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Abstract: Diabetes mellitus (DM) is a chronic metabolic condition characterized by persistent hyper-
glycemia due to insufficient insulin levels or insulin resistance. Despite the availability of several
oral and injectable hypoglycemic agents, their use is associated with a wide range of side effects.
Monoterpenes are compounds extracted from different plants including herbs, vegetables, and fruits
and they contribute to their aroma and flavor. Based on their chemical structure, monoterpenes
are classified into acyclic, monocyclic, and bicyclic monoterpenes. They have been found to exhibit
numerous biological and medicinal effects such as antipruritic, antioxidant, anti-inflammatory, and
analgesic activities. Therefore, monoterpenes emerged as promising molecules that can be used
therapeutically to treat a vast range of diseases. Additionally, monoterpenes were found to modulate
enzymes and proteins that contribute to insulin resistance and other pathological events caused by
DM. In this review, we highlight the different mechanisms by which monoterpenes can be used in
the pharmacological intervention of DM via the alteration of certain enzymes, proteins, and path-
ways involved in the pathophysiology of DM. Based on the fact that monoterpenes have multiple
mechanisms of action on different targets in in vitro and in vivo studies, they can be considered as
lead compounds for developing effective hypoglycemic agents. Incorporating these compounds in
clinical trials is needed to investigate their actions in diabetic patients in order to confirm their ability
in controlling hyperglycemia.

Keywords: diabetes mellitus; anti-diabetic drugs; monoterpenes

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic condition characterized by endocrine
abnormalities and persistent hyperglycemia [1–3]. DM can be classified into several types
based on the etiology, clinical manifestations, and management; however, persistent high
levels of glucose and hyperlipidemia are the major common aspects between all the major
types of DM [4–7]. Due to its complexity, DM and its complications remain a substantial
medical problem. Most of the available conventional drugs, despite their therapeutic
benefits, can produce some undesirable side effects and are expensive. Therefore, the
search for antidiabetic drugs, specifically plant-based medicine, gains importance due
to their potential therapeutic effects. Recently, several phytochemicals have been shown
to possess antidiabetic properties, and many efforts have been carried out to elucidate
their possible antidiabetic mechanisms. Monoterpenes are a group of secondary plant
metabolites that are widespread in nature and have significant hypoglycemic effect, which
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has been well-documented in several experimental studies [8–11]. The aim of this review is
to overview the activities and the underlying mechanisms by which monoterpenes exhibit
their antidiabetic effects against DM. The novelty of this study stems from the fact that it
highlights the most recent findings on the mechanisms of monoterpenes in in vitro and
in vivo studies using animal models, which in turn provides a window of opportunity for
future research in this field.

2. Diabetes Mellitus and Its Pathogenesis

DM is classified into four main subtypes including type 1 diabetes mellitus (T1DM),
type 2 diabetes mellitus (T2DM), gestational diabetes mellitus [12], and maturity-onset
diabetes of the young (MODY) [13]. T1DM, also known as insulin-dependent DM, occurs
due to the destruction of insulin-producing β-cells in the pancreas via autoimmune mecha-
nisms. Consequently, this leads to the scantiness of insulin levels and hence patients require
exogenous insulin supply [14–17]. T2DM, however, is characterized by what is known as
insulin resistance (IR) [18,19]. On the contrary, gestational diabetes is an acute form of DM
affecting pregnant women as a result of perturbations in the levels of different hormones
such as estrogen, progesterone, and cortisol [4,20]. MODY, the rarest type of DM, results
from mutations in the genes involved in glucose metabolism [5,21].

Under normal conditions, the molecular events involved in insulin signaling are
initiated by glucose oxidation and its facilitated diffusion into β-cell by glucose transporter
2 (GLUT2), the main transporter of glucose in the intestine, pancreas, liver, and kidney.
Following the entry of glucose, it is phosphorylated by glucokinase enzyme into glucose-6-
phospahte (G6P) which is considered the sensor for glucose in the pancreatic β-cell and
plays a central function in insulin secretion. Further metabolism of G6P produces ATP,
which inhibits ATP-sensitive K+ channels and results in membrane depolarization and
calcium influx through L-type voltage-dependent calcium channels. The rise in intracellular
calcium stimulates insulin release into the bloodstream [22].

Unlike T1DM, pancreatic production of insulin in T2DM may remain intact. However,
the action of insulin on various body organs is the cardinal pathological condition which
occurs due to IR, causing impaired glucose uptake by muscle tissue, inhibition of hepatic
glucose synthesis, and increased lipolysis (Figure 1) [23,24]. Typically, pancreatic β-cells
counteract for the diminished effect of insulin through increasing the release of insulin to
reverse hyperglycemia; however, as IR worsens, this compensatory mechanism becomes
less effective. Consequently, the insulin-producing capacity of the pancreas progressively
diminishes, leading to the eventual loss of pancreatic β-cells mass, apoptosis, and complete
loss of insulin production [25–28]. It is important to mention that insulin sensitivity
and/or activity is physiologically regulated by various factors such as circulating hormone
levels, plasma lipids, adipokines, and their respective signaling pathways [29–31]. The
interaction between those pathways and the insulin pathway tunes the sensitivity and
activity of insulin.
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After a meal, approximately two-thirds of the ingested glucose is utilized by skeletal
muscles through an insulin-dependent mechanism. Following its binding to its receptor,
insulin enhances the migration of the glucose transporter 4 (GLUT4) from the intracellular
compartment to the plasma membrane, where it facilitates the uptake of glucose [32,33].
Insulin binds to the α-subunit of the insulin receptor (INSR) and causes phosphorylation
of tyrosine residues in the β-subunit, which is followed by the recruitment of different
substrates such as insulin receptor substrate-1 (IRS-1), insulin receptor substrate-2 (IRS-2),
and phosphoinositide 3-kinase (PI3K) [34]. In addition to the utilization by skeletal muscle,
a large portion of glucose is absorbed from the intestines and taken up by hepatocytes to be
converted into glycogen via the action of insulin [35]. Upon binding to its receptor, insulin
causes a cascade of phosphorylation for several downstream proteins that regulate various
metabolic pathways such as gluconeogenesis, glycogen synthesis, glycogenolysis, and lipid
synthesis [36]. These metabolic processes are finely tuned by the actions of insulin and
glucagon, where insulin promotes glucose storage and glycogen synthesis, while glucagon
promotes hepatic glucose production and glycogen breakdown [35,37,38]. It is important to
mention that development of hepatic IR impairs insulin response in the hepatocytes, which
results in the inhibition of glycogen synthesis and the increase in hepatic gluconeogenesis,
lipogenesis, and synthesis of proinflammatory proteins such as C-reactive protein (CRP).
This can lead to an ongoing inflammatory state in the liver that consequently exacerbates
IR [39,40].

Postprandially, insulin binding to its receptor in adipose tissue facilitates the uptake
of glucose by GLUT4. This subsequently activates glycolysis, from which glycerol-3-
phosphate (G3P) is produced and esterified with other fatty acid- forming triacylglycerols
that act as a source of energy in the fasting state [41]. Adipose IR impairs the actions
of insulin and can therefore lead to impaired uptake of free fatty acids from the blood,
enhanced lipolysis, and impaired glucose uptake [42]. At the molecular level, it was found
that adipose IR causes activation of a defective form of AKT that impairs the translocation
of GLUT4 to the membrane and activates lipolytic enzymes, which consequently worsens
hyperglycemia. On the contrary, high levels of free fatty acids in the bloodstream can lead
to their accumulation in other organs such as the liver, which eventually affects insulin
sensitivity and hepatic gluconeogenesis and worsens T2DM [39,41].

Adipose tissue has a dynamic endocrine role and releases different proteins known as
adipokines [43,44]. It has been reported that an increase in adipose tissue size and/or mass
is associated with fibrosis, hypoxia, macrophage-mediated inflammation, and pathologic
vascularization [45]. High-fat diet can stimulate mitochondrial proteins and transcription
factors that cause adipose tissue inflammation and dysfunction [46]. The changes in the size
of adipocytes and the infiltration of immune cells induce the production of proinflammatory
cytokines such as tumor necrosis factor-α (TNF-α) and interleukins (IL-6 and IL-1β). This
causes a chronic state of inflammation known as metabolic inflammation which plays a
significant part in IR and T2DM, consequently [47].

