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Abstract: Airline industry has witnessed a tremendous growth in the recent
past. Percentage of people choosing air travel as first choice to commute
is continuously increasing. Highly demanding and congested air routes are
resulting in inadvertent delays, additional fuel consumption and high emission
of greenhouse gases. Trajectory planning involves creation identification of
cost-effective flight plans for optimal utilizationof fuel and time. This situation
warrants the need of an intelligent system for dynamic planning of optimized
flight trajectories with least human intervention required. In this paper, an
algorithm for dynamic planning of optimized flight trajectories has been
proposed. The proposed algorithm divides the airspace into four dimensional
cubes and calculate a dynamic score for each cube to cumulatively represent
estimated weather, aerodynamic drag and air traffic within that virtual cube.
There are several constraints like simultaneous flight separation rules, weather
conditions like air temperature, pressure, humidity, wind speed and direction
that pose a real challenge for calculating optimal flight trajectories. To validate
the proposed methodology, a case analysis was undertaken within Indian
airspace. The flight routes were simulated for four different air routes within
Indian airspace. The experiment results observed a seven percent reduction
in drag values on the predicted path, hence indicates reduction in carbon
footprint and better fuel economy.

Keywords: Airplane trajectory; coefficient of drag; four-dimensional
trajectory prediction; machine learning; route planning; stochastic processes

1 Introduction

Airline industry has witnessed a tremendous growth in the recent past. Percentage of people
choosing air travel as first choice to commute is continuously increasing. This fact is supported
by Deloitte’s recent report that states there is a 4.2 percent increase in global air traffic and
passenger demand [1]. Technological enhancement and globalization are the apparent reasons for
this unprecedented growth. With more passengers opting for air travel, airspace congestion has
reached its peak. The air traffic control is managing a greater number of airplanes every hour
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than in past. Highly demanding and congested air routes are resulting in inadvertent delays,
additional fuel consumption and high emission of greenhouse gases. Furthermore, congested
airspaces have repercussions like passenger dissatisfaction, poor coordination amongst ground
crew and disturbance in schedule of connected flights. Ever changing socio-political scenario
further adds to existing challenges for air traffic scheduling and management. Tackling such
challenges require long term planning by the international community. Optimization of flight
trajectory planning paradigms may help deescalate contemporary problems of aerospace industry.
Trajectory planning involves identification of cost-effective flight plans for optimal utilization of
fuel and time. It is a scientific procedure, that considers a variety of parameters like regional
and/or international air traffic, political air space, capacity of airports, weather data and aircraft
performance to chart optimal flight path. These are the minimal parameters required to calculate
and optimize any flight route [2]. Airlines do follow a set of standardized predefined routes
and such routes are selected based on airline service network. As per existing practices, these
calculations involve hours of human effort and still does not guarantee desired optimizations [3].
This situation warrants the need of an intelligent system for dynamic planning of optimized
flight trajectories with least human intervention required. In this paper, an algorithm for dynamic
planning of optimized flight trajectories has been proposed. The proposed algorithm divides the
airspace into four dimensional cubes and calculate a dynamic score for each cube to cumulatively
represent estimated weather, aerodynamic drag and air traffic within that virtual cube. This virtual
cube comprises of four dimensions namely Latitude, Longitude, Altitude and Time (4D-T). An
optimal flight path/ trajectory could be planned in reference to these four dimensions and is
named four-dimensional trajectory planning (4D-TP). 4D-TP is a NP hard problem as it strives
to optimize multiple objectives like minimal fuel consumption, minimal flight time and safety.
There are several constraints like simultaneous flight separation rules, weather conditions like air
temperature, pressure, humidity, wind speed and direction that pose a real challenge for calculating
optimal 4D-TP. To predict an optimal 4D trajectory, future temporal position of an aircraft
is to be estimated correctly [4]. Hence, there is a need of robust algorithms, which can take
into consideration weather parameters, aerodynamic drag and air traffic to heuristically calculate
optimal 4D-TP. Such heuristic calculations can also predict the estimated time of arrival (ETA)
of any flight.

