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Abstract: In this article, a Host-Based Intrusion Detection System (HIDS) using a Modified Vector
Space Representation (MVSR) N-gram and Multilayer Perceptron (MLP) model for securing the
Internet of Things (IoT), based on lightweight techniques and using Fog Computing devices, is
proposed. The Australian Defence Force Academy Linux Dataset (ADFA-LD), which contains
exploits and attacks on various applications, is employed for the analysis. The proposed method is
divided into the feature extraction stage, the feature selection stage, and classification modeling. To
maintain the lightweight criteria, the feature extraction stage considers a combination of 1-gram and 2-
gram for the system call encoding. In addition, a Sparse Matrix is used to reduce the space by keeping
only the weight of the features that appear in the trace, thus ignoring the zero weights. Subsequently,
Linear Correlation Coefficient (LCC) is utilized to compensate for any missing N-gram in the test
data. In the feature selection stage, the Mutual Information (MI) method and Principle Component
Analysis (PCA) are utilized and then compared to reduce the number of input features. Following
the feature selection stage, the modeling and performance evaluation of various Machine Learning
classifiers are conducted using a Raspberry Pi IoT device. Further analysis of the effect of MLP
parameters, such as the number of nodes, number of features, activation, solver, and regularization
parameters, is also conducted. From the simulation, it can be seen that different parameters affect the
accuracy and lightweight evaluation. By using a single hidden layer and four nodes, the proposed
method with MI can achieve 96% accuracy, 97% recall, 96% F1-Measure, 5% False Positive Rate (FPR),
highest curve of Receiver Operating Characteristic (ROC), and 96% Area Under the Curve (AUC).
It also achieved low CPU time usage of 4.404 (ms) milliseconds and low energy consumption of
8.809 (mj) millijoules.

Keywords: IoT security; Fog Computing; intrusion detection; N-gram; multilayer perceptron

1. Introduction

This work proposes lightweight solutions on the basis of standardized resources
for the secure connection of IoT devices. This ensures a secure communication between
the constrained environment devices and typical Internet hosts, using a lightweight yet
standard compliant Internet security anomaly intrusion detection system.

Fog Computing offers a platform that addresses issues linked with the security as well
as the privacy of IoT, since the IoT devices have very limited computational resources and
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those devices might not be able to perform the required computational tasks. Consequently,
more development will occur in the area of intrusion detection because computer networks
encounter new attacks daily. In the past decades, critical attacks have hit the Internet,
leading to appalling consequences for computer users of different levels, such as companies,
end-users, and governments [1,2]. The main challenge is to design reliable, secure IoT
devices, including the Fog nodes that are located near the network edge. Fog Computing
refers to a paradigm that deals with an extension of Cloud Computing as well as network
edge services for the purpose of addressing the Cloud’s in-built glitches, such as the
absence of support for mobility, latency, and awareness of location. The Fog system refers
to a medium that is decentralized and has the ability to operate as well as process local
data, which can be further installed in a heterogenic hardware, thus ensuring it is suitable
for IoT applications. Importantly, Intrusion Detection Systems (IDSs) comprise a vital
segment of the security configuration for any IoT or Fog related network, with the aim of
ensuring top-notch service quality. Moreover, a lightweight IDS is more reliable, as there is
a lack of resources for IoT and Fog related devices. There has been extensive research on
Anomaly-based IDSs as protective techniques used in addressing the detection of attacks
that are not known, known as zero-day attacks. Dissimilar to the types of IDS that are
signature-based, they detect attacks based on pre-determined signature and known attacks.
An IDS that is anomaly-based is more concerned with detecting novel kinds of attacks,
unknown to the system [3,4]. However, this process is achieved via variation detection
in the way the system behaves with regards to a previously defined profile of a normal
system. The prediction of the anomalous behavior of a process in execution via the trace of
a system call is a normal act among the security-based community and remains an active
area of research. In addition, it is a distinctive problem in the recognizing of patterns, and
it can be solved through algorithms in machine learning.

Machine Learning Based IDS for IoT Applications, within the computer network
security domain, can be described as activities entailing the attempt of outer entities
infiltrating a network’s ability to access a device so as to steal its information [5]. In
previous times, IDS has been employed; however, due to the contemporary challenges
associated with IoT new age, most of the IoT devices possess very minimal resources which
run difficult security solutions, thus leading to the non-effectivity of the systems. According
to Jan and his companions [6], a lightweight IDS probably provides a beneficiary solution
for IoT devices; it makes use of machine learning algorithms for the detection of attempts,
thus injecting irrelevant data to a network [7] and placing more focus on securing medical
devices. Due to the nature of IoT systems, comprising different devices that produce a
massive volume of data for overworking IDS, there is a need to combine different machine
learning algorithms for the improvement of the detection rate [8].

According to the characteristics of Fog Computing, this article investigates and evalu-
ates a general scheme: the IDS in an IoT environment based on machine learning. Further-
more, the proposed system employs a feature extraction technique based on Perceptron,
thus evaluating the performance of the Modified Vector Space Representation (MVSR)
technique, referred to as N-gram, which serves as templates for the training phase. In the
pre-processing phase of this research, the feature selection process is added innovatively.
The reason behind this design is to ensure improvement of the classifier algorithm to enable
it to be lightweight during task performances hosted by Fog Computing. Furthermore,
in this study, there is a comparison of the performance of some feature selection princi-
pal component analysis (PCA) with Mutual Information (MI) using Filter Methods. A
simulation study made use of different algorithms for classification. The findings from
the experiment revealed that their approach performed well, and it aided an accurate
distinctive process behavior via system calls. This research therefore presents the design
and performance evaluation of the technique used to represent the Modified Vector Space
(MVS) based on raw ADFA-LD system call trace data, which is called N-gram. This is in
conjunction with comparing other classifier designs, based on the majority of the classifiers,
such as Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM)—Linear,
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Support Vector Machine (SVM)—Radial Basis Function (RBF), K-Nearest Neighbor (KNN),
and Naive Bayes as intrusion detection classifiers, as well as verifying MLP superiority.
Furthermore, the model’s performance is evaluated using Raspberry Pi, a popular IoT
device. On this note, this research is considered to solve issues related to the Evaluation
Performance (Recall, F1-Masure, Accuracy, False Positive Rate (FPR), Receiver Operating
Characteristic (ROC), and Area Under the Curve (AUC)) and evaluate CPU Usage Testing
Time and Energy Consumption. Finally, from the evaluated metrics, the research proposes
the best lightweight IDS based on vector space representation (1-gram, 2-gram) as well as
compare the presented IDS against the ADFA-LD.

1.1. Motivation

The focus of this research is the build-up of a lightweight security solution for IoT sys-
tems. This enhances the security of the Fog devices and reduces the overhead at the cloud
side. Figure 1 shows the structure of the lightweight IDS for a Fog Computing environment.
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The Main Motivations of This Research

• Reducing and mitigating the security challenges in IoT—this work would serve as
a general scheme of the Intrusion Detection System, in accordance with the Fog
Computing Environment’s features.

• Improving and examining different feature extraction and selection methodologies
compatible with the constrained resources of Fog Computing.

• Evaluating the performance of different machine learning models based on time,
energy consumption, and space complexity.