In addition to the above-mentioned events, two types of incretins, namely glucagon-
like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are released
from the intestine after meals to stimulate pancreatic insulin secretion [14,48,49]. These pep-
tides have a short duration of action due to their deactivation via the dipeptidyl peptidase-4
(DPP-4) enzyme [50]. While both GLP-1 and GIP share the same effect on insulin se-
cretion [51–53], only GLP-1 can suppress the secretion of glucagon [54,55] and exhibit
growth-factor-like effects on pancreatic β-cells, stimulating insulin gene expression and
insulin biosynthesis [56,57]. For this reason, GLP-1 arose as an important pharmacological
target in the formulation of antidiabetic therapies via mimicking its effect [58,59]. In T2DM,
the action and the level of incretins are adversely affected [60], and the glucose-dependent
secretion of insulin is reduced in the fed state [61,62]. The pancreas becomes less respon-
sive to GIP, while it remains responsive to GLP-1 [63]. This could be justified by either
an uprise in the expression of DPP-4 or a reduction in the expression of GIP and GLP-1
receptors [64,65].
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3. Conventional Hypoglycemic Agents

Up to this day, different pharmacologic agents have been used to limit the effects of
hyperglycemia in diabetes. The mechanisms by which hypoglycemia is achieved include
stimulation of insulin secretion by sulfonylureas and meglitinides, stimulation of peripheral
glucose absorption by thiazolidinediones and biguanides, delay of carbohydrate absorp-
tion from the intestine by alpha-glucosidase, and reduction of hepatic gluconeogenesis
by biguanides. Combining lifestyle modifications (such as diet and exercise) and using
hypoglycemic agents is important to achieve long-term metabolic control and to protect
against health complications caused by DM. Several studies investigated this treatment
modality and showed the superiority of combining both lifestyle changes and pharmaco-
logical agents in the management of T2DM over using antidiabetic agents alone [66–72].
Various injectable and oral therapeutic agents have been developed and used clinically in
the management of T2DM, each of which has a unique mechanism of action that targets dif-
ferent pathological events occurring in T2DM [18,73,74] (Figure 2). For example, metformin
exhibits its effects by inhibiting hepatic gluconeogenesis [75–77], reducing insulin resistance
in skeletal muscle and adipose tissue and promoting the release of GLP-1 [78]. Furthermore,
metformin lowers plasma lipid levels by acting on the peroxisome proliferator-activated
receptor (PPAR-α) pathway.
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Sulfonylureas (SU) are insulin secretagogues that exert their action directly on the
pancreas by inhibiting ATP-dependent potassium channels on the pancreatic β-cells, which
causes cell depolarization and increases intracellular Ca2+ levels, resulting in insulin se-
cretion [74]. Additionally, they inhibit the breakdown of lipids in the liver and decrease
insulin clearance [79]. Although SU are associated with weight gain and hypoglycemic
attacks, they remain one of the most widely used agents in the management of T2DM
due to their high efficacy in reducing blood glucose levels [80]. Another group of insulin
secretagogues are meglitinides, which work through a mechanism similar to that of SU [81].
However, they cause less weight gain and hypoglycemic attacks in comparison to SU,
which makes them an ideal alternative for patients complaining of these side effects [74].
Thiazolidinediones (TZD) are a group of drugs that exert their effects by acting on the
liver, skeletal muscle, and adipose tissue where they reduce insulin resistance and improve
tissue sensitivity to insulin through the activation of PPAR-γ [82]. Moreover, TZD can also
act on another isoform of PPAR-α which accounts for its lipid-lowering properties. TZD
administration results in multiple actions such as maintaining pancreatic β-cell integrity,
decreasing the levels of inflammatory cytokines, and increasing the levels of a protein
known as adiponectin that is released from adipose tissue, causing an overall improvement
in insulin sensitivity [27,83]. Alpha-glucosidase inhibitors such as acarbose, work by in-
hibiting the enzyme α-glucosidase, which functions via the conversion of oligosaccharides
into monosaccharides in the small intestines [84]. Acarbose has a similar structure to that
of oligosaccharides, which allows it to compete for the binding site in the enzyme. As a
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result, a delay in the postprandial absorption of glucose is achieved along with a reduction
in hyperglycemia. The enzyme DPP-4 is responsible for the breakdown of incretin. Due
to its physiological function, it arose as a target for the management of T2DM [85]. In
2007, sitagliptin was approved by the Food and Drug Administration (FDA), making it
the first DPP-4 inhibitor. By inhibiting DPP-4, the action of incretins is prolonged, which
in turn improves insulin secretion, reduces glucagon secretion, and decreases the rate of
nutrient absorption into the bloodstream [86,87]. As mentioned previously, GLP-1 agonists
became available for use in the management of T2DM in 2005 when the first GLP-1 agonist
was approved by the FDA [88,89]. GLP-1 and GLP-1 agonists bind to the GLP-1 receptor
on pancreatic β-cells and inhibit ATP-activated K+ channels through activation of protein
kinase A (PKA)-dependent pathway [90,91]. Sodium glucose co-transporter-2 inhibitors
are the newest class of oral hypoglycemics that exert their action on renal tubules by sup-
pressing the sodium glucose co-transporter-2, which reduces the reabsorption of glucose
and enhances its excretion [28,92–96].

4. Monoterpenes in Diabetes

Despite the management of diabetes via the use of conventional pharmacological
agents, DM and its complications remain a substantial medical problem. The majority of
synthetic oral glucose-lowering drugs exhibit significant side effects and are expensive.
Therefore, there has recently been a shift of interest toward exploring natural plant products
for their pharmacological effects, including the treatment of diabetes. Monoterpenes are
an important group of secondary metabolites that belong to the terpenoids family of
natural products and have been recognized for their wide range of cellular and molecular
activities that could potentially underlie their positive therapeutic index. Furthermore,
their low cost, availability, low undesirable side effects, and better safety profile mark
them as promising source for synthesizing new and effective agents to treat DM. For
example, monoterpenes such as thymol and carvacrol are common ingredients of food
and therefore, not expected to have undesirable effects. Monoterpenes are composed of
two isoprene units with a general molecular formula of C10H16 and frequently contain one
double bond in their structures [11]. Monoterpenes exist in over 30 known skeletons and
can be classified into three subgroups: acyclic, monocyclic, and bicyclic monoterpenes [97]
(Figure 3). Common examples of the acyclic form include linalool, citral, and geraniol,
while important representatives of monocyclic monoterpenes include limonene, carveol,
and menthol.
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According to the size of their second ring, bicyclic monoterpenes can be classified
into three classes. The first ring in each class is a six-membered ring while the second
can be either a three (e.g., thujone), four (e.g., α- and β-pinene), or five (e.g., borneol and
camphor)-membered ring. Their hydrophobic property along with their small molecular
weight makes them the major components found in nearly all essential oils. Studies
have reported that both natural monoterpenes and their synthetic derivatives have a vast
array of pharmacological actions including anti-diabetic, hypocholesterolemic, antioxidant,
antibacterial, anti-inflammatory, anti-cancer, antihistaminic, and analgesic actions [98–100].
This review highlights the potential therapeutic effects of monoterpenes in DM.

4.1. Acyclic Monoterpenes
4.1.1. Linalool

Linalool (3,7-dimethyl-1,6-octadiene-3-ol) is one of the main monoterpenoids found
in herbal essential oils of many plants such as lavender (Lavandula spp.), which is known
for its antiarrhythmic effect. Furthermore, linalool is a main component of rose (Rosa
spp.), basil (Ocimum basilicum), neroli oil (Citrus aurantium) [101] and found in both green
and black tea. Linalool has been implicated in aroma and flavoring [102]. Previous
studies have reported potent antioxidant and antidiabetic activity of linalool [103,104].
Linalool was found to have favorable effects on glucose metabolism in animal models of
diabetes [105]. Garba et al., 2020 investigated the antidiabetic action of lemongrass tea in
T2DM model of rats. The findings of this study have shown that consumption of lemongrass
reduced blood glucose levels by 60.3% [106]. Linalool, one of the main active ingredients of
lemongrass, was shown to attenuate hyperglycemia and its associated complications [105].
The results were supported by higher glucose tolerance in lemongrass-treated diabetic rats
in comparison to control diabetic rats which could be associated with the high content of
linalool [106].

The enzymes α-amylase and α-glucosidase are accountable for the breakdown of
carbohydrates and for the hydrolysis of starch into glucose pre-absorption. A reduction
in hyperglycemia postprandially is due to the inhibition of α-amylase, which retards
carbohydrate digestion and decreases glucose levels in the blood [107]. Therefore, inhibition
of carbohydrate digestion in the gastrointestinal tract by α-amylase is one of the approaches
to treat diabetes. Previous studies have demonstrated that lemongrass could effectively
inhibit α-amylase and α-glucosidase activity [108]. For example, α-amylase inhibitory
activity of the essential oil of lemon grass, for which linalool is the main active constituent,
was found to be fifteen times higher compared to the currently used glucose lowering
drug acarbose [109], while the inhibitory activity of methanol extract of lemon grass on
α-glucosidase was more than 50% [108].

The uptake of glucose using rat diaphragm is a commonly used method to measure
peripheral utilization of glucose in in vitro studies [110]. Linalool demonstrated dose-
dependent uptake of glucose. At a concentration of 3 mM, linalool causes an increased
uptake of glucose that is almost equivalent to two units of insulin. Furthermore, linalool
was found to reduce oxidative stress and stimulate the activity of the antioxidant enzymes,
catalase, and superoxide dismutase [105].