Rest of this manuscript is organized as follows, section two debriefs materials and methods,
section three details problem statement, section four elaborates the adopted methodology and
section five comprises of detailed case analysis. Section six concludes the study with a discussion
on future scope of research.

2 Materials and Methods

Research publications related to airplane trajectory planning and optimization, which were
published from year 2005 till 2019 were referred for designing methodology and experiment.
Recently a calculation tool was proposed to plan accurate trajectory with respect to the one
generated by on board flight management system. It was used to draw a logical conclusion for
various cost index values affecting aircraft trajectory with given flight route and initial aircraft
mass [5]. Trajectory optimization is an optimization problem, this was supported by a novel
framework which investigated sustainable fixed wing aircraft trajectory mathematical optimiza-
tion problem [6]. The impact of multicriteria optimized route trajectories recorded on air traffic
flow management were analyzed and compared with a few validated scenarios. These validated
scenarios had real trajectories during peak hours of Europe’s completer air traffic in the upper
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airspace [7]. An algorithm for optimization of global airplane traffic using stochastic techniques
was also proposed. The algorithm was designed in a way that, the aircraft trajectory should avoid
all threatful spaces, pass all waypoints, utilize all environments, minimize flight time or route
distance, and satisfy all kinds of constraints [8]. A review focusing on Multi Objective Trajectory
Optimization (MOTO) techniques deployable for aircraft flight operations was undertaken. The
review typically focused upon recent advances introduced in the Communication, Navigation and
Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) as research context.
Later advancements of CNS+A included MOTO algorithm, which have a clear potential to enable
real-time planning and re-planning. Re-planned routes are more environment friendly, more effi-
cient and economically viable. These routes are optimal because, they addressed dynamic weather
and air traffic conditions [9]. Random forest inspired machine learning techniques were also
explored for enhanced aircraft ETA predictions. These experiments took into consideration generic
information like flight, weather and air traffic for predicting trajectories. The results confirmed
the possibility of enhancing ETA predictions by finetuning them using a model that studies
statistical relationships between flight, air traffic and weather [10]. Further, methods were proposed
to find out the nominal flight profile and revised airway meteorological forecasts. Dynamic space
warping (DSW) algorithm was considered as an option to measure the distance between two flight
altitude profiles. Meteorological forecast error from GRIdded Binary (GRIB) data, Cressman
interpolation were referred to revise the original forecasts from GRIB data [11]. A trajectory
planning function was later implemented and evaluated for trajectory prediction. This function
is a critical component for tactical flight management. It introduced concepts, which increased
resiliency and robustness of trajectory driven operations. This resulted in a paradigm shift which
resulted in improved flight management system in close proximity with tactical operations [12].
Subsequent researchers worked on a stepwise regression model, which was trained using historic
dataset. This historic dataset included information about type of aircraft, groundspeed of aircraft,
altitude at the start of aerial route, surface wind and altitude winds etc., to make arrival time
predictions [13]. A four-dimensional trajectory regression-based prediction model was proposed.
This model made use of history and real-time radar data for predicting trajectory [14]. Later, accu-
racy of trajectory prediction was validated through comprehensive implementation for supporting
validation methodologies. This implementation included parsing and checking of actual positional
data of an aircraft, parsing trajectory predictions, comparison of actual and predicted aircraft
trajectory through sampling and measuring, followed by analysis of results [15]. At an initial stage,
algorithms for predicting take off aircraft trajectory were developed. These algorithms explored
various configurations through a detailed model [16]. Intent based trajectory prediction (IBTP)
algorithm that performs aircraft tracking, intent inference and trajectory prediction [17]. An error
model based on linear error covariance analysis combined with linear control feedback explored
the feasibility of curtailing uncertainty within trajectory predictions. This paper also discussed
the development and implantation of the proposed model [18]. Pseudospectral integration scheme,
built on Chebysev polynomial for optimization and control problem for 4D trajectories was
also explored by researchers [19]. Newer studies are trying to optimize multiple problems like
aircraft routing and crew pairing. Both of these factors have a high impact on operating costs of
airlines. Later, the use of compact Integer Programming (IP) and Multiple Integer Programming
(MIP) solvers was proposed to attain optimality. It was also used tried for crew pairing. Column
generation pricing subproblem within a new resource constrained shortest path framework was
also modelled [20]. Later, it was also suggested that to enable Air Traffic Controllers to control
and supervise traffic with ease, flight traffic is carried out on set of predefined routes that have
very low number of intersections. This has two significant consequences, firstly the ratio of used to
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unused airspace is low and not necessarily a shortest path is used for each flight. To eliminate this,
the concept of free routing was proposed which enables an aircraft to use the direct connection
between source and destination. It helped in generating a traffic distribution that enables use entire
airspace optimally [20].