1.2. The Work Contribution

Regarding the security of IoT systems, issues such as suitability of high-end traditional
security solutions exist due to the challenge of low storage capacity as well as low power
for processing the IoT devices. Additionally, connectivity between IoT devices lasts for
long periods of time without any human intervention [9–11]; the hosting of a Fog node
could be done via a large group of devices comprising video surveillance cameras, routers,
embedded servers, switches, and industry-based controllers. Most of the aforementioned
devices might have insufficient performing computational power; for instance, there is a
need for efficient performance as well as the provision of real-time feedback and responses
by intrusion detection algorithms, data analysis, and protocols used in cryptography. Thus,
lightweight protocols and algorithms that do not require high-end computing resources
are needed. An, Zhou, Lü, Lin and Yang [12], with the aim of overcoming the issue of
space limitation among Fog nodes, proposed a lightweight IDS, which they referred to
as Sample Selected Extreme Learning Machine (SS-ELM). The dataset employed by the
researchers was the KDD Cup 99, coupled with SS-ELM, which outperformed the classical
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Back Propagation (BP) algorithm with regard to the time spent in training and the accuracy
of detection. Consequently, Hosseinpour, Vahdani Amoli, Plosila, Hämäläinen and Ten-
hunen [13] proposed an Artificial Immune System [14] that was lightweight and distributed
IDS, with a detection accuracy reaching 98%. Furthermore, as a means of detecting the
behavior of attacks on ADFA-LD, and with an FPR achievement of less than 20%, Xie, Hu,
Yu and Chang [15] employed frequency-based models. Invariably, the work was proceeded
by Xie, Hu and Slay [16], who implemented a single class SVM model on short sequences.
Overall, a better performance was achieved; however, the research encountered a low
positive rate of about 20%. In countering these challenge, another researcher [17] imple-
mented a vector space representation and used several classifiers in attaining a detection
accuracy above 95%. Among the primary lapses in the work with lightweight IDS are the
use of outdated datasets. In addition, IDS models that make use of contemporary datasets
are specially designed for cloud-related platforms. The aforementioned challenges reveal
the need to develop lightweight smart security solutions that are easily distributed and
possess the ability to last long in service. Instead of ensuring individual security for many
IoT devices, it is more reasonable to ensure the implementation of network data security
solutions. The artificial intelligence theories, like Machine Learning, have already proven
their significance when dealing with heterogeneous data of various sizes [18,19]. Thus, in
this study, a lightweight IDS via the use of a suitable host dataset was developed. Hence,
the core contributions of this work are as follows:

• To review security challenges in IoT. Based on the review, a general architecture of
lightweight IDS based on the machine learning method is put forward. We also review
the specific aspects and look at the advantages, limitations, and key challenges.

• To explore Intrusion Detection Systems (IDSs) using limited resources, such as a Fog
node (Raspberry Pi 3), using a contemporary dataset, ADFA-LD, rather than the
outdated KDD Cup 99 dataset.

• To propose a lightweight technique for Intrusion Detection Systems in a Fog Com-
puting environment, which reduces and mitigates the overheads in the Cloud secu-
rity challenges.

• To examine and improve different feature extraction and selection methodologies that
are compatible with the constrained resources of Fog Computing.

• To evaluate the performance of different machine learning models based on time,
energy consumption, and space complexity and to evaluate the performance of MLP
and its different parameters via a single hidden layer perceptron for practical detection
time and energy, deference’s number of nodes, and reduced computational complexity
for the selection and extraction of features.

The rest of the paper is structured as follows: Section 2 discusses the related works and
analyzes the requirements of IoT security events and IDS in Fog Computing. It also presents
a brief review of the IDS literature for a foundation of the presented work. It specifies the
evolution and history of lightweight IDS based machine learning in the components of the
IoT and their drawbacks. Section 3 is an overview of the methodology and the technical
background of this work. Section 4 provides the analysis of the benchmark ADFA-LD
dataset and details of an experiment in terms of the software and hardware used. We
discuss the evaluation of the results in Section 5. Section 6 is a summary of the conclusion,
and future work is presented in Section 7.

2. Related Work

This article is aimed at motivating researchers in the field of IoT security to develop
IDSs via lightweight-based machine learning for the securing of IoT learning. It proposes
suitable approaches for assessing the performance of classifiers statistically.

2.1. Fog Computing and IoT

Figure 1 shows how Fog Computing extends the cloud computing and its services
from the core to the edge of the network. The general structure of Fog Computing con-
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sists of three main components: (i) end devices; (ii) Fog nodes; and (iii) Back-end cloud
infrastructure. Fog computing provides computation and storage in addition to network
services between the edge and the cloud servers. Fog computing nodes are heterogeneous
in nature and are deployed in a diverse set of environments.

Fog computing is becoming an efficient and cost-effective distributed computing
paradigm to support applications on billions of connected devices forming the Internet
of Things (IoT). Fog computing is proposed to help resolve issues in IoT applications that
require low latency, geolocation, and mobility support in addition to location awareness.
The infrastructure of Fog Computing allows applications to run in an environment close to
the edge of the network and to reduce the overhead in the cloud [20]. Fog computing is a
platform that, similar to the cloud, provides computing resources, storage, and application
services to the end user [21]. As compared to Cloud Computing, which empowers client
computers via the distribution of resources for the computing and storage of data that are
resident in a remote server, or the “cloud”, Fog Computing ensures the availability of such
resources to connected clients closer to the data source.

2.1.1. Fog Computing and Similar Technologies

Though Cisco was the first to suggest the name “Fog Computing”, related ideas have
been researched and proposed by other parties. The subsections below provide details
regarding such related technologies, with the inclusion of how they are different from Fog
systems. In addition, a more comprehensive comparison of these similar technologies is
available in the literature [22,23] for edge computing.

Edge Computing: this deals with performing localized device processing via PAC, a
controller that helps in the handling of data communication, processing, and storage [23]. It
has more advantages than Fog Computing due to its ability to reduce failure points as well
as ensure the independent nature of individual devices. Nevertheless, this same feature is
responsible for its difficulty in managing and accumulating data, especially in large scale
networks, for example, the IoT [24].

Cloudlet: this refers to the middle aspect of the three-tier hierarchy referred to as
“mobile device; cloudlet; cloud”. Cloudlet comprises four main characteristics, namely the
ability to totally self-manage, possession of adequate computing power, built on standard
cloud technology, and less end-to-end latency [25]. However, there are differences between
Fog Computing and Cloudlet, such as non-suitability of application virtualization to
the environment, consumption of more resources, and the inability to work in offline
modes [25,26].

Micro-Data Center: this refers to a minute fully functioning data center that houses
numerous servers that are capable of supporting many virtual machines [27]. Numerous
technologies, including Fog computing, are able to benefit from centers of micro data, due
to their aptitude for latency reduction, conservation of bandwidth consumption, inbuilt
security protocols, relative portability, and enhanced reliability, via compression, and the
potential of accommodating numerous novel services.

Fog computing ensures that storage and computation are provided apart from the
services occurring in the network within cloud servers and the edge. The nodes of Fog
Computing are quite heterogeneous and thus are deployed in different environments.

2.1.2. Fog Computing Mitigating Security Challenges in IoT

The introduction of Fog Computing was as an means of extending that of cloud
computing; thus, it inherited many of the privacy and security challenges faced by the
cloud [28,29]. Solutions to security issues that were designed for the cloud could actually be
applied in the Fog Computing area; nevertheless, limitations could exist due to the special
characteristics of Fog Computing [30]. In addition, cloud computing offers a medium that
helps to resolve issues linked to the privacy and security of the IoT due to the limitations
in the computational resources of IoT devices as well as issues such as inability of those
devices to perform their required tasks for computation [31]. Thus, Fog Computing can
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be likened to an extra IoT security tool, wherein it assists in reducing some concerns
regarding the security of IoT [31,32]. Some of the major issues regarding the security of
Fog Computing are Access Control, Authentication, Privacy, Intrusion Detection.