4.1.2. Citral

Citral (3,7-dimethylocta-2,6-dienal) is a combination of the cis and trans isomers geranial
and neral, and can be found in all citrus fruits and lemon grass (Cymbopogon citratus) [111].
Cymbopogon citratus has been used over the years in Indian traditional medicine as a seda-
tive and to treat headaches and fever [111]. Citral was shown to reduce hyperglycemia
and attenuate diabetes-associated complications in earlier studies [112]. A study has re-
ported that citral exhibits a 45.7% inhibitory effect on α-amylase at a concentration of
10 mM [98]. In streptozotocin-treated rats, citral inhibited mammalian α-amylase, with an
IC50 of 120 µM, and reduced α-amylase levels in vivo. In addition, citral treatment caused
a moderate decrease in postprandial glucose and normalized blood lipid profile [112]. Due
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to their direct influence on the control of energy balance via glucose uptake, lipogenesis,
and lipolysis, 3T3-L1 adipocytes are among the most commonly used cell culture models
to study obesity and T2DM. In 3T3-L1 adipocytes, 1 µM of citral was found to suppress the
proliferation by 29.2% [98]. The results of these studies suggest that citral could be a poten-
tial antihyperlipidemic agent in diabetes. It is worth noting that several antihyperlipidemic
agents such as bile acid sequestrants exhibited a promising glucose lowering activity. Such
agents target bile acid receptors, which play a crucial role in metabolic diseases [113,114].
In fact, colesevelam, a bile acid sequestrant, caused a significant reduction in HbA1c and
fasting plasma glucose levels. Additionally, it resulted in an increase in the levels of circu-
lating incretins when used by patients with T2DM [115,116]. Furthermore, other types of
lipid lowering agents such as fibrates [117] and cholesterol absorption inhibitors such as
ezetimibe [118] have also been reported to improve glycemic control and insulin activity
through unknown mechanisms.

Citral inhibits the retinaldehyde dehydrogenase enzyme and therefore raises adipose
tissue retinaldehyde levels, leading to the inhibition of adipogenesis, increase in metabolic
rate, reduction of weight gain, and enhanced tolerance to glucose. Treating 6-week-old
male Sprague–Dawley rats with citral (10, 15, and 20 mg/kg bodyweight for 28 days)
caused a noticeable reduction in the increase of body weight. Additionally, citral-treated
rats had lower fasting glucose levels, enhanced glucose tolerance and metabolic rate, and
lower abdominal fat accumulation [119].

Supporting the above findings, a study recently conducted by Mishra et al., 2019
revealed that citral has antidiabetic as well as dyslipidemic activities. In streptozotocin-
induced diabetic rats on a high-fat diet, citral application significantly diminished glucose
levels in the blood and increased insulin levels in the plasma. Moreover, citral ameliorated
oxidative markers along with anti-oxidative enzymes of the pancreas, liver, and adipose
tissue, and regulated the activity of the glucose-metabolic enzymes in the liver [120].

4.1.3. Geraniol

Geraniol (3,7-dimethylocta-trans-2,6-dien-1-ol) is an acyclic monoterpene alcohol
found in many aromatic plants including Cinnamomum tenuipilum and Valeriana offici-
nalis. In traditional medicine, geraniol has been used to treat many ailments including
diabetes [121]. In streptozotocin-induced diabetic rats, application of geraniol for 45 days
led to a significant dose-dependent increase in insulin levels and reduction in glycated
hemoglobin, HbA1c. Furthermore, geraniol was found to ameliorate the function of the
enzymes responsible for the metabolism and utilization of glucose. Geraniol additionally
improved glycogen content in hepatocytes and preserved the histology of hepatic and
pancreatic β-cells in streptozotocin-induced diabetic rats [122].

A recent work conducted by Kamble et al., 2020 demonstrated for the first time the
efficacy of geraniol in inhibiting GLUT2 [123]. Inhibition of GLUT2 in the intestine, liver,
and kidney plays a critical role in lowering glucose levels in the blood. Moreover, the
inhibition of GLUT2 on pancreatic β-cells is anticipated to guard β-cells from glucotoxicity.

Prolonged treatment with geraniol (29.37 mm/kg body weight twice a day for 60 days)
enhanced the lipid profile and HbA1c levels [123]. In another study, 1 µM of geraniol
resulted in the suppression of 3T3-L1 pre-adipocyte proliferation by 19.9% [98]. It is clear
from these findings that geraniol could be a novel drug in treatment of DM due to the fact
that it is effective in lowering blood glucose and improving lipid profile.

4.1.4. Citronellol

Citronellol (3,7-dimethyl-6-octen-1-ol) is a linear monoterpene alcohol naturally found
in about 70 essential oils, with abundance in Cymbopogon nardus (L.) and citrus oil [124,125].
Cymbopogon nardus was previously used in Chinese medicine to treat rheumatism, fever,
and digestive problems [126]. Although citronellol has been reported to possess strong
antioxidant, anti-inflammatory, anti-cancer, and cardioprotective properties [127,128], its
role in diabetes is not well-investigated.
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Oral administration of citronellol (25, 50, and 100 mg/kg bodyweight for 30 days)
attenuated the hyperglycemia in streptozotocin-induced diabetic rats. Citronellol improved
insulin, hemoglobin, and hepatic glycogen levels and decreased HbA1c concentration.
Furthermore, there was a near to normal restoration of the altered activity of carbohy-
drate metabolic enzymes as well as hepatic and kidney markers. Citronellol supplement
preserved the histology of hepatic cells and pancreatic β-cells in streptozotocin-treated
rats [124].

Glucose uptake plays an important role in the control of plasma glucose level, thus
directly influencing glucose tolerance. Treating 3T3-L1 adipocytes with 1 µM of citronellol
exerted about 16% enhancement in glucose uptake [98].

4.1.5. Linalyl Acetate

Linalyl acetate (3,7-dimethylocta-1,6-dien-3-yl acetate) is the primary constituent of
lavender (Lavandula angustifolia) which is known in folk medicine for its sedative effect [129].
It is also a main component of Salvia sclarea oil [130]. It has been shown that linalyl acetate
possesses an anti-inflammatory effect and can restore endothelial function in rats after
oxidative stress [104,131]. To date, the reported therapeutic effects of linalyl acetate in
hyperglycemia are scarce. Treatment with 100 mg/kg linalyl acetate was more efficient in
correcting serum glucose than the antidiabetic drug metformin in streptozotocin-induced
diabetic rats. In addition, the observed cardiovascular protective and metabolic stabilization
effects of linalyl acetate could be attributed to its antioxidative and anti-inflammatory
properties, its increase in AMP-activated protein kinase expression, and its suppression of
excess serum NO [132]. The antidiabetic effects of acyclic monoterpenes are summarized
in Table 1.

Table 1. Antidiabetic effects of acyclic monoterpenes.

Compound Model Concentration Antidiabetic Activities References

Linalool T2DM rat model
Tea preparation (0.25 g/
100 mL and 0.5 g/100 mL for
4 weeks)

Lowered serum glucose and lipids;
increased insulin sensitivity and
levels of serum insulin; improved
β-cell function, increased
liver glycogen

[106]

Diaphragm of
streptozotocin-induced
diabetic rat

3 mM

Decreased oxidative stress, increased
the activity of the antioxidant
enzymes catalase and
superoxide dismutase.

[105]

Citral Hemi diaphragm of Albino rat 3 mM Increased glucose uptake [105]

Streptozotocin-induced
diabetic rats

2, 8, 16 or 32 mg/kg
body weight

Inhibited adipogenesis; increased
metabolic rate, reduced weight gain;
enhanced glucose tolerance.

[112]

Streptozotocin-induced
diabetic rats

2, 8, 16 or 32 mg/kg
body weight Inhibition of α-amylase. [112]

3T3-L1 adipocytes 1 µM Suppression of adipocyte
proliferation of by 29.2%. [98]

6-week-old male
Sprague–Dawley rats

10, 15, and 20 mg/kg body
weight for 28 days

Increased energy dissipation;
reduced lipid accumulation;
prevention of diet-induced obesity;
improved insulin sensitivity and
glucose tolerance.

[119]

Streptozotocin-induced diabetic
rats fed with high-fat diet

45 mg/kg/body weight for
28 days

Decreased blood glucose and
increased plasma insulin; increased
anti-oxidative enzymes of the liver,
adipose tissue, and pancreas;
regulated enzyme activity of
glycolysis and gluconeogenesis in
the liver.

[120]
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Table 1. Cont.

Compound Model Concentration Antidiabetic Activities References

Geraniol Streptozotocin-induced
diabetic rats

100, 200, 400 mg/kg body
weight for 45 days

Increased the levels of insulin and
hemoglobin; decreased plasma
glucose HbA1c; ameliorated
carbohydrate metabolism; preserved
normal histological appearance of
hepatic and pancreatic β-cells.

[122]

648.34 µM Inhibited GLUT2 transporter. [123]

60 days with 29.37 mm/kg
B.W. twice a day

Improved lipid profile, HbA1c levels
and renal parameters. [123]

Citronellol Streptozotocin-induced
diabetic rats

Oral administration of 25, 50,
and 100 mg/kg body weight
for 30 days

Improved levels of insulin,
hemoglobin, and hepatic glycogen;
decreased levels of HbA1c; restored
altered activities of carbohydrate
metabolic enzymes, hepatic and
kidney markers; preserved normal
histological appearance of hepatic
cells and insulin-positive β-cells

[124]

3T3-L1 adipocytes 1 µM Enhanced glucose uptake [98]

Linalyl acetate Streptozotocin-induced
diabetic rats 100 mg/kg Decreased serum glucose; reduced

oxidative stress and inflammation [132]

4.2. Monocyclic Monoterpene
4.2.1. Limonene

Limonene [1-methyl-4-(1-methylethenyl)-cyclohexene] is the main constituent of oils
extracted from orange, lemon, grapefruit, and other citrus plants. It is also frequently used
as a food additive, and a constituent of soaps and perfumes. As per the Code of Federal
Regulations, D-limonene is classified as a safe flavoring compound [133].