Few of the prominent empirical studies, which experimented with optimization of flight
trajectories are summarized in Tab. 1.

Table 1: Summary of prominent empirical studies discussing optimization of flight trajectories

Reference Dataset Objective Function Technique used

[5] Collaborative Actions
for Renovation of Air
Traffic Systems
(CARATS) Open Data

Fuel consumption and
flight time

Dynamic programming

[19] Simulation runs in UAV
Skygu@rdian
constructed in
University of Beira
Interior.

Flight duration Pseudo spectral
integration

[13] Manual ADS-B
trajectory data was
collected between
February 2011 and
April 2012

Flight trajectory Linear regression

[17] Flight Information
Services Broadcast
(FIS-B) message and
Manual ADS-B
trajectory data

Flight trajectory Residual-Mean
Interacting Multiple
Model (RMIMM)
hybrid estimation
algorithm

[16] Real waypoint files
contained in the
Eurocontrol Central
Flow Management Unit
(CFMU) database

Flight trajectory Probability and
Gaussian distribution

Previous research has also touched upon “Flight retiming” methods which involves slightly
modifying the scheduled departure time of flights. It intended to ensure better service at a lower
cost. Mixed Integer Linear Programming model involving path variables, crew pairings, and arc
variables representing the aircraft routes are used. Additionally, features like path/demands based
on itinerary, variable flight times, schedule, recapture issues, and multiple class fare were also
optimized using Linear Programming solution obtained within a column generation process [21].
Later, tail management was also included in flight scheduling. It involves assigning airplanes to
flights as per given schedule. Researchers have worked upon an improved compact optimization
model which involves a number of zero or one decision variables. Constrained polynomial in
the problem size parameters were also used to minimize operational costs [22]. Fleet assignment,
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aircraft routing, and crew pairing are studied in the past as one combined problem. The objective
function was aimed to minimize a weighted sum of the count of aircraft routes, pairings of crew
members, and the waiting time consumed by crew within consecutive flights. Two mixed integer
linear programming models were presented for the combined problem. The path-path model,
uses path-based variables to describe both the aircraft routes and the crew pairings. The second
model, called the arc-path model, is built on arc-based variables to describe the aircraft routes
and path-based variables to represent the crew pairings [23]. Aircraft maintenance also has a
huge role to play in the flight path optimization problems. The range and type of maintenance
required, aircraft age, and utilization rates determines the demand for maintenance and it is dif-
ferent for every aircraft. Such considerations complicate the aircraft routing decisions. Researchers
present a new approach that promises minimal maintenance and misalignment using an interactive
mechanism connecting aircraft route planning and maintenance planning decisions [24]. Light
propagation algorithm (LPA) based on wavefront propagation method that yields approximate
geodesic solutions (minimal-in-time solutions) for the path planning to avoid air-traffic congestion
was suggested by researchers [25].