2.1.3. Advantages of Fog Computing over Traditional IoT

The features of Fog Computing [33–35] are as follows: (1) Low latency: less access
time needed for computing and Fog node storage resources, also referred to as smart
gateways. (2) Location awareness: the location of the Fog at the network edge makes it
aware of where the applications are located as well as their specificity. This is of benefit
as the awareness of context is a very essential aspect of IoT applications. (3) Distributed
nodes: dissimilar to centralized cloud nodes, Fog nodes are usually distributed. Thus,
there is a need for the deployment of multiple Fog nodes in distributed geographical areas
so as to ensure the provision of services to the mobile devices in such areas. An example
could be with regards to vehicular networks, which deploy Fog nodes in highways, thus
providing less latency of data or even ensuring video streaming to vehicles. (4) Mobility:
mobility is supported by the Fog, wherein direct communication is allowed between the
smart gateways and the devices at a close proximity. (5) Real-time response: Unlike the
cloud, a more instant response can be achieved via Fog nodes, as they have less latency
than the cloud. (6) Interaction with the cloud: interaction can take place among Fog nodes
and the cloud by communicating directly with just the data required to be received by the
cloud, as seen in Table 1.

Table 1. How Fog can help cloud computing [33,34].

Cloud Challenge How Fog Can Help

Critical Latency Requirements and Data Rich Mobility

Less network hopping; less concentrated load. Data located at optimal
depth; local caches. Significant mitigation in the movement of data
within networks, thus leading to lessened expenditure, latency, and
congestion, alongside the removal of bottlenecks that occur due to
centralized computing systems.

Geographic Diversity
Intelligence localized as appropriate. Provides high levels of reliability,
the tolerance of faults, scalability, and the provision of sub-secondly
responding to end users.

Network Bandwidth Constraints Local processing reduces core network load. Lesser bandwidth
consumption.

Reliability/Robustness and Analytics Challenges
Fast fail-over; local response in emergency. Appropriate level of analysis
and storage. Elimination of the core environment for computing, thus
mitigating the chances of failure and major blockages.

User Data/Geographic Privacy

Fog can aggregate/ anonymize user data. The security of encrypted data
can be more reliable due to its closeness to end users, thus lessening
exposure to elements that are hostile. Better scalability of virtualized
systems as well as encoding of data due to its close proximity to the
network edge.

2.2. Relevant Work

Approaches for anomaly detection can be classified generally into two categories:
supervised learning and unsupervised learning. For a supervised approach of detecting
anomalies, a labelled dataset is used in constructing the system or network’s normal
behavior. Consequently, an unsupervised technique assumes greater frequency of normal
behaviors, thus leading to the establishment of the model on assumptions, wherein there is
no need of any data for training [36].

Furthermore, as informed by [37,38], a supervised anomaly detection technique has
the ability of leveraging the measurement of distance as well as density of clusters for the
detection of intrusions.
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Consequently, some researchers developed an anomaly detection technique based
on deep packets, with the sole aim of executing it on IoT devices that are resource con-
strained [39]. Arguments were made by the authors as to the fact that IoT devices of small
sizes make use of relatively simple-to-use protocols, thus leading to network payloads that
are very similar in nature. Hinging on the aforementioned idea, the researchers employed
the use of a technique named bit-pattern matching for performing the selection of features.
Worthy of note is the treatment of payloads as a sequence of bytes as well as the operation
of feature selection via overlying byte tuples, referred to as N-grams. Thus, matching
an N-gram and a bit-pattern takes place in situations wherein there is a match among
corresponding bits across all positions. Thus, an experimental evaluation was proposed by
the scholars via the use of dual devices enabled by Internet, though there was a low FPR for
the four types of attack researched, namely directory traversal attacks, worm propagation,
tunnelling, and SQL code injection. Furthermore, a brief introduction on an IoT-based
internally distributed anomaly detection system was presented in another study [40]. The
essence of this IDS proposal was to find the availability of network discrepancies via the
monitoring of the features of one hop neighbor nodes, examples of which include data rate
and the size of a packet. As informed by the authors, learning is undergone by the sys-
tem, leading to the derivation of normal behaviors from the information being monitored.
Nevertheless, there was no information regarding the approach used in constructing the
profile of normal behaviors. Additionally, there was no clear justification as to the working
techniques of the detection algorithms on low-capacity-based IoT devices. In a presentation
by Pongle and Chavan [41], an IDS was designed for detecting wormhole attacks found
in IoT devices. The authors assumed that the symptoms of a wormhole attack are always
left on the system, for example, the exchange of a large amount of control packets within
the tunnel’s dual ends or the formation of a large number of neighbors subsequent to
a successful attack. Employing the aforementioned logic, three algorithms were further
proposed by the authors for the detection of such anomalies within the network. Based on
their experiment, for the detection of wormhole, a 94% positive rate was achieved by the
system, followed by 87% for the detection of both the attack and the attacker. Furthermore,
a study related to the consumption of memory and power for the nodes was conducted
by the authors. Thus, the proposed system is of suitability for IoT devices due to the
low consumption of power and memory. However, there is a need to make comparisons
between the achieved results and the literature so as to establish a baseline between both.

Security decisions are normally made with regard to the collection of data from IoT
devices as well as from the environment of IoT systems. An instance of this is the learning
of attack models by machine learning algorithms from the attack detection data. Thus,
trustworthiness as well as the quality of the data is of importance in ensuring appropriate
decisions are made. The design of reliable protocols is, however, not trivial for the collection
of a high-quality dataset [42].

The deployment of IoT-based IDS mechanisms on low-capacity nodes and networks
with less power is quite intricate and challenging. Worthy of consideration for signature-
based methods is the high cost of storing signatures in the databases as well as computing
running learning algorithms used in checking individual signatures.

Many NIDS mechanisms have been developed in the IoT via the use of attack signa-
tures; however, there have been issues of non-identification of unknown attacks, as well as
higher FPR, also referred to as false alarms [43]. Furthermore, for monitoring traffic within
a network, there is a need to connect IDS hosts to any components, such as nodes, routers,
or computer devices. Dissimilar to NIDS, the system calls, file system modifications, and
the operating system processes are scanned by the HIDS [44]. Nevertheless, due to the
many limiting factors, HIDS is not preferable.

2.3. Lightweight IDS-Based Machine Learning

IDSs, in general, collect information about the host and network resources of a system
and attempt to analyze it in order to detect any probable intrusion in the system. This
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provides a mechanism for security specialists in an organization to monitor activities
across the computer systems and network infrastructure. Figure 1 depicts a general state
of IDSs on the basis of implemented techniques for detection alongside the deployed
Machine Learning lightweight devices in the IoT environment. The concept of IDS has also
expanded to include the monitoring and analysis of host and network features together.
The simple concept behind this convergence is to assess the interconnection of all features
that may act as an indicator of compromise for the whole system. As shown in Figure 2, the
implementation of lightweight IDS-based Machine Learning can be achieved via employing
several techniques and approaches. Thus, different mechanisms of detection have been
developed for detecting abnormalities and are placed into categories such as data mining
methods, machine-learning-based methods, and statistical methods [45]. Finally, a brief
discussion on the lightweight IDS-based Machine Learning approaches is included.
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2.3.1. IDS Techniques—Location and Exploration of Source of Data

IDSs are developed into host-based intrusion detection systems (HIDS) and Network
Intrusion Detection Systems (NIDS). They ensure the collection of data from diverse sources
of networks and systems, thereby analyzing the data for probable threats [46]. For example,
the implementation of NIDS can be done via detection techniques such as anomaly-based
detection and signature-based detection [47]. For a signature-based NIDS, there is a limit in
the detection of malicious threats that are already known. Furthermore, there is a need to
apply a mix of both packet content inspection rules as well as packet header to the detection
system via the specification of the signature and via the anomalous traffic flows. The design
of anomaly detection techniques is such that they can have an automatic understanding of
the attacks that are not known as well those that are not predictable for signature-based
NIDS, as shown in Table 2 [45–47].
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Table 2. Classification of IDS methods based on their aspects, advantages, and disadvantages.