Limonene was shown to reduce hyperglycemia and attenuate diabetes-associated com-
plications in earlier studies [105,134]. Inhibition of protein glycation is known to improve
secondary complications in diabetes. In streptozotocin-induced diabetic rats, limonene
(100 µM) revealed 85.61% reduction in protein glycation [105]. In a study conducted by
Joglekar et al., 2013, limonene was shown to inhibit protein glycation by 56.3% at a con-
centration of 50 µM. Furthermore, BSA was used as a model protein in PatchDock studies,
which have shown that limonene has the ability to bind to the key glycation sites IB, IIA, and
IIB sub domains. It was concluded that limonene is a powerful inhibitor of protein glycation
that exhibits its effects by a novel mechanism of stabilization of protein structure through
hydrophobic interactions [135]. In 3T3-L1 adipocytes, 1 µM of (R)-(+)-limonene stimulated
both the uptake of glucose and breakdown of fats. It also upregulated glucose transporter
1 (GLUT1) expression and suppressed adipose triglyceride lipase (ATGL). (R)-(+)-limonene
(at mM range) also suppressed both α-amylase and α-glucosidase; however, such outcome
was weak [98].

In oral streptozotocin-induced diabetic rats, administration of D-limonene (50, 100
and 200 mg/kg body weight) for 45 days resulted in a significant drop in plasma glucose
and HbA1c levels. Furthermore, it resulted in a decrease in the activity of the enzymes
involved in gluconeogenesis, including glucose 6-phosphatase (G6Pase) as well as fruc-
tose 1,6-bisphosphatase. On the contrary, D-limonene inhibited liver glycogen as well
as the activity of the glycolytic enzyme glucokinase in diabetic rats. Such antidiabetic
effects were proportional with glibenclamide [136]. These findings support the potential
antihyperglycemic activity of D-limonene reported in the literature.

Limonene, alone and in combination with linalool, was found to reduce oxidative
stress and intensify the activity of the antioxidant enzymes catalase and superoxide dis-
mutase [105]. The shielding role of D-limonene against diabetes and its complications
was demonstrated by Bacanlı et al., 2017 [134]. In streptozotocin-induced diabetic rats,
D-limonene treatment (50 mg/kg body weight for 28 days) caused a remarkable reduction
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in DNA damage, glutathione reductase enzyme activity, and malondialdehyde (MDA)
levels in the plasma. In addition, it caused a significant increase in the levels of glutathione
and the activities of catalase, superoxide dismutase, and glutathione peroxidase. Overall,
lipid levels and liver enzymes were adjusted in diabetic rats [134].

4.2.2. Carveol

The monoterpene carveol [2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-ol] is a com-
ponent of the essential oils of Cymbopogon giganteus [137], Illicium pachyphyllum [138], and
Carum carvi [139]. It is also present in orange peel, caraway seeds, and dill. Carveol is
broadly used in perfumes, soap, and shampoos [140] and has several pharmacological activ-
ities including antioxidant, anticancer [141], antimicrobial [99], and anti-inflammatory [142]
effects. In addition, carveol has a low toxicity profile [143].

Recently, the antidiabetic capacity of carveol was evaluated in in vivo, in vitro, and
in silico studies. In alloxan-induced diabetic rats, carveol caused concentration- and time-
dependent decrease in the level of glucose in the blood. Carveol (394.1 µM/kg) amended
oral glucose tolerance surplus in rats and attenuated the HbA1c level and mediated hepato-
protective and anti-hyperlipidemic effects [8]. In in vitro assay, carveol inhibited α-amylase
activity in a dose-dependent manner. In addition, carveol revealed binding affinity toward
different targets associated with diabetes. In silico evaluation showed that carveol had
maximum binding affinity (lowest energy value) toward the sodium-glucose co-transporter,
intermediate binding affinity against fructose-1,6-bisphosphatase, and lowest affinity to-
ward phosphoenolpyruvate carboxykinase (PEPCK) and glycogen synthase kinase-3β
(PEPCK) [142]. The results of this study support the antidiabetic potential of carveol.

4.2.3. Terpineol

Terpineol [2-(4-methyl-3-cyclohexen-1-yl)-2-propanol] is a main constituent of Marjo-
ram (Origanum majorana) and Maritime pine (Pinus pinaster) [144]. Terpineol is widely used
in food and household products. Although the antioxidant and anti-inflammatory effects
of terpineol have been documented previously, studies highlighting its direct antidiabetic
effects are very limited. In a recent study, in vitro α-amylase enzymatic assay has shown
that both α-terpineol and its structural isomer 4-terpineol caused an inhibition in its enzy-
matic activity by 33% (IC50 1.01 ± 0.0221 mg/mL) and 40% (IC50 0.838 ± 0.0335 mg/mL)
respectively, when tested individually at a concentration of 0.670 mg/mL [145]. Further-
more, terpineol was recently reported to upregulate insulin sensitivity and lessen serum
levels of pro-inflammatory cytokines in rats fed with high fat diet [146].

4.2.4. Thymol

Thymol (2-isopropyl-5-methylphenol), a natural phenolic monoterpenoid obtained
mainly from the Thymus species (Trachyspermum ammi L. Sprague) [145], has been used in
folk medicine to treat various ailments such as diabetes and respiratory disorders [147]. Thy-
mol is a potent antioxidant and scavenger for hydroxyl radicals and superoxide anions [148].
Earlier studies on thymol have reported antimicrobial [149], anti-inflammatory [150], as
well as anticancer potential [151].

In obese murine model fed with high fat diet, thymol treatment decreased body weight
gain as well as visceral fat-pad weight. Additionally, an overall reduction in the levels of
lipids was observed. The enzymes alanine aminotransferase, aspartate aminotransaminase,
and lactate dehydrogenase were also reduced. Furthermore, thymol decreased the levels
of glucose and leptin, decreased serum lipid peroxidation, and improved the levels of
antioxidants [152]. Similarly, in mice fed with high-fat diet, thymol treatment (20, 40 mg/kg
daily) significantly reversed body weight gain and peripheral insulin resistance [153]. Sar-
avanan and Pari, (2015) tested the antihyperglycemic and antihyperlipidemic effects of
thymol in diabetic C57BL/6J mice fed with high-fat diet. Daily intragastric application of
thymol (40 mg/kg body weight) for 5 weeks caused a significant decline in plasma glucose,
HbA1c, insulin resistance, and leptin. Moreover, it lowered the levels of plasma triglyc-



Molecules 2022, 27, 182 11 of 29

erides, total cholesterol, free fatty acids, and low-density lipoprotein. On the other hand,
thymol increased high density lipoprotein cholesterol. In addition, thymol significantly
decreased hepatic lipid content including triglycerides, free fatty acids, total cholesterol,
and phospholipids [154]. More recently, Saravanan and Pari [155] have shown that thymol
possesses a protective role against diabetic nephropathy in C57BL/6J mice. Thymol hin-
dered the activation of transforming growth factor-β1 (TGF-β1) and vascular endothelial
growth factor (VEGF). In addition, it caused a substantial increase in the antioxidants,
inhibited lipid peroxidation markers in erythrocytes and kidney tissue and reduced the
lipid accumulation in kidney [156].

Supporting these results, a more recent study has shown that in streptozotocin-treated
diabetic rats, 20 and 40 mg/kg thymol significantly reduced the levels of creatinine, low-
density lipoprotein cholesterol, and hepatic enzymes including aspartate aminotransferase
and alanine aminotransferase. Furthermore, the antioxidant enzyme status was also modu-
lated after treatment with thymol [157]. Such findings indicate that thymol may possess
promising protective and anti-diabetic activity.

The antidiabetic and antioxidant properties of Thymus quinquecostatus Celak, of which
thymol is the main active constituent, were investigated. High level of thymol in T. quinque-
costatus shows the potential of this plant as a crude drug and dietary health supplement.
The ethyl acetate fraction of the methanol crude extract of T. quinquecostatus possessed
a strong antioxidant activity. In hexane fraction, α-glucosidase inhibitory activity was
positively correlated with the amount of thymol, indicating that thymol is the primary
source for antioxidant and antidiabetic activity of T. quinquecostatus [158].

The inhibitory activity of thymol (5.0 mg/mL) and its synergistic effect with p-cymene
(2.5 mg/mL) were linked to their antioxidant property by reducing the formation of
advanced glycation end products. Based on spectroscopic and electrochemical methods,
in combination with molecular docking study, it was found that the binding affinity of
thymol with bovine serum albumin is greater than glucose. Furthermore, thymol had
a protective effect toward arginine or lysine modification, indicating that it has an anti-
glycation property [9].