From the literature reviewed, it was concluded that most of the published literature is
restricted to optimization of fuel and flight time only. Further, optimized flight trajectories are
predicted using one or at max two data sources of historical data. Most of the historical
weather data comprises of windspeed and direction only. This traditional set of experimentation
has virtually ignored many promising factors, which could potentially contribute towards safe
trajectory planning like dynamic data generated by aircrafts and weather recording devices. Most
studies have tried deploying Auto Regressive Integrated Moving Average (ARIMA) or Dynamic
time wrapping time series approach for forecasting. Such techniques are found to be less accurate
and have ample scope for refinement. Latest time series forecasting techniques like Long Short-
term memory networks (LSTM) [26] have not been tried yet. Flight trajectory data is recorded
using ADS-B [elaborate] devices present at ground stations. To facilitate mid-air decision support
assistance for air traffic management, a dynamic four-dimensional trajectory prediction (4D-TP)
method is proposed. The adopted methodology for experiment design and fundamental concepts
associated with deployment of 4D-TP are detailed in the following sections.

3 Problem Formulation

Preparing a fuel, time & safety optimized flight plan requires an efficient division of airspace
above us. This process is tricky because airspace is not uniform due to uncertain nature of
multiple parameters like weather and air traffic etc. Hence it is of utmost importance to model
the airspace into smaller sections with each section representing its state (Weather, Aerodynamic
Drag & Traffic). As per the existing literature, state of art systems represents the airspace as
three-dimensional cubes of fixed length, breadth & height. A novel technique of representing the
airspace as Three-Dimensional Dynamic cubes (3DD), as shown in Fig. 6 has been introduced
in this manuscript. This 3DD layout will establish a base for effective 4D-TP. 4D-TP requires
a real time multidimensional coverage of the airspace conditions to be provided by 3DD cubes.
These conditions include weather parameters, air traffic & aerodynamic drag etc. Every 3DD
cube will have a representation vector, which would provide information about weather, traffic &
aerodynamic drag within it. Flight planning requires us to forecast values of these parameters
with respect to some constraints as given below:
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3.1 Flight Dynamics
An aircraft needs to follow an Aircraft Dynamic Model (ADM). ADM enlists three degrees

of freedom point mass model (PMM) with variable mass. PMM represents all the intricacies of
an aircraft movement as shown in Eqs. (1)–(6).

La=VTAS ∗ sinχ cosγ +w1 (1)

Lo=VTAS ∗ cosχ cos γ +w2 (2)

h=VTAS ∗ sinγ (3)

VTAS =Th−D/m− g sinγ (4)

X= g tanϕ/VTAS (5)

m= η ∗Th (6)

where La, Lo, h, VTAS, Y, X, ϕ, m, w1, w2, D, Th, h, and g are Geodetic latitude, Geodetic
longitude, Altitude, True Airspeed, Flight path angle, Heading angle, Bank angle, Mass of air-
craft, East treading winds, North treading winds, Aerodynamic drag, Thrust, Thrust specific fuel
consumption parameter and gravity respectively.

3.2 Path Constraints
A flight needs to conform to certain path constraints which arise due to military procedures

and other socio-political constraints. There are specific no-fly zones declared globally. Such zones
act as deterrent in fixing the optimal path. This deterrence is considered as a constraint in 4D-TP
planning.

3.3 Flight Data Sources
Calculating the optimal 4D-TP require temporal flight trajectory data, flight plan data and

weather data as inputs. Such data has been curated from following sources:

(a) Automatic dependent surveillance-broadcast (ADSB) is the most prominent method for
tracing flight trajectory of an aircraft. This surveillance technology broadcasts aircraft iden-
tification, technical and position information to nearby aircrafts and ground stations [27].
The data sources used for obtaining the flight trajectories are FlightRadar24 [28] &
FlightAware [29]. Both use crowdsourced ADSB devices placed all over the globe to collect
flight trajectory data. Flightradar24 is a global service for flight tracking and broadcasts
real-time information about thousands of aircrafts flying across the world. Flightradar24
tracks 180,000+ flights, from 1,200+ airlines, flying to or from 4,000+ airports around the
world in real time.