Features/Aspects Methods Advantages Disadvantages

Audit source location Host-Based IDS

• Do not require additional hardware.
• Cost-effective.
• Easy to deploy due to not affecting existing infrastructure.
• Ability of viewing low-level activities such as access to files and altering file

permissions.
• Ability of dealing with switched and encrypted environs.
• Good detection and deterrence for inside intruders (Intruder Detection and deterrence)

and good prevention of inner intruders (Intruder Prevention).
• Outstanding determination of the extent of the damage (Assessing Damage).
• Good at trending and the detection of behavior patterns that are suspicious (Threat

Anticipation) and strong capabilities for supporting prosecution (Prosecution Support).
• Weak real-time response but better long-term attack performance (Threat response

time).

• Very limited network view.
• More disposed to illegal tampering due to being close to

users.

Network-Based IDS

• Quick response.
• Less exposed to false positives as compare to host-based systems.
• Able to detect attacks missed by host-based systems due to network traffic monitoring

at the transport layer.
• Good detection and deterrence for intruders from outside and strong response time

against outer intruders.

• Not aware of implementation of each host’s protocol due
to being far from individual hosts.

• No capability to decrypt encrypted data.
• Difficulty in removing evidence.
• Very weak damage assessment capabilities.
• Prosecution supports very weak due to a lack of data

source integrity.
• Threat anticipation (None).

Detection methods
Anomaly-based
(behavior-based)

• Effective in detecting novel and unforeseen vulnerabilities and the ability to detect most
new attacks.

• Uses fewer rules compared to the signature-based techniques. Less dependent on OS.
• The ability to facilitate the detection of privilege abuse, thus increasing detection rate

and effectiveness.

• Weak profile accuracy due to observed events being
constantly changed, thus difficulty in adapting to
unceasing changes in normal behaviors as well as a
dynamic anomaly.

• Unavailable during the rebuilding of behavior profiles,
thus difficult to discover the boundaries between
abnormal and normal behavior.

• Difficult to trigger alerts at the right time, thus higher
false-positive alarms.
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Table 2. Cont.

Features/Aspects Methods Advantages Disadvantages

Signature-based
(knowledge-based)

• Reliable, efficient, and generates a very small rate of false alarm for the detection of
well-known and definite intrusions.

• Detailed contextual analysis, thus the simplest and effective method to detect known
attacks.

• False alarms due to poorly constituted signatures, thus
the limitation in unknown attacks.

• Matching signatures is properly conducted for
individual attacks; however, the majority of attacks are
multi-connected, thus leading to little understanding of
states and protocols.

• Non-effectiveness in detecting attacks that are not
known, known attack variances, and evasion attacks.

• Hard to keep signatures/patterns up to date.
• Time-consuming to maintain the knowledge.

Stateful protocol analysis
(specification-based)

• Knows and traces the protocol states.
• Distinguishes unexpected sequences of commands.

• Resource consuming for protocol state tracing and
examination.

• Unable to inspect attacks looking like benign protocol
behaviors.

Data distribution modes Centralized IDS

• Direct control via a central console of all response, monitoring, and detecting activities.
• Fault-Tolerant A DIDS state, resulting in more difficulty in storing consistently as well

as the manner of recovery. The intrusion detection system is in a state of central storage,
resulting in easier recovery after a crashing incidence.

• Minute or no overhead is imposed on the systems, apart from those running analysis
components, wherein the imposing of large loads is necessary. In addition, the hosts
might be required to dedicate themselves to the task of the analysis.

• Execution: there is a need for continuous running of a relatively small number of
components.

• Resist subversion: a smaller number of components are required to undergo monitoring.
However, these components are larger and more complex, thus leading to more
difficulty in monitoring.

• Data can be destroyed or modified by an attacker.
• An intruder can modify or disable running programs on

a system.
• There is a limit to the size of the intrusion detection

system with regard to its fixed number of components.
However, as there is an increase in the number of
monitored hosts, there will be a need for more storage
and computing resources for analyzing the components,
so as to ensure a balance of the load.

• Dynamic Reconfiguration: a minute number of
components are responsible for the data analysis.
Reconfiguring them would probably require the restart
of the intrusion detection system.
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Table 2. Cont.

Features/Aspects Methods Advantages Disadvantages

Distributed/Decentralized
IDS

• The distributed data utilize the traffic information from various sources to investigate
the security status.

• Scalability A DIDS has the ability of scaling into a higher number of hosts via additional
components, as necessart. Scalability might be restricted to the necessity of
communication between components, coupled with the existence of central components
used for coordinating.

• Dynamic Reconfiguration: restarting and reconfiguration of new components might
occur without affecting the remaining systems of intrusion detection.

• The data flow between host monitors and the director
agent has the tendency to generate high overheads of
network traffic.

• Small overheads are imposed on the systems due to the
fact that the running components are smaller. Thus,
imposing extra load is executed on majority of the
monitored systems.

• Execution is more difficult due to the need for
continuous running of larger number of components.

• Resist subversion: a larger number of components need
to be monitored. Nevertheless, due to the larger number,
components can cross-check each other. The components
are normally of small size and less complexity.
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IDSs can be classified into two categories: Network-based IDS (NIDS) and Host-
based IDS (HIDS). In NIDS, several network segments are connected to each other, and
network traffic is being monitored to detect malicious activities. Meanwhile, HIDS are
attached to a computer device, whereby malicious activities that occur within the systems
are monitored. Dissimilar to NIDS, analyses are made by HIDS on the system calls, file
system changes, application logs, inter-process communication, and running processes,
apart from just the network traffic. Furthermore, system call traces are used in detecting
intrusions with HIDS. These intrusions could be in the form of anomalous sub-sequential
traces. The collective anomalies are further translated into malicious programs, violators
of policy, and unauthorized behaviors [48]. A system call trace refers to the system call
sequences that have been ordered, performed by a process while executing, such as write
or read, and open. It is important for HIDS applied anomaly detection techniques to
put the data context into consideration. Moreover, there is a clear difference between
a compromised system call trace and a normal program process [48]. Due to this, it
is impossible to apply point anomaly detection techniques that consider personal data
instance anomalously in this domain [44]. Additionally, IDS approaches can be classified
based on specifications, anomaly, or signature, as shown in Table 2, which presents the
advantages and disadvantages of intrusion detection techniques [38,49].

Early IDSs are mainly isolated single instances used in monitoring single networks via
the conducting of local analysis in finding attacks. Thus, among stand-alone IDS instances
of such a manner, there is no occurrence of interaction as well as communication. It is,
however, obvious that such solutions will not be able to detect attacks that are highly
distributed and sophisticated. The establishment of connectivity between isolated IDSs will
not be possible within the occurrence of malicious events at once in different places, in order
to ensure that these large networks and IT ecosystems are well protected [50]. A distributed
IDS refers to one that denotes the performance of data analysis in different locations
proportionally to the amount of monitored hosts. Previous research only considered the
amount of data analysis components and locations rather than the components of data
collection. Some distributed systems of intrusion detection are classified into Distributed
Intrusion Detection System (DIDS) [51,52].

