )

_(n+ 1)2(n + 3)? 14 42(ag + a; - 90) (n+1)*(n+3)?
- 2304 6ag —35a1 + 28a, — 494 2304

O

As the bound given by Theorem 15 is applicable for the two special cases considered in Sections 3 and 4,
this general result is expected to be no better than the bound derived specifically for the two special cases
(Theorems 10 and 14). One can verify this easily by substituting the appropriate values of ag, a;, a>. While
Theorem 15 is important due to its generality, application to our specific numerical problem will lead to a
rather pessimistic convergence of the fixed-point method.

7 Conclusions

In this paper, we derived the explicit formula of the inverse of seven-diagonal matrices associated with
a fourth-order nonlinear boundary-value problem and give upper bounds for its norms in terms of n.
The analytical bounds were compared numerically, whose quality suggesting a great potential for other
applications such as numerical analysis involving the fourth-order differential operator. A generalization
to a class of near-Toeplitz matrices with perturbed 2 x 2 block corners was also presented. Results for more
general classes are possible to derive and will be considered in the future’s work.
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