(b) FlightAware is a digital aviation company and manages the world’s largest flight tracking
data platform. It has global connectivity to every segment of aviation. FlightAware serves
over 10,000 aircraft operators, service providers and more than 13,000,000 passengers
with global flight tracking solutions. It also offers predictive technology, analytics, and
decision-making tools. Flight trajectories from Delhi–Mumbai within Indian subcontinent
and recorded using FlightRadar24 and FlightAware are shown in Fig. 1.
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Figure 1: Different paths attained by New Delhi–Mumbai flight

3.4 Weather Data
The weather could be defined as an atmospheric condition, with respect to hot or cold, wet

or dry, calm or stormy, clear or cloudy at any time. There are multiple agencies, which record
and promulgate weather information. To enhance precision of anticipated 4D-TP, it is preferred
to consider the weather data from multiple sources. Weather data from following agencies was
considered while calculating optimal flight trajectories.

(a) India Meteorological Department (IMD) is a subsidiary of the Ministry of Earth Sciences
of the Government of India. It is primarily responsible for meteorological observations,
weather forecasting and seismology.

(b) MetGIS portal promulgates ultra-precise forecasts through a fusion of exact weather mod-
els and terrain data. MetGIS forecasts are considered the best in the world and provides
a resolution of up to 30 m.

(c) OpenWeather is a small IT company, established in 2014 by a group of engineers and
experts in Big Data, data processing, and satellite imagery processing. Its headquarters is
in the UK, has office in the US, and a development team in Latvia (EU).

(d) METAR is maintained by Aviation Weather center and delivers consistent, timely and
accurate weather information for the world airspace system.

(e) World Weather Information Service (WWIS) is a centralized source on the Internet to
access official weather information released by National Meteorological and Hydrological
Services (NMHSs). The WWIS website is developed and maintained by the Hong Kong
Observatory (HKO) of Hong Kong, China.

(f) Weather web is maintained by University of Wyoming to provide precise and reliable
weather information.

4 Methodology

The experiment methodology uses radar recordings, flight plan data and weather data as
inputs. Input data is pre-processed to weed out potential outliers and discrepancies. Cleansed
data is further added to a multidimensional database. Incoming live DataStream from aircraft is
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processed along with multidimensional database using machine learning techniques for predicting
optimal 4D-TP and airline procedures. Fundamental experiment method is depicted in Fig. 2.

Figure 2: Proposed methodology for calculating 4D-TP

Flight tracking websites (FLightRadar24 & FlightAware) use crowdsourced ADS-B devices
to track the position of an aircraft. ADS-B are special hardware located at various geographical
locations that receive flight tracking info from transponders in aircraft. These devices are limited
in number and hence we might not get complete tracking data of a flight. Furthermore, the
frequency at which these devices send/receive data is low which makes tracking of airplanes prone
to errors. The proposed method calculates 4D-TP based on recorded reference radar, weather and
flight plan data. Researchers have prominently used time series techniques like ARIMA, for time
series-based forecasting. The proposed 4D-TP technique made use of LSTM [30] for anticipating
weather and traffic conditions [31,32]. A typical LSTM calculation logic is given in Fig. 3.

Figure 3: Structure of proposed LSTM to calculate optimized 4D-TP

Weather information pertaining to cloud cover, anticipated thunderstorms and precipitation
probability are jointly processed as cumulative weather index. Further, inclusion of aerodynamic
drag along with weather and time series data, make this experiment unique amongst available
literature. Aerodynamic drag can be defined as the resistance offered by the air in opposite
direction to the movement of the aircraft. Each aircraft has its own coefficient of drag which helps
in estimating the drag value. During data analysis of 126 Delhi–Bengaluru Flights flown between
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June 2018–August 2019 from, it was observed that different air routes offer different drags as
shown in Fig. 4.