A centralized IDS is one that involves the analysis of data performed in a fixed number
of locations, not minding the amount of monitored hosts. Similarly, for a decentralized
IDS, there is no need to consider the data retrieval component location; the only location
to be considered should be that of the analysis components. A comparison between
centralized and decentralized intrusion detection systems, based on respective conditions,
is illustrated in Table 2. The distribution of the IDS can occur across many nodes within a
network. However, in the case of intrusion, decisions can be made collaboratively or in an
independent way. Regarding the collaborative way, a single decision is shared by many
nodes. Collaboration can employ statistical techniques, including game theory and voting;
however, using an independent approach, individual nodes make their decisions separately
over the network. In addition, a situation whereby all nodes work together under the same
capacity is referred to as a flat infrastructure, in a distributed way, as compared to clustered
infrastructure, where all nodes are under clusters of diverse capabilities, with each of them
making contributions to the decisions uniquely. Thus, the location for computing is another
aspect of a distributed IDS. Here, there is a centralized location for computation works on
the retried data from the entire network. Dissimilar to the centralized computation location,
the location of a stand-alone computation works on the local data, thus disregarding
any decisions made by other nodes. A mix of both stand-alone and centralized locations
is achievable via cooperative computation, wherein individual nodes are able to detect
intrusions personally yet provide contributions to the final decision. Additionally, an IDS
computation can be operated hierarchically, wherein all detected intrusions are sent to the
root node by a cluster, after which a decision is taken [49].

Some of the research in this context is associated with detecting anomalies in industrial
data [53,54] and the industrial IoT [55,56]. In this class, a real application service of
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IoT, like in smart homes [57] or in industry [58] is considered, and according to context
and application, different techniques are employed for the detection of data anomalies.
Intrusion detection refers to the activity involving the detection of actions carried out
by intruders against information systems. These intruders might be either internal or
external. The internal intruders refer to users within the network that possess some extent
of legitimate access and try to raise their accessibility privileges, so as to cause a misuse of
privileges that are unauthorized for them. On the other hand, the external intruders refer
to those outside the targeted network, who try to gain access in an unauthorized manner
to information in the system [38,59]. A typical IDS is made up of a system for reporting,
sensors, and an engine for analysis. The deployment of sensors occurs at several network
hosts. The major task of these sensors is the retrieval of data from the host or network,
such as changes to file system, system call operations, packet headers, service requests, and
statistics of traffic. Moreover, the sensors transmit the retrieved data to the analysis engine,
whose duty is to ensure retrieved data are being investigated as well as to coordinate the
detection of ongoing intrusions. Thus, when there is a detection of intrusion in the analysis
engine, an alert is generated to the network administrator by the reporting system.

Table 2 presents a comparison of methods used in detection, based on several criteria
for IDS performance, thus classifying them into diverse IDS features such as threat to
security, detection method, and placement strategy. More focus was placed on the state-of-
the-art method review with regard to the implementation of IDS [38].

2.3.2. Datasets in IDS

In this section, a summary is provided of the popular benchmarks in measuring a
dataset in the field of intrusion detection. From previous research, it has been discovered
that data are generally retrieved using three means: User Behavior, System Call Sequences
(HIDS), and Network Traffic (NIDS), some researchers comprehensively evaluated existing
dataset via some proposed criterions, alongside an evaluation and design framework for
IPS and IDS datasets, namely CPU/memory usage, log files, network data packages, user
input command sequences, low-level information of systems, sequences of system call, and
error in system logs. Table 3 presents some commonly used benchmarks, all of which are
used in the detection of anomalies or misuse [60].

Table 3. Frequently used datasets in IDSs [60,61].

Data Source Dataset

User Behavior UNIX User Dataset (UNIXDS)

System Call Sequences HIDS

DARPA Files Datasets (BSM99)

University of New Mexico Dataset (UNM) 2009

ADFA IDS Datasets (2014)

Network Traffic NIDS

DARPA TCPDump Files Datasets (DARPA 2000)

KDD99 Dataset (KDD99)

KDD99 (10%) Dataset (KDD99-10)

Internet Exploration Shootout Dataset (IES)

University of New Brunswick, Information Security
Centre of Excellence Datasets (UNB ISCX IDS 2012)

Canadian Institute of Cybersecurity IDS CICIDS2017
Datasets (2018)

ADFA IDS datasets are used on both Windows and Linux operating systems and
are designed for evaluating system calls, such as HIDS. Whereas ADFA-LD datasets offer
present day datasets of Linux for traditional HIDS-based evaluation, ADFAWD datasets
offer novel datasets powered by Windows, for HIDS evaluation [60].



Electronics 2021, 10, 1633 14 of 52

Numerous datasets are in existence, such as ADFA13, ISC2012, KDD99, and DARPA98,
and they have been employed by scholars for evaluating intrusion detection performance
and prevention techniques. Nevertheless, there is a gap in research with regard to assessing
and evaluating datasets, coupled with the lack of any befitting datasets in the domain.

2.3.3. Machine Learning Techniques for IDS on IoT

An IDS is designed for monitoring occurring events within a computer network
or system, thus leading to the analysis of possible incident signs as well as frequent
prohibition of unauthorized access [57,62]. There are two methods of differentiating
between a malicious and normal system behavior. They are the misuse detection approach
and the anomaly detection approach. Misuse detection is capable of detecting a sequence
of actions as an attack if there is a match between former complete descriptions of the series
of actions, also referred to as the signature, executed by the attacker. The second approach
helps in discovering data patterns, which are not conformable to the awaited behavioral
expectations. A major technique that has proven to be practically valuable with regard
to anomaly-based detection is machine learning. The foundational principle for machine
learning approaches lies in the data prediction and learning [36]. Machine learning can
be split into two categories, namely Artificial Intelligence techniques, examples of which
include SVM, KNN, DT, k-means clustering and MLP, and Computational Intelligence
(CI) techniques, examples of which include Fuzzy Logic, Generic Algorithms, Artificial
Immune Systems (AIM), and Artificial Neural Networks (ANNs) [63].

It is important to note that the field of machine learning deals with the development of
systems with the capability of automatic data learning [36,64], including the identification of
patterns that are hidden automatically [65]. Machine learning algorithms are characterized
based on their styles of learning as well as the functionality in the similar nature of their
manner of engagement [46]. Figure 2 presents an overview of machine learning approaches
based on their learning styles in lightweight techniques. The techniques of machine learning
tend to be effective with regard to the improvement of detection rate and the reduction
of false alarm rates and offer decreased communicating and computing costs [56,66]. The
techniques of machine learning can be split into different phases, including supervised,
unsupervised, and semi-supervised learning [67,68] and Reinforcement Learning (RL) [69].

Supervised Learning

Here, the algorithms are able to learn representations to predict cases that are not
known, from labelled inputted data. Examples of supervised machine learning algorithms
include SVMs for solving issues regarding classification and RFs for solving both regression
and classification issues [64,70]. SVMs are extensively used in IDS-based research as a
result of their powerful classifying and their computing practicality. Thus, this makes them
of great suitability for high dimensional data, though with criticality in the selection of a
reasonable kernel function; therefore they are resource insatiable and demand memory
as well as processing units for computations [46]. The RF algorithm [71] is an ensemble
approach of supervised learning, which powerfully deals in an effective manner with
uneven data yet is prone to issues of overfitting.

Unsupervised Learning

In the unsupervised learning scheme, representations as well as the structure from
inputted data that are not labelled are learned by the algorithms. The aim of this al-
gorithm is the modeling of foundational data structures for the prediction of data that
are not known [64,70]. Some examples of these unsupervised learning algorithms in-
clude techniques used in reducing features such as clustering techniques, PCAs, and
Self-Organizational Maps (SOMs). A PCA refers to an algorithm used in efficiently speed-
ing up feature learning that is not supervised [72]. Many researchers have employed
PCA in their work, before classification application [73]. Thus, clustering algorithms like
K-means, among other algorithms for distance learning, are employed in the detection of
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anomalies. Furthermore, an SOM refers to an ANN employed for the reduction of IDS
payloads [74]. Clustering algorithms for anomaly detection have their own drawbacks,
such as subjectivity to initial conditions, instances including centroids, and the production
of high rates of false positives [75]. Furthermore, an approach was proposed by Oh, Kim
and Ro [76], wherein an SOM intrusion detection system in real time is able to classify
related data and at the same time ensure cluster visualization. Via correlating features, the
detection can perform map labelling produced by SOMs. Moreover, there is wide use of
SOMs in anomaly detection systems. Some researchers have applied SOMs as HIDS [77].