4.2.5. p-Cymene

p-Cymene [1-methyl-4-(1-methylethyl) benzene] is an essential oil component found in
over 100 plants, including Cuminum cyminum and thyme. Due to its use as an intermediate
in the industrial manufacturing of food flavoring, fragrances, herbicides, and medications,
p-Cymene possesses a significant commercial role [159,160]. p-Cymene is the biological
precursor of carvacrol and has a structure that is similar to thymol [161]. Earlier studies
have reported antioxidant [162] and anti-inflammatory [160] activity of p-cymene. In high
fat diet-treated adult NMRI mice, p-cymene (20 mg/kg) led to an apparent drop in blood
glucose levels as well as alanine aminotransferase and alkaline phosphatase. Additionally,
a slight alteration was detected in lipid profile. Interestingly, the effects of p-cymene were
comparable with metformin [163]. Similar findings were also observed with thymol [152].

In streptozotocin-induced diabetic rats, administration of p-cymene (20 mg/kg body
weight for 60 days) was found to lower HbA1c. Biophysical studies showed that p-cymene
can inhibit glycation-mediated conversion of α-helix to β-pleated sheet structure of bovine
serum albumin. Interestingly, it produced antiglycation effects when used in concentrations
that were 10–20 times less than the known protein glycation inhibitors, without exhibiting
any toxic effects [164].

4.2.6. Menthol

Menthol [5-methyl-2-(propan-2-yl) cyclohexan-1-ol], is a component of essential oils
such as eucalyptus and lemongrass and is responsible for the characteristic smell and
flavor of Mentha longifloia that has been used traditionally in Asia for the treatment of
respiratory illnesses. Menthol occurs in four isomers namely, (+)- and (−)-menthol, (+)- and
(−)-neomenthol, (+)- and (−)-neoisomenthol, and (+)- and (−)-isomenthol; however, (−)-
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menthol (L-menthol) is the major form that exists in nature [165]. Menthol is used to treat
several conditions including the common cold and other respiratory conditions, gastroin-
testinal disorders, as well as musculoskeletal pain [166]. In streptozotocin-nicotinamide
induced diabetic rats, application of menthol (25, 50, and 100 mg/kg/body weight) and
glibenclamide (600 µg/kg/body weight) for 45 days caused a significant reduction in the
overall levels of blood glucose and HbA1c. It also resulted in an increase in the level of
plasma insulin, liver glycogen, and total hemoglobin. Furthermore, menthol ameliorated
glucose-metabolizing enzymes, protected hepatic and pancreatic islets, and suppressed
pancreatic β-cells apoptosis in diabetic rats. The later effect was coupled with a rise in
anti-apoptotic Bcl-2 expression and a fall in pro-apoptotic Bax expression [167]. In a more
recent study, acute oral (200 mg/kg) and topical administration (10% w/v) of menthol to
high fat-fed diabetic mice were found to increase serum glucagon concentration 2 h after ad-
ministration. Furthermore, chronic oral administration of menthol (50 and 100 mg/kg/day)
for 12 weeks and topical application (10% w/v) prevented high fat diet-induced weight
gain, adipose tissue hypertrophy, liver triacylglycerol depletion, and insulin resistance. The
consequent metabolic changes of menthol in the liver and adipose tissue imitated the role
of glucagon. In the liver, an increase in glycogenolysis and gluconeogenesis was observed.
Additionally, the thermogenic activity of adipose tissue was boosted. Interestingly, in
mature 3T3L1 adipocytes, treatment with the serum of menthol-treated mice improved
the markers of energy expenditure, which was blocked following the administration of
the non-competitive glucagon receptor antagonist, L-168,049. This effect shows that the
increase in serum glucagon induced by menthol administration is responsible for the rise
in energy expenditure [168]. The antidiabetic effects of monocyclic monoterpenes are
summarized in Table 2.

Table 2. Antidiabetic effects of monocyclic monoterpenes.

Compound Model Concentration Antidiabetic Activities References

Limonene Streptozotocin-induced diabetic rats 50 µM and 100 µM Inhibited protein glycation. [105,135]

Streptozotocin-induced diabetic rat 100 µM Increased activity of catalase and
superoxide dismutase. [105]

3T3-L1 adipocytes 1 µM
Increased glucose uptake and lipolysis;
upregulated mRNA expression GLUT1 and
suppressed ATGL.

[98]

mM range Inhibited α-amylase and α-glucosidase [98]

50 mg/kg body weight

Decreased DNA damage, decreased
glutathione reductase enzyme activity,
decreased the levels of MDA in the plasma;
increased total glutathione levels, catalase,
superoxide dismutase and glutathione
peroxidase activities

[134]

50, 100 and 200 mg/kg
body weight and for
45 days

Increased plasma glucose, HbA1c levels,
and activities of gluconeogenic enzymes;
decreased the activity of glucokinase.

[136]

Carveol Alloxan-induced diabetic rat 394.1 µM/kg
Improved oral glucose tolerance overload
in; decreased the level of HbA1c; inhibited
α-amylase activity.

[8]

Terpineol α-amylase enzymatic assay
α-terpineol 0.670 mg/mL
4-terpineol
0.670 mg/mL

Inhibited α-amylase activity
Inhibited α-amylase activity [145]

Thymol High-fat diet induced T2DM in
C57BL/6J mice

Intragastric administration
of 40 mg/kg body weight
daily for 5 weeks.

Decreased plasma glucose, insulin
resistance, HbA1c, leptin and adiponectin;
lowered the levels of plasma triglyceride,
total cholesterol, free fatty acids, low
density lipoprotein; increased high density
lipoprotein cholesterol; decreased in
hepatic lipid content.

[154]
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Table 2. Cont.

Compound Model Concentration Antidiabetic Activities References

C57BL/6J mice 40 mg/kg body weight
daily for 5 weeks

Protected against diabetic nephropathy;
inhibited the activation of transforming
growth factor-β1 (TGF-β1) and vascular
endothelial growth factor (VEGF), elevated
antioxidants, inhibited lipid peroxidation
markers in erythrocytes and kidney tissue,
reduced the lipid accumulation in kidney

[156]

High-fat diet-induced obesity in
murine model

14 mg/kg orally twice a
day to 4 weeks

Decreased body weight gain, visceral
fat-pad weights, lipids, alanine
aminotransferase, aspartate
aminotransaminase, lactate dehydrogenase,
glucose, insulin, and leptin levels

[152]

Streptozotocin-induced diabetic rats 20 and 40 mg/kg thymol

Reduced creatinine, low-density
lipoprotein cholesterol, and liver
function-related enzymes, aspartate
aminotransferase and
alanine aminotransferase

[157]

1,1-dephenyl-2-picryl-hydrazyl free
radical scavenging and a reducing
power assay

Increased radical scavenging activity [158]

In vitro α-glucosidase assay Decreased α-glucosidase activity [158]

p-Cymene High-fat diet fed adult NMRI mice 20 mg/kg body weight for
6 weeks

Decreased levels of blood glucose, alanine
aminotransferase and alkaline
phosphatase; altered lipid profile.

[163]

Streptozotocin-induced diabetic rat 20 mg/kg body weight for
60 days

Lowered HbA1c, prevented
glycation-mediated transition of α-helix to
β-pleated sheet structure of bovine
serum albumin.

[164]

Menthol High-fat diet fed mice
Acute oral (200 mg/kg)
and topical administration
(10% w/v)

Increased serum glucagon concentration; [168]

Chronic oral
administration (50 and
100 mg/kg/day for
12 weeks) and topical
Application (10% w/v)

Prevented high fat diet-induced weight
gain, insulin resistance, adipose tissue
hypertrophy and triacylglycerol deposition
in liver.

[168]

Mature 3T3L1 adipocytes treated with
serum of menthol-treated mice in 0.3 µM

Improved energy expenditure markers,
which was blocked in the presence of
non-competitive glucagon receptor
antagonist, L-168,049.

[168]

Streptozotocin-nicotinamide -induced
diabetic rats

25, 50, and
100 mg/kg/body weight
for 45 days

Reduced the level of blood glucose and
HbA1c; increased the level of total
hemoglobin, plasma insulin, and liver
glycogen.

[167]

4.3. Bicyclic Monoterpenes
4.3.1. α- and β-Pinene

α-pinene [(1S,5S)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene ((−)-α-Pinene)], is a major
component of the volatile oil extract of the herb Foeniculum vulgare (fennel). Earlier
studies have reported anti-inflammatory, hypoglycemic, and hepatoprotective effects of
fennel [169]. In alloxan-induced diabetic mice, α-pinene evoked hypoglycemia at the 2nd
and 24th hours of treatment. In addition, it was reported that α-pinene possesses a strong
anti-inflammatory effect at a concentration of 0.50 mL/kg [169].