Figure 4: Different aerodynamic drag on different air routes between New Delhi–Bengaluru flights

The procedure to calculate aerodynamic drag and cumulative traffic index is given as under:

a) Coefficient of Drag: CD

Config: Aircraft either in take-off, climb, cruise, approach or landing phase.

Lift coefficient: CL

CL = 2 ∗m ∗ g ∗ cosγ
VTAS2 ∗ cos∅ ∗S

(7)

CD =CD0,config+CD2,config ∗CL2 (8)

Density: δ

Surface area: S

Cumulative Aerodynamic Drag Index= 1
2 ∗CD ∗ δ*S* VTAS2

To better access the drag conditions we have divided values of drags into different levels of
favorability [32].

Least Favorable: >60000

Average/Moderately Favorable: ≤60000 and >20000

Highly Favorable: ≤20000

b) Cumulative Traffic Index: During experiment design, the air traffic was modelled into
following subcategories:

i Airport Congestion

Scheduled arrivals: Sa

Scheduled departures: Sd

Average actual departures: AvgD

Average Actual Arrivals: AvgA

Flight no: fn
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Airport congestion rate = (Sa + Sd)/ (AvgD + AvgA)

ii Sector Congestion

Sector size: S

Scheduled flights at time t in sector s: Ss

Total time take to cross S: t

Sector congestion rate: Ss/t

Once cumulative traffic index and coefficient of drag have been calculated for all the data
points, a scoring mechanism would suggest an optimal 4D-TP as shown in Fig. 5.

Figure 5: LSTM memory network driven scoring mechanism to suggest optimal air trajectory

Score of one 3DD cube=α (Cumulative weather index)+β (Cumulative Drag Index)

+ γ (Cumulative Traffic Index) (9)

5 Case Analysis

To validate the proposed methodology, a case analysis was undertaken within Indian airspace.
Following are the dimensions included during case analysis. Route information is shown in Tab. 2
and 3DD division of Indian airspace is shown in Fig. 6:

Airspace Considered: India

Area Covered: North to South – 4000 km, East to West 4000 km

Vertical height: 100 ft–50000 ft which is approximately 16 km

Total volume of airspace considered: 4000 * 4000 * 16 = 256,000,000 km3

3D cube size: 2 km * 2 km * 2 km

Total Cubes: 32,000,000

Weather data: Weather timeline between June 2016–September 2019 was considered to forecast
weather conditions.
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Table 2: Routes, timeline and number of total flights considered for case analysis

Route Timeline Total Flights

Delhi–Bangalore June 2018–August 2019 126
Delhi–Trivandrum July 2018–August 2019 150
Delhi–Mumbai July 2018–August 2019 268
Delhi–Chandigarh June 2018–August 2019 264

Figure 6: 3DD division of 256,000,000 km3 volume of Indian airspace

6 Results

The result section is divided into two subsections. First part entails the results for forecasting
accuracy on weather & traffic data. While the second one entails the validity of airspace division
by proving lower drag offering on new routes. The performance of aircraft was calculated based
upon fuel consumed which was further calculated using Thrust produced by the engine which
was further calculated by Drag indicted on the aircraft by the path followed. While there exists a
direct proportionality between Fuel Consumed & Thrust produced by an engine. Thrust & Drag
relation is given below.

(Thr−D) ∗VTAS = dh
dt

∗mg0+ dVTAS
dt

∗VTAS ∗m (10)

where Thr, D, VTAS, h, g0, dVTAS, d/dt are thrust acting parallel to the aircraft velocity vector,
Aerodynamic Drag, Aircraft Mass, Geodectic Altitude, Gravitational Acceleration, True Airspeed
and Time Derivative respectively.