Semi-Supervised Learning

This refers to a kind of supervised learning that makes use of data that are not labelled,
in training. The data used for training comprises a small amount of labelled data and
a huge amount of data that are not labelled. Thus, such learning could be useful in
situations where there is an absence of large amounts of labelled data; an example is
the case of a photo archive where not all images are labelled, thus consisting of some
unlabeled data, one of which is used to enhance the accuracy of IDS [78,79]. In another
study, two semi-supervised Spectral Graph Transducers used for classification and the
Gaussian Fields technique were employed for detecting attacks that are not known, while
a semi-unsupervised clustering approach, known as the Metric Pairwise Constrained
K-Means (MPCK-Means), was employed for improving the manner in which detection
systems perform [80].

Reinforcement Learning (RL) Methods

The ability to learn from nearby environments is among the initial methods of learning
experienced by humans. On a natural note, human beings commence learning through
interaction with their environment. Therefore, the inspiration behind RL is based on the
neuroscientific as well as psychological aspects of animal behaviors, coupled with the
mechanisms through which the control of environments can be enhanced by agents [81].
Furthermore, RL has the ability to ensure an agent is able to have knowledge on mapping
situations to actions in an appropriate manner, so as to attain maximal rewards [82]. This
agent has no memory of the expected actions to execute, but rather needs to first learn about
the actions that can produce top-notch rewards; this is done via trial and error. The trial
and error feature is the unique and main RL characteristic. Thus, the agent continuously
learns from its past experience so as to attain higher rewards. Among recently successful
methods in RL is the “deep Q network” [81]. In the literature, there are proposals regarding
extending deep Q networks, with the inclusion of double Q-learning [82], non-stop control
with deep RL [83], and prioritized experience replay [84].

Machine-Learning-Based IDS Observation for IoT Security

It is quite challenging to implement conventional approaches such as machine-learning-
based IDS observation due to their complex structure of technologies, protocol stacks, and
layers. Thus, there is a great need for IDSs for regulation of secure and reliable networking
among IoT devices. Machine learning or deep learning techniques have been employed
for developing IDS, some of which are self-organizing map (SOM), Naïve Bayesian (NB),
Random Forest (RF), Support Vector Machine (SVM), as well as Artificial Neural Networks
(ANNs), among others [47]. A past study proposed that the system call of a Fog-based
system can assist in securing IoT devices [85]. The aforementioned work utilized DT for
analyzing traffic across a network, with the sole aim of detecting traffic sources of suspicion
as well as consequently detecting the behavior of DDoS. DT has been explored in different
scenarios that deal with IoT system security. Some studies [86] have mentioned how DT
can be used for the detection of intrusions, whereas others [87] informed on DT’s use in
identifying types of operating systems that are not known in IoT. Another study focused
on the authentication of the physical player of IoT wireless devices [7], comparing DT
performance with SVM and K-means when experimenting with Machine Learning algo-
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rithms aimed at discovering targeted attacks on medical devices. The authors concluded
by stating the following: DT possesses the highest rate of detection, low FPR first training,
and speed in prediction as compared to that of K-means and SVM. Nevertheless, it was
also stated that they experienced a failure in the ability of the algorithm in detecting and
providing results similar to those previously achieved; in cases where there is a familiarity
between the attacker and the device, it has knowledge of the schedules as well as the
patterns of data. DT achieved the highest overall accuracy, and it was also noted that
supervised learning performed more suitably with regard to threat detection compared to
that of unsupervised learning.

Relating to the IoT environment, a study [88] developed an Android malware detection
system that had the ability to provide security for IoT systems; the scholars also applied a
linear SVM to the developed system. There are some studies that indicate that SVM is a
commonly used approach for issues relating to IoT security [5,6,89–93]. Wei, Luo, Weng,
Zhong, Zhang and Yan [94] compared Naive Bayes and DT algorithms for the detection of
malicious mobile malware in android applications, inclusive of an Androidetect system.
The Androidetect system refers to an automated tool for detecting malicious applications.
Furthermore, some researchers [90,93,95] compared Naive Bayes with other Machine
Learning algorithms. The comparison of SVM, Naive Bayes, NN, and KNN in [90] in
detecting on-off attack on IoT devices via the use of smart trust management approaches
revealed that a high rate of precision was found in Naive Bayes as well as the recall;
however, this was not the same with the F1-score. Consequently, as informed by Kotenko,
Saenko and Branitskiy [93], the testing data results revealed that the algorithm with the
least training time was Naive Bayes, as compared to that of SVM and ANN, which had
much longer training times. The reason behind the lesser time in training for Naïve Bayes
is due to the use of primitive operations. Correspondingly, as informed by Park, You and
Lee [95], there is a lower accuracy in detection with Naïve Bayes, as compare to SVM,
Linear, or DT, due to the kind of data used in their study.

Moreover, RF has also been considered as an integrated learning, which entails the
selection of diverse input samples from actual training sets via a technique of resampling
using bootstrapping [89]. In the aforementioned reference, the scholars compared RF
with other techniques, such as KNN, NN, and SVM, for the detection of crypto ransoms
within IoT networks. The analysis of their performance of classifying algorithms concluded
that RF had the second highest detection, accuracy, precision rate, and F-measure, behind
KNN. In addition, another study, after comparing RF with NN, DT, SVM, and KNN
techniques, in an experiment trying to detect DDoS within consumer IoT devices, found
that all algorithms performed quite high, apart from that of SVM, whose performance was
slightly lower [92].

Based on the previous descriptions, it is established that anomaly detection consists
of two types of techniques: namely, supervised and unsupervised. The majority of the
algorithms from the literature were used in achieving excellent results for the respective
techniques applied. However, the application of diverse algorithms for detecting intrusions
was done for the purpose of enhancing the performance of IDS in all facets, including
clustering, classifying, and the selection of features. Table 4 presents a comparison between
commonly used algorithms.
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Table 4. Pros and cons of techniques for common classifiers for the use of IDSs.

Method Technique Pros Cons Potential Application in
IoT Security

Decision Tree DT

DT is used in establishing a model (i.e., a
prediction model), to learn from training
samples via representations in the form
of branches and leaves (leading to the
construction of a data structure in the
form of a tree). The pre-trained model is
later used for predicting new sample
classes (where calculations in the error
rate from the learned tree occur). It can
be employed for any task relating to
supervised learning. This is because it is
easier to understand data more
appropriately using trees.

- Simple, easy-to-use and
transparent method. Easily
understandable and interpretable.

- Data preparation is minimal.
- Ability of handling data of both

categorical as well as numerical
forms.

- Validating models are possible
statistically.

- Robust.
- Good performance with large data

within short period of time.
- Automatically selects features;

strong interpretation.

- Requires large storage space due to constructive nature.
Thus, to understand this method, not many DTs should
be involved.

- Issues regarding the learning of an optimal decision tree,
is most times NP-complete, comprising optimality
failures as well as issues for simple concepts.

- Creation of overly complex trees by decision tree learners,
which are not able to achieve proper data generalization.

- Difficult concepts exist, which are challenging for
learning, as they are not easily expressible by the DT.

- Most of the classes are trending within results obtained
from classification, thus ignoring relationships between
the data.

- Prone to overfitting.

Detection of intrusion [96]
and suspicious traffic
sources [85].