β-Pinene [6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptane Pin-2(10)-ene] is found in
numerous essential oils which possess antioxidant potential. It is one of the key constituents
of the hexanic extract of Eryngium carlinae, commonly referred to as the “frog herb”, which
has been shown to reduce hyperglycemia and hyperlipidemia and exert antioxidant activity
in diabetic rats [170,171].
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Pistacia atlantica has been proposed to have a protective effect against conditions associ-
ated with oxidative stress [172]. A- and β-Pinene are the main constituents of gum essential
oil of P. atlantica. Administration of the essential oil to diabetic rats caused a significant de-
crease in MDA and increase in glutathione, glutathione peroxidase, superoxide dismutase,
and catalase [173]. In a recent study, in vitro α-amylase enzymatic assay has shown that
both α-pinene (IC50 1.05 ± 0.0252 mg mL−1) and β-pinene (IC50 1.17 ± 0.0233 mg mL−1)
resulted in a 32% and 29% drop in enzymatic activity respectively [145].

4.3.2. Thujone

Thujone [(1S,4R,5R)-4-methyl-1-propan-2-yl)bicyclo[3.1.0]hexan-3-one] occurs mainly
as a mixture of α and β diastereoisomers in many plants including Salvia officinalis L.
(sage), Artemisia absinthium L., and Thuja occidantalis L. Traditionally, it was used by native
Americans as a remedy for several ailments such as headache, constipation, wounds, and
birthmarks. This monoterpene is commonly used as a flavoring substance in food and bev-
erages [174]. Interestingly, sage tea is known for its metformin-like effect, in particular for
the essential oil fraction which contains thujone. Therefore, thujone could possibly exhibit
some sort of an antidiabetic effect [175]. Nevertheless, animal studies that have pointed to
the potential antidiabetic activity of thujone are limited. For example, in soleus muscles,
palmitate-induced insulin resistance was assessed in the presence of thujone (0.01 mg/mL).
Initially, insulin resistance was induced with high concentrations of palmitate [176]. Sub-
sequently, the ability of thujone to restore sensitivity to insulin while preserving high
palmitate concentrations was tested. The findings of this study indicated that thujone can
ameliorate palmitate oxidation and prevent palmitate-induced insulin resistance via AMP-
activated protein kinase (AMPK)-dependent pathway that involves partial restoration of
insulin-stimulated translocation of GLUT4 [177]. Al-Haj Baddar, et al., 2011 demonstrated
that oral administration of 5 mg/kg body weight of thujone in diabetic rats over 28 days
can restore the normal levels of cholesterol and triglycerides [175]. While this finding is
promising, the adverse effects of thujone necessitates careful analysis of the results. The
narrow therapeutic window of thujone is evident in 2-year studies in rats and mice due to
the dose-dependent incidence of seizures [178].

4.3.3. Myrtenal

Myrtenal [6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carbaldehyde] is a natural monoter-
pene present in plants such as pepper, mint, cumin, and eucalyptus and used as a food
additive. It has various biological effects and acts as an antioxidant, anticancer agent,
cyclooxygenase-inhibitor, and immunostimulant [179,180]. Recently, it was found that
myrtenal exhibits antihyperglycemic, antihyperlipidemic, hepatoprotective, and β-cell
protective effects [181,182].

Oral treatment with myrtenal (20, 40, and 80 mg/kg body weight) resulted in a signifi-
cant depletion in plasma glucose and HbA1c in diabetic rats treated with streptozotocin.
Additionally, there was a rise in insulin, hemoglobin (Hb), and glycogen levels in the liver
and muscles. An enhancement of the main enzymes involved in carbohydrate metabolism
(hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and glucose-6-phosphate
dehydrogenase) was observed. Furthermore, myrtenal enhanced hepatic enzyme function
and restored islet cells and liver histology [182].

In parallel to the above findings, another study has shown that myrtenal-treated
diabetic rats displayed a reduction in plasma glucose and a simultaneous rise in plasma
insulin. Additionally, myrtenal caused an upregulation in the expression of proteins
involved in insulin signaling such as IRS2 (insulin receptor substrate 2), Akt, and GLUT2
in hepatocytes as well as IRS2, Akt, and GLUT4 in skeletal muscle [183].

Recently, the influence of myrtenal on oxidative stress, inflammation, and lipid per-
oxidation was tested on diabetic rats treated with streptozotocin. Oral administration of
80 mg/kg body weight of myrtenal for four weeks significantly decreased the diabetes-
associated alterations in hepatic and pancreatic cells. This includes antioxidant levels, lipid
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peroxidation, and proinflammatory cytokines such as TNF-α, IL-6, and the p65 subunit of
nuclear factor-kappa B (NF-kB p65). The findings of this work indicated that myrtenal can
potentially act as an antioxidant and anti-inflammatory compound against oxidative stress
and inflammation associated with diabetes [184].

4.3.4. Genipin and Geniposide

The iridoids genipin [methyl-1-hydroxy-7-(hydrozymethyl)-1,4a,5,7 tetrahydrocyclope
nta[c]pyran-4-carboxylate] and geniposide [methyl (1S,4aS,7aS)-7-(hydroxymethyl)-1-[(2S,
3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,7a tetrahydrocyclope
nta[c]pyran-4-carboxylate] exist in many plants as secondary metabolites. The basic struc-
tural skeleton of iridoids is a cyclopentane-[C]-pyran ring fused with a six-membered
heterocycle oxygenate [185]. At C1 position of the pyran ring, the hydroxyl group can
be replaced with a sugar moiety to form the genipin glycoside, geniposide. Genipin is
found in unripe Genipa americana L. (genipa) fruits, while geniposide is found in the fruits
of Gardenia jasminoides J. (gardenia, Rubiaceae family) that has been used in traditional
Chinese medicine for its choleretic and hepatoprotective activity. Earlier studies have
shown that geniposide is converted to genipin by the intestinal microflora enzymes, which
indicates that genipin is the main form of geniposide in circulating blood [186].

Genipin was shown to have anticancer, anti-inflammatory, hepatoprotective as well as
antioxidative activity [187]. Geniposide exhibits many biological effects including antioxida-
tive stress [188], anti-inflammatory [189] and antiapoptosis [190]. In addition, studies have
shown that it exerts a promising anti-diabetic activity. For example, in C(2)C(12) myotubes,
genipin (10 µM) stimulated glucose uptake in a time- and concentration-dependent manner.
It also enhanced GLUT4 translocation to the cell surface and increased the phosphorylation
of IRS-1, AKT, and GSK3β. Genipin also caused a rise in ATP levels, which inhibited
ATP-dependent K+ channels and resulted in elevated cytoplasmic Ca2+ content [191].

Administration of 25 mg/kg of genipin per day for 12 days to aged rats ameliorated
systemic as well as hepatic insulin resistance. It also alleviated hyperinsulinemia, hyper-
glyceridemia, and hepatic steatosis. Furthermore, genepin reduced hepatic oxidative stress
as well as mitochondrial dysfunction. It also improved insulin sensitivity, suppressed cellu-
lar ROS overproduction, and alleviated the reduction in mitochondrial membrane potential
(MMP) and ATP levels [192]. Guan et al., 2018 studied the effect of genipin on obesity
and lipid metabolism in diet-induced obese rats. The findings of this study demonstrated
that genipin caused an overall drop in body weight and total fat. Additionally, it reversed
insulin and glucose intolerance, dyslipidemia, adipocyte hypertrophy, and hepatic steatosis.
It also caused a reduction in serum TNF-α levels [193]. Similar results were reported by
Zhong et al., 2018, where genipin alleviated hyperlipidemia and hepatic steatosis in high-fat
diet fed mice [194].

Earlier study has shown that geniposide exhibits anti-obesity, anti-oxidant, and in-
sulin resistance-alleviating effects. Additionally, it was shown to adjust abnormal lipid
metabolism. In spontaneously obese T2DM TSOD mice, geniposide caused a reduction
in visceral fat and body weight and improved lipid metabolism. Furthermore, geniposide
had a positive therapeutic impact on glucose tolerance and hyperinsulinemia. Interestingly,
geniposide had a direct effect on the liver. In mice treated with free fatty acids, genipin
not only inhibited lipid accumulation hepatocytes, but also improved the expression of
PPARα [195].

Emerging body of evidence revealed that lipotoxicity may be a leading cause of
pancreatic β-cell apoptosis and oxidative stress in diabetes. Increased levels of plasma-free
fatty acids not only induce cytotoxicity in pancreatic β-cells leading to apoptosis, but also
promote mitochondrial perturbation, resulting in oxidative stress. In pancreatic INS-1
cells, application of geniposide (1 or 10 µM) for 7 h alleviated β-cell apoptosis induced
by palmitate and activated caspase-3 expression. Furthermore, geniposide improved
glucose-induced insulin secretion via the activation of GLP-1 receptor [196]. Another
study has demonstrated that when INS-1 cells are chronically exposed to elevated glucose
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concentrations, insulin secretion was impaired and cell apoptosis was observed. This
change was reversed by the application of geniposide [197]. However, the effects of
geniposide on insulin secretion after acute exposure to glucose was dependent on glucose
concentration. When INS-1 cells were acutely stimulated with high glucose concentrations,
the protective effect of geniposide was diminished. This could be attributed to the capability
of geniposide to protect the cells from damage resulting from prolonged release of insulin
and glucotoxicity under high glucose load [198].