6.1 Forecasting Accuracy
From the weather timeline of June 2016–September 2019, we have considered June 2016–April

2019 as training information for our LSTM and June 2019– September 2019 as our test data. We
used one day ahead method to forecast the weather conditions. Mean Absolute Error (MAE) is
used to estimate the accuracy of our LSTM.

MAE = 1
n

n∑

i=1

|xi−x| (11)

where n,
∑

and |xi−x| are the number of errors, summation and the absolute errors respectively.
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Fig. 7 represents the actual vs. predicted temperature values for Latitude = 28.571297, Longi-
tude = 77.067101 & Altitude = 4275 ft for 15th June 2019 (8 AM–10 AM) a total of 200 values
(1 value per minute is represented).

Figure 7: Actual vs predicted temperature values for any given latitude, longitude and altitude

To calculate the effectiveness of the airspace division & scoring we simulated past flights on
two different routes. First was the actual route followed by aircraft in the past and second route
was through new divided airspace.

6.2 Thrust Drag Relation
We can use the cumulative drag index value from above equations to calculate Thrust which

would provide us an estimated value of Fuel consumed. Fig. 8 below represents the change in air
density value for a Delhi–Mumbai Flight on 13 June 2018 (Time 17:20:37–19:05:34 & distance
Covered: 1133 km). Fig. 9 represents the change in temperature, pressure & humidity values for
a 3D cube at Latitude = 28.571297, Longitude = 77.067101 & Altitude = 4275 ft on 3rd March
2018. Drag offered on Simulated Route for a Delhi–Mumbai Flight on 13th June 2018 (Time
17:20:37–19:05:34 & distance Covered: 1133 km) is shown in Fig. 10.

Figure 8: Actual vs predicted temperature values for any given latitude, longitude and altitude
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Figure 9: Recorded variations in temperature, pressure and humidity values for a 3D cube at given
latitude, longitude and altitude

Figure 10: Calculated drag values for actual and simulated route for Delhi–Mumbai flight

There was approximately seven percent less drag recorded on the simulated route against
the actual route for this Delhi–Mumbai sample flight. The experiment was repeated on Delhi–
Bengaluru, Delhi–Trivandrum, Delhi–Chandigarh routes were calculated and are shown in Tab. 3.

Table 3: Percentage reduction in drag values on simulated routes against actual routes

Route Total Flights % Drag reduction on simulated route

Delhi–Bangalore 126 6.38
Delhi–Trivandrum 150 5.45
Delhi–Mumbai 268 6.74
Delhi–Chandigarh 264 1.23
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7 Conclusions and Future Scope

The study concludes the fact that LSTM offers higher accuracy in forecasting weather con-
ditions like temperature, pressure and humidity etc. Further, a direct association was observed
between weather conditions, aerodynamic drag, air traffic congestion and economies of scale
associated with an air route. Division of airspace in three dimensional cubes may help bet-
ter prediction of environmental variables for optimal route planning and minimal drag values.
Division of airspace also gives better control over entire airspace for flight path planning as it
eventually helps in reducing drag values. As coefficient of drag is inversely proportionate to fuel
consumption, hence planning a flightpath with minimal drag values would result in higher fuel
savings. The experiment results observed a seven percent reduction in drag values on the predicted
path, hence indicates reduction in carbon footprint and better fuel economy. This experiment
was restricted to national flights only. For international flights, calculation of drag coefficient
would be a real challenge as there is little or no data available for any flight flying from over
the oceans. Generative adversarial networks could be used to generate missing trajectories over
the oceans to evaluate the performance of 4D-TP for longer duration international flights. The
future scope of this work lies with prediction of aircraft flight trajectories over the oceans and
calculating coefficient of drag on such routes for better route planning and fuel economies.
This work can further be extended to predict trajectories with minimal risk of avoid midair
collisions using image segmentation techniques [33]. The proposed technique can be deployed
to deal with extreme weather like uncertain winds, thunderstorms or other uncertain convective
environments. Furthermore, it could help in planning of safe flight trajectories in case of loss of
thrust emergencies.
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