Support Vector Machine SVM

- A splitting hyperplane in a dual
class feature dimension is formed,
such that distance between the
hyperplane (which aids in
visualizing separated hyperplanes)
as well as a large fraction of the
time will be spent together.

- During this phase, two parameters
can be adjusted, while the most
adjacent point of samples is
maximized for each class.

- Generalization capability and
suitability for data that involves
huge number of features yet very
little sample points [97].

- Low generalization error.
- Computationally inexpensive.
- Easy results interpretation.
- Optimal separation hyper-plane

discovery.
- Ability to deal with data of quite

high dimensions.
- Some kernels have infinite

Vapnik-Chervonenkis dimension,
inferring their ability to learn
concepts in an elaborative
manner [98].

- Usually works very well.
- Able to learn important info from

little training, alongside a very
firm capability of generation.

- Challenging optimal selection process for kernels.
- Difficulty in understanding and interpreting

SVM-centered models.
- A combination of negative and positive instances is

needed.
- Selection of a reliable kernel function is necessary.
- Needs enough memory as well as CPU time.
- Some issues regarding stability of numerals are faced

during the solving of the QP constraint.
- Poor performance for tasks related to big data as well as

multiple classifications.
- Sensitivity to parameters from kernel function; sensitive

to how parameters are tuned and the selection of kernels,
handling only native binary classifications.

- The need to write more codes for solving challenges
above two classes.

Detection of intrusion [99].
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Table 4. Cont.

Method Technique Pros Cons Potential Application in
IoT Security

K-Nearest Neighbor
KNN

- New samples are classified based
on number of votes from nearest
neighbors.

- Decides classes of samples not yet
known by the most voted from the
closest neighbors.

- Popular.
- Effective for detecting intrusion.
- Easy understanding, including

cases of few variables to predict.
- Can be used in situations of model

build-up, comprising data types,
such as text, which are not
standard.

- Applicable to huge data amount.
- Suitable for non-linear data types.
- Fast training of data.
- Handles noise during training.

- Variations occur in the optimal K value among diverse
datasets.

- Determination of optimal K value could be challenging
and take much time.

- Large storage requirements.
- Sensitivity to selecting functions of similarity used for

instance comparison.
- Lack of well-organized methods of choosing K, apart

from similarity check or cross validating.
- Not computationally cost friendly.
- Minority class suffers low accuracy issues.
- Spends much time in performing long tests.
- Sensitivity issues with the K parameter.

Detection of intrusions [100]
and anomalies [101].

Random Forest RF

Reconstruction of diverse DTs, combined
for the purpose of acquiring
well-established as well as adequate
models of prediction to ensure enhanced
results.

- Resilient to overfitting.
- Ability to bypass selecting

features, thus needing fewer
parameters for input.

- Hinged on construction of many DTs.
- Impracticality with regard to particular real-time

applications needing huge dataset training.

Detection of intrusion,
anomalies [102] and
unauthorized IoT
devices [103].

Neural Network NN

An ANN works on three layers. The
input layer receives data, in a likely
manner, just as dendrites. Processing of
the input is conducted by the hidden
layer, in similarity to axon and soma.
The output later is responsible for
producing the calculated outputs, similar
to the terminals within a dendrite; this is
with the aim of achieving an
independent outcome of the inputted
data set.

- Able to perform tasks not
performable by linear programs.

- Able to ensure ongoing process,
even at instances of neural
network failure by elements,
without having challenges in
parallel nature.

- Able to learn; no need for
reprogramming.

- Ability to deal with non-linear
data due to strong fitting
attributes.

- The need for training time to operate.
- The need for processing time to deal with neural

networks of huge capacity.

Adopted improved
optimizers, activation
functions, and loss
functions.
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Table 4. Cont.

Method Technique Pros Cons Potential Application in
IoT Security

k-Means clustering

k-Means clustering is an unsupervised
learning approach that identifies clusters
in the data according to feature
similarities. k refers to the number of
clusters to be generated by the
algorithm.

Unsupervised algorithms are generally a
good choice when generating the
labelled data is difficult. k-Means
clustering can be used for private data
anonymization in an IoT system because
it does not require labelled data.

k-Means clustering is less effective than supervised learning
methods, specifically in detecting known attacks [104].

Sybil detection in industrial
WSNs [105] and private
data anonymization in an
IoT system [106].

Self-Organizational Map SOM

Unsupervised learning neural network
maps multidimensional data onto a
two-dimensional grid. Geometric
relationships between image points
indicate similarity. Neurons are arranged
in a two-dimensional grid; each neuron
contains a weight vector.

- Data mapping is easily
interpreted.

- Capable of organizing large,
complex datasets.

- Difficult to determine what input weights to use.
- Mapping can result in divided clusters.
- Requires that nearby points behave similarly.

Used the Self-Organizing
Map (SOM) neural network
IDS to perform RPL attack
classification [107].
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2.3.4. Feature Reduction (Feature Selection) Techniques for IDS on IoT

Machine learning can be categorized into two phases: the training and classification
phases. The training phase has the ability to learn how to distribute features, while in
the classification phase, features that are already learned are applied as normal profiles
for the detection of abnormalities [108–110]. In research by Jain, Duin and Mao [111], a
model of statistical pattern recognition was developed. Furthermore, data for training are
normalized during processing, and noise is removed from the data. The training phase
ensures the extraction of features, a representative feature set used in training the classifiers
of the processed training data. However, the classification phase ensures the application of
the trained classifier in assigning test data to the selected training phase features [100,112].

Training data of high quality is necessary to achieve the most outstanding perfor-
mance of machine learning IDS; thus it must contain a mixture of abnormal and normal
patterns [113,114]. Features refer to the vital information that is extracted from raw data;
they are essential for classification purposes as well as detection, and they influence the
effectiveness of a machine learning IDS.

The selection of features for IDSs processes large amounts of audit data, containing
numerous features. Nevertheless, not all the features are necessary for classifying the
audit data network. Consequently, the selection of features is undertaken for discovering
essential features or feature sets from all audit data features. Thus, feature selection
could result in the improvement of performance during classification as well as make IDSs
lightweight. One study [115] offered the following benefits of feature selection: (1) Reduced
dimensionality of feature space, to limit storage requirements and increase algorithm speed.
(2) The removal of noisy, redundant, or unimportant data. (3) The immediate effect of
data analysis tasks speeding up, reducing the time necessary for learning by an algorithm.
(4) Data quality improvement. (5) The resulting model’s accuracy is increased. (6) A
feature set reduction helps in saving resources in the process of utilization or for future
data collection. (7) Improvement in performance for predictive accuracy gain. (8) The
adequate comprehension of data for gaining knowledge of the data generation process or
data visualization.

Feature Selection

“Feature Learning” plays a special role in the build-up of IDSs, such that the accuracy
is highly affected by the selected features [116]. Thus, diverse representations of features
can help in addressing several threat detection aspects. In fact, some seem to be naive, if
they carry fundamental details of a network or the software, while others seems to be rich
if they represent deeper information [117]. Thus, the obtaining of features can be achieved
via some processes or by a mix of these processes, namely selection, construction, and
extraction.

Further objectives of feature selection as informed by [115,118] include (i) increasing
the speed of classifiers and reducing the capacity of storage; (ii) conserving resources for
upcoming data collection processes; (iii) obtaining additional information and compre-
hensive knowledge of the process of data generation. In the area of IDS, feature selection
has been utilized in improving processes of classification. Three common approaches for
selecting features are genetic algorithm, principal component analysis (PCA), and infor-
mation gain. In addition, the selection of features can hinge on the embedded, wrapper,
and filter methods [66,119]. The wrapper, filter, and embedded techniques, are discussed
briefly in Table 5.