An earlier study has assessed the direct effect of geniposide on β-cell function using
both rat pancreatic islets and dispersed single islet cells [199]. Geniposide was found to
mediate insulin release via the activation of GLP-1R and adenylyl cyclase (AC)/cAMP sig-
naling pathway. In general, the effect of GLP-1R agonists is linked to cAMP signaling [200].
In this study, PKA suppression inhibited geniposide-mediated secretion of insulin, imply-
ing that geniposide exhibited its actions mainly via the activation of cAMP-dependent
PKA [199]. It is well known that activation of pancreatic voltage-gated K+ channels re-
polarizes cells and suppresses insulin release. Therefore, inhibition of these channels
could prolong the duration of the action potential and promote glucose-dependent insulin
secretion [201]. Interestingly, Zhang et al., 2016 stated that geniposide can inhibit voltage-
gated K+ channels in a concentration-dependent manner. This was diminished upon
treating β-cells with GLP-1R and PKA inhibitors. Collectively, the findings of this study
suggest that inhibition of voltage-gated K+ channels is coupled to geniposide-induced in-
sulin release by activating the downstream of GLP-1/cAMP/PKA signaling pathway [199].

4.3.5. Catalpol

Catalpol[(2S,3R,4S,5S,6R)-2-[[(1S,2S,4S,5S,6R,10S)-5-hydroxy-2-2(hydroxymethyl)-3,9-
dioxatricyclo[4.4.0.02,4]dec-7-en-10-yl]oxy]-6-(hydroxymethyl) oxane-3,4,5-triol, is an iri-
doid glucoside isolated from the root of Rehmannia glutinosa, which has previously been
used in traditional Chinese medicine to manage hyperglycemia for decades. Earlier studies
have reported that catalpol exhibits an antidiabetic potential, which is attributed to its
antioxidant property. In animal models, the oral dose of catalpol that caused a significant
antidiabetic effect ranged from 2.5 to 200 mg/kg and 10 to 200 mg/kg in rats and in mice,
respectively [202].

Catalpol acts through several mechanisms that affect insulin-sensitive organs like the
liver, skeletal muscle, adipose tissue, and pancreas. Furthermore, catalpol adjusts several
genes and proteins in the pancreas, skeletal muscle, and adipose tissue that have a crucial
role in the management of diabetes [202].

In high-fat and streptozotocin-treated diabetic C57BL/6J mice, administration of 100
and 200 mg/kg catalpol over four weeks decreased the p (Ser 307)-IRS-1 and increased the
p (Ser 347)-AKT and p (Ser 9)-GSK3 β. Such effect adjusted the impaired insulin pathway in
the liver through PI3K/AKT pathway. Furthermore, catalpol prevented gluconeogenesis by
enhancing the activity of AMPK and inhibiting PEPCK and G6Pase protein expression [203].
In spontaneous diabetic db/db mice treated with 80 or 160 mg/kg catalpol for four weeks,
p-AMPK and GLUT expression were significantly enhanced in liver, skeletal muscle, as
well as adipose tissue, which promoted the uptake of glucose into the cells [204].

In spontaneous diabetic db/db mice, the lowered expression of IRS-1 resulted in
negative regulation of insulin signaling cascades, as IRS-1 is an important ligand in activat-
ing the PI3K/AKT pathway. Furthermore, decreased activity of isocitrate dehydrogenase
2 (IDH2), an enzyme that catalyzes the citrate cycle, attenuates glucose metabolism and ATP
production. It is well-known that glucose-6-phosphate 1-dehydrogenase (G6PD2) catalyzes
the pentose phosphate pathway that utilizes glucose to produce NADPH and ribose-5-
phosphate. The downregulation of G6PD2 enzyme decreases the glucose metabolism. On
the other hand, upregulation of suppressor of cytokine signaling 3 (SOCS3) enzyme can
inhibit the tyrosine phosphorylation of the insulin receptor, leading to the suppression
of insulin signaling pathway [205–207]. Liu et al., 2018 reported that oral treatment with
catalpol (25, 50, 100, and 200 mg/kg) upregulated IRS-1, IDH2, and G6PD2 expression,
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and downregulated SOCS3. Collectively, the findings indicate that catalpol can increase
glucose metabolism through accelerating the citrate cycle and pentose phosphate pathway
and promoting insulin signaling pathway [204].

The antidiabetic effects of bicyclic monoterpenes are summarized in Table 3. The
mechanisms of action of the above-mentioned monoterpenes are summarized in Figure 4.

Table 3. Antidiabetic effects of bicyclic monoterpenes.

Compound Model Concentration Antidiabetic Activities References

α-Pinene Alloxan-induced diabetic mice i.p. injection of 0.25 mL/kg α-pinene Evoked hypoglycemia activity at the 2nd and
24th hours. [10]

α-amylase enzymatic assay 0.670 mg/mL Inhibited α-amylase activity. [145]

β-Pinene Streptozotocin-induced diabetic rat
Oral administration of 30 mg/kg of
hexanic extract (17.53% β-pinene)
daily for 7 weeks

Ameliorated hyperglycemia and
oxidative damage. [170]

α-amylase enzymatic assay 0.670 mg/mL Inhibited α-amylase activity. [145]

Thujone
Palmitate-induced insulin resistance
in soleus muscles of male
Sprague-Dawley rats

0.01 mg/mL (incubation for 6 h in
presence of palmitate)

Restored insulin sensitivity; ameliorated
palmitate oxidation and rescued
palmitate-induced insulin resistance via
AMPK-dependent mechanism involving partial
restoration of insulin-stimulated
GLUT4 translocation.

[177]

Alloxan monohydrate-induced
diabetic rats 5 mg/kg thujone for 28 days Adjusted cholesterol and triglyceride levels to

normal levels. [175]

Myrtenal Streptozotocin-induced diabetic rat 80 mg/kg body weight (orally)
Adjusted antioxidant levels, lipid peroxidation,
and proinflammatory cytokines (TNF-α, IL-6,
NF-kB p65).

[184]

Streptozotocin-induced diabetic rat 80 mg/kg body weight (orally)

Reduced plasma glucose; increased plasma
insulin; upregulated IRS2, Akt, and GLUT2 in
hepatocytes; upregulated IRS2, Akt, and GLUT4
in skeletal muscle.

[183]

Streptozotocin-induced diabetic rat 20, 40, and 80 mg/kg body
weight (orally)

Depleted plasma glucose and HbA1c; increased
insulin, Hb, and hepatic and muscle glycogen;
enhanced carbohydrate metabolic enzymes and
hepatic enzyme function; restored islet cells and
liver histology.

[182]

Genipin C2C12 myotubes 10 µM

Promoted GLUT4 translocation to the cell
surface; increased the phosphorylation of IRS-1,
AKT, and GSK3β; increased ATP levels which
inhibited ATP-dependent potassium channels;
increased cytoplasmic calcium.

[191]

Aging rats 25 mg/kg genipin or vehicle once daily
for 12 days

Adjusted insulin resistance; ameliorated
systemic and hepatic insulin resistance;
alleviated hyperinsulinemia, hyperglyceridemia,
and hepatic steatosis; reduced hepatic oxidative
stress and mitochondrial dysfunction; improved
insulin sensitivity; inhibited cellular ROS
overproduction; alleviated the reduction of
levels of MMP and ATP.

[192]

Diet-induced obese rats

Reduced body fat; Reversed dyslipidemia,
glucose and insulin intolerance, adipocyte
hypertrophy, and hepatic steatosis. Reduced
serum tumor necrosis factor-α levels.

[193]

Diet-induced obese mice 5 or 20 mg/kg/day Alleviated high-fat diet induced hyperlipidemia
and hepatic steatosis. [194]

Geniposide Spontaneously obese T2DM
TSOD mice

Caused a reduction in body weight and visceral
fat accumulation, improved lipid metabolism
and intrahepatic lipid accumulation, adjusted
hyperinsulinemia glucose tolerance, inhibited
the accumulation of lipid in hepatocytes of free
fatty acid treated rats, improved the expression
of PPARα.

[195]
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Table 3. Cont.

Compound Model Concentration Antidiabetic Activities References

Pancreatic INS-1 cells 1 or 10 µM for 7 h

Alleviated β-cell apoptosis induced by
palmitate, activated caspase-3 expression,
improved glucose stimulated insulin secretion
by activating GLP-1R

[198]

Pancreatic INS-1 cells 1 or 10 µM for 5 days Increased insulin secretion in β-cells and
decreased apoptosis [197]

Pancreatic islets and dispersed single
islet cells from Male Sprague-
Dawley (SD) rat

1 and 10 µM
Inhibition of voltage-dependent potassium,
activated GLP-1/cAMP/PKA signaling
pathway and insulin secretion.

[199]

Catalpol
High-fat diet and
streptozotocin-induced diabetic
C57BL/6J mice

100 or 200 mg/kg, p.o., four weeks

Adjusted the impaired insulin pathway in the
liver through PI3K/AKT pathway (decreased p
(Ser 307)-IRS-1 and increased the p (Ser
347)-AKT and p (Ser 9)-GSK3 β), prevented
gluconeogenesis by enhancing the activity of
AMPK and inhibiting PEPCK and glucose
G6Pase protein expression.

[203]

db/db mice 25, 50, 100, and 200 mg/kg (orally)
Upregulated the expression of IRS-1, IDH2, and
G6PD2, and downregulated the expression of
the SOCS3.

[205]

High fat diet and
streptozotocin-induced diabetic mice

100 or 200 mg/kg for four
weeks (orally)

Upregulated SOD2 and GSH-Px, suppressed the
serum level of MDA and NOX4. [203]

Glucosamine-treated HepG2 cells 20–80 µM
Increased the levels of SOD and GSH-Px,
decreased the MDA level and NOX4 protein
expression.

[203]

C57BL6/J mice fed with high fat diet 200 mg/kg for 4–8 weeks Increased skeletal muscle insulin sensitivity by
activating IRS-1/AKT/GLUT4. [203]

db/db mice 200 mg/kg for 8 weeks
Augmented myogenesis by increasing
expression of MyoD, MyoG and MHC
expressions

[204]

High glucose treated C2C12 cells 10, 30, 100 µM for 24 h Increased MyoD and MyoG mRNA/
protein levels. [203]

Skeletal muscle of db/db mice 200 mg/kg/day for 8 weeks (orally)
Increased number of mitochondria,
mitochondrial DNA levels, and expression of
genes involved in mitochondrial biogenesis.

[205]
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5. Structure–Activity Relationship

Although monoterpenes possess multiple pharmacological and molecular mecha-
nisms of action, their structure–activity relationship has not been fully elucidated yet.
In vitro and in vivo data summarized in this review demonstrate that there is a wide range
of mechanisms of action by which monoterpenes exhibit their antidiabetic effects. These in-
clude (1) inhibition of α-amylase and α-glucosidase, (2) stimulation of insulin release,
(3) stimulation of glucose uptake, (4) increase in insulin sensitivity, (5) inhibition of
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gluconeogenesis, (6) reduction in cellular oxidative stress, (7) reversal of dyslipidemia,
(8) increase in anti-inflammatory activity, and (9) inhibition of pancreatic β-cell apoptosis.
The current review discusses the antidiabetic effect of different monoterpenes using in vitro,
as well as in vivo models, in which oxidative metabolism is an essential factor to consider.
For example, p-cymene could be hydroxylated as a result of oxidative metabolism at a
position comparable to the hydroxyl group position in α-terpineol. Hydroxylation of p-
cymene also leads to the biosynthesis of an entirely different monoterpene, namely thymol,
in which the antioxidant and antidiabetic properties are attributed to the pharmacophore
of the phenolic hydroxyl group in its chemical structure. Therefore, it could be highly
anticipated that structural modification of the parent molecule (p-cymene), such as the
introduction of hydroxyl group, enhances its antioxidant activity. This is also applicable to
other compounds, such as citral, which contains an aldehyde group. It is well-known that
aldehydes are highly resistant to oxidative deterioration [208]. Citral has a high tendency
to be oxidized and therefore, the aldehyde group could be easily converted to a carboxylic
acid group. Such potential metabolism of the aldehyde group is also applicable to the
compound myrtenal. Moreover, limonene is a precursor for carveol. Considering the
carbon numbering relative to limonene, the presence of an oxygenated group at carbon-6
conjugated to a double bond at carbon-1 and an isopropenyl group at carbon-4 were found
to be the major chemical features relevant for activity and potency of carveol. For example,
compared to limonene and other limonene derivatives, carveol significantly decreased
lipopolysacharide (LPS)-induced nitric oxide (NO) production in murine macrophages.
This anti-inflammatory activity was credited to the chemical features that are absent in
other compounds [209]. Earlier studies have attributed the effect of monoterpenes to
their volatility [11], hydrophobicity [210], and non-specific [211] and non-competitive [212]
mechanisms of action. The lipophilic characteristic of the monoterpene skeleton combined
with the nature of the functional group is essential for its activity. It has been proposed
that the rank of activity is the greatest for aldehydes (e.g., citral), followed by alcohols
(e.g., linalool and geraniol), followed by hydrocarbons (e.g., p-cymene and limonene). It
should also be noted that some monoterpenes (e.g., catalpol) that exist in glycosylated
form are very polar, which also affects their biological activity [213]. Compounds that
contain phenolic groups are known to confer protection against the deleterious effects of
free radicals both by absorbing or neutralizing free radicals and by augmenting endogenous
antioxidants [214]. Additionally, studies have shown that the presence of a phenolic struc-
tural moiety displays potent antioxidant effects and/or direct radical scavenging that can
account for the antidiabetic activity of monoterpenes. Thymol and 4-terpineol are typical
examples that have been reported for their antihyperglycemic effects [145,154]. Supporting
these findings, Zunino and Zygadlo (2004) concluded that most potent monoterpenes are
those that are alcohols and phenols [215]. A study conducted by Javan and Javan (2014)
evaluated the structure-radical scavenging activity of thymol derivatives. It was concluded
that the presence of an unsaturated double bond is the main factor that determines the
antioxidant and radical scavenging activity of the monoterpene derivatives [216]. Inter-
estingly, it was shown that the incorporation of monoterpenes into other groups such as
flavonoids augments their antioxidant effect [217]. Whether a monoterpene is a simple
hydrocarbon (e.g., p-cymene and limonene), hydroxy derivative, or phenolic, a potential
antidiabetic effect has been reported at low doses. However, due to the wide range of
variations in experimental settings (e.g., range of concentrations tested, modes of drug
administration, cell type, and animal models used), in addition to controversial in vitro and
in vivo findings and their species dependency, direct comparison of in vitro and in vivo
potency between the various subtypes of monoterpenes is difficult. In fact, more in vivo
studies should be undertaken to confirm in vitro findings. Furthermore, a full-scale phar-
macokinetic profiling is needed to interpret the inconsistency between results observed in
in vitro and in vivo preclinical studies.

Based on the above, structure–activity relationship among monoterpenes can be made
only when the effect of each compound (acyclic, monocyclic, and bicyclic) is investigated
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using a single target in vitro, in which pharmacokinetic profile (absorption, distribution,
metabolism, and elimination) is excluded. In addition, an in silico molecular docking
approach must be used to predict the molecular mechanism of action of each monoterpene
on its potential target related to diabetes. Determination of the order of potency of the
monoterpenes under standardized conditions, will help in correlating the activity with
structural features to identify the relevant structural determinants of antidiabetic activity.

6. Summary and Conclusions

DM is a disease associated with high rates of morbidity and mortality and one of
the leading causes of death in the world. The major complications associated with di-
abetes mellitus are classified as microvascular (including retinopathy, neuropathy, and
nephropathy) and macrovascular (including cardiovascular myopathy and cerebrovascular
diseases) [218,219]. Hyperglycemia plays an important role in the onset and development
of these complications, mainly by generating reactive oxygen species (ROS) which causes
lipid peroxidation and membrane damage. Cardiovascular (CV) risk factors such as obe-
sity, hypertension, and dyslipidemia are common in patients with DM, placing them at
increased risk for cardiac events. DM can be controlled by targeting multiple components
like glucose transport, insulin signaling, insulin secretion, lipid regulation, inflammation,
and oxidation. Despite the availability of different classes of antidiabetic agents, side effects
like weight gain and hypoglycemia affect patients’ adherence to therapy. Novel medicinal
compounds can be synthesized and designed for the treatment of several diseases based on
the chemical structure of these molecules. Monoterpenes are the main components of essen-
tial oils and have been recognized for their wide range of cellular and molecular activities
that could potentially underlie their positive therapeutic index. Due to their abundance
in occurrence, various biological activities, and high safety profile, monoterpenes became
central for research and development around the globe. In this article, the pathogenesis of
DM and the classes of antidiabetic agents used for the management of the disease were
discussed. Moreover, we summarized the effects of selected acyclic, monocyclic, and
bicyclic monoterpenes that are supposed to possess a potential role in the management
of DM. Based on the fact that monoterpenes show structural complexity and diversity,
comparison of the net antidiabetic effect between the three subcategories of monoterpenes
cannot be made due to inconsistency in dose, duration, mode of drug administration, target
tissue, and animal model used. To accurately determine which category of monoterpenes
(acyclic, monocyclic, bicyclic) can exhibit the greatest antidiabetic effect, a comparison
must be made using the exact same experimental conditions (concentration used, cell and
tissue type targeted, etc.). However, based on extensive review of experimental studies, it
has been proposed that the rank of activity is the greatest for aldehydes (e.g., the acyclic
monoterpene citral), followed by alcohols (e.g., the acyclic monoterpenes linalool and
geraniol), followed by hydrocarbons (e.g., the monocyclic monoterpenes p-cymene and
limonene) [213]. Due to the fact that monoterpenes provide a promising area of research,
further studies with regards to their structure-activity relationship as well as structural
modification are crucial to maximize their therapeutic effects. Their use in combination
with other monoterpenes or natural compounds should be carried out in the future to fill
in the gaps. Additionally, more research is still needed to investigate the actions of these
molecules on diabetic patients in order to confirm their therapeutic ability in controlling
hyperglycemia and dyslipidemia caused by the disease.
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