Filters methods can be further categorized into two groups, namely the feature weight-
ing procedure and subset search procedure. The feature weighting procedure assigns
weights to features individually and ranks them based on their relevance to the target
concept [115,120]. In filter methods, the feature selection process is optimized for the
classification procedure. Therefore, filter methods are much faster than wrapper methods
and are better suited to highly dimensional datasets.
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Table 5. Merits and demerits of filter, wrapper, and embedded feature selection methods [121].

Feature Selection Method Description Merits Demerits

Filter Selects the most meaningful
features regardless of the model

Computationally less expensive
when contrasted with wrapper

and embedded methods. Quickest
running time. Reduce the risk of
overfitting. The ability of good

generalization. Handily scaled to
high-dimensional datasets.

There is no interaction with the
classification model used for the

selection of features. In the case of
univariate techniques, feature

dependency is mostly ignored and
each feature is considered separately.
Compared to other feature selection

techniques, this can lead to lower
computational performance. can

select redundant variables.

Wrapper Combines related variables to
obtain subsets

Consider interaction: interact
with classifier for feature selection.
More comprehensive feature set

search. Consider feature
dependency. Generalization is

better than the filtering method.

The computational cost is high.
Longer duration. Compared with

filtering and embedding methods, the
risk of overfitting is higher. As the

number of features increases, it
becomes more computationally

unfeasible. If another classifier is used
to predict, the optimization of the

solution cannot be guaranteed.

Embedded Investigates interaction more
deeply than wrapper method

Compared to the wrapper
method, it is less computationally

intensive, the running time is
faster, and the risk of overfitting is
less. As the number of data points
increases, it is better than filtering

methods in terms of
generalizability.

Identifying a small group of features
can be problematic.

Principle components (PCs) are new variables with two properties: (1) each PC is a
linear combination of the original variables; (2) the PCs are not correlated to each other,
and also the redundant information is removed [122]. The major areas of PCA application
comprise analysis of image, compression of data, recognition of patterns, regression, and
prediction of time series, as well as visualization. However, there are limitations in using
PCA, such as (1) the assumption of linear relationship between variables. (2) sensible
interpretations are based on assumptions of numerically levelled scaled variables, (3) a lack
of probabilistic structure for models, such as those relevant in most contexts, like Bayesian
decision as well as mixture modeling. Furthermore, PCA is a technique for the reduction
of features that is applicable for the transformation of large variable sets into a mitigated
set, thus ensuring that the bulk of the information represented is preserved in the large set.
The technique also ensures the conversion of several probably related features to a smaller
number of features that are not related, referred to as “principal components” [123,124].
Therefore, the main working principle of PCA can be utilized for feature selection to realize
real-time intrusion detection for IoT systems; a previous work proposed a model that uses
PCA for feature reduction and adopts SoftMax regression and KNN algorithm as classifiers.
The author reported that the combination of PCA with these classifiers provided a time-
and computing-efficient system that can be utilized in real time in IoT environments by
reducing the model features [125].

Feature Extraction

Feature extraction involves transforming original features for the generation of addi-
tional, more significant features. As informed by Zheng, Vanderbeek, Daniel, Stambolian,
Maguire, Brainard and Gee [126], “Feature extraction is being defined as the construction
of linear combinations αTx of continuous features which have good discriminatory power
between classes”. One of the major challenges for the research on Neural Networks and
other areas such as Artificial Intelligence is finding suitable representative multi-variate
data. Feature extraction can fill this gap by mitigating complexity issues, thus proffering
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a simple data representation, wherein each feature space variable is denoted as a linear
combination from the initial inputted variable.

System calls are of utmost importance in any operating system, as they ensure the
depicting of computer processes, thus constituting a large amount of fragmented as well as
unstructured texts, used by a regular HIDS for detecting cyber-attacks and intrusions. In
the literature, some researchers have considered text representation techniques for classi-
fying behaviors of processes via system call traces. A classical machine learning method
works in the direction of representing features, feature extraction, and feature engineering.
Nevertheless, due to advancement in embedded approaches used in machine learning, in-
cluding deep learning, the importance of feature extraction and the engineering of features
cannot be overemphasized. Thus, researchers usually adopt advanced deep learning tech-
niques and methods of representing text for the purpose of capturing information related
to sequence and contexts from system calls [125]. Some feature representation methods in
the area of NLP used to convert system calls into feature vectors exist in literature and are
discussed here. Techniques such as term frequency inverse document frequency (TF-IDF)
and Term Document Matrix (TDM) are used for the estimation of vectors in the feature.
However, they have their drawbacks, which include the inability to capture system call
information in a sequential order [127,128]. The N-gram method of text representation has
process capability of preserving the system call information in a sequential order. For exam-
ple, N size can be 1, denoting unigram; 2, denoting a bigram; 3, denoting a tri-gram [17,129].
In terms of exploiting N-gram location for intrusion detection, there exist many IDSs that
use the N-gram technique to analyze network packets payload; two examples are specified
in [130–132]. The N-grams are used to model the language that characterizes a network
traffic profile, since each different N-gram is interpreted as a different feature space used
to represent the traffic. The N-gram technique has been used previously in fields like
information retrieval [133] and statistical NLP [134]. With this technique, it is possible to
extract sequences of symbols from a given input flow by using a sliding window of length
n. At each position, a sequence of length n is considered.

Clustering

Clustering refers to a learning method that is not under supervision, and its major
task is that of data mining. Furthermore, it divides the data into look-alike groups for
the purpose of simplifying them; however, it might lead to loss of information [135].
Some researchers, such as [136], discovered that clustering techniques perform via splitting
observed data into clusters, based on the measures of distance or provided similarities.
Other approaches regarding anomaly detection based on clustering are of two categories.
The first category ensures that training is provided for the model of anomaly detections
via the use of unlabeled data, consisting of attacks as well as normal traffic. The second
approach ensures that training is provided for the model via the regular data only, thus
leading to the creation of a normal activity profile. The foundation behind the first approach
lies in the fact that attack or anomalous data make up a small percentage of the overall data.
Thus, if the assertion is correct, the detecting of attacks as well as anomalies can be done on
the basis of cluster sizes, as the large clusters normally correspond with the normal data,
leaving the other data points, referred to as outliers, corresponding to attacks.

The Advantage of Feature Extraction and Selection

Methods of extracting features have been proposed as a step prior to the processing
state, to ensure a diminishing impact of class noise on the process of learning. It is thus
essential for future data analysis, be it visualization, recognition of patterns, de-noising,
and compression of data. Diverse methods have been developed for discovering more
appropriate transformations.

One of the benefits attached to feature selection is the preservation of relevant related
data of individual features; however, this depends on the size of the features; if the set of
diversified original features is too small, there is a tendency to lose some feature information.
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Furthermore, dimensionality reduction, referred to also as the extraction of features, entails
that there would be a decrease in the feature space size, without any loss of information
from the initial feature space. One of the disadvantages of extracting features is the lack
of interpretability and details of the lost features [115]. Some vital features that could be
possessed by IDS as informed by the literature are as follows [115,118]: (1) It is tolerant
to fault, and continually runs with little or no need for human supervision. Furthermore,
the IDS has the ability to recover from accidental or malicious activity causing system
crashes. (2) It has the ability to resist subversion, thus making it impossible for an attacker
to cause disabling or modification of the IDS. In addition, the IDS has the capability of
detecting forceful modifications by attackers. (3) It reduces the overhead on systems for the
avoidance of interference with normal methods of system operation. (4) It is configurable,
thus being able to ensure correct implementation of security policies on systems under
monitoring. The IDS also possesses the capability of adapting to changes in user and
system behavior. (5) It is easily deployable; this is achievable via portability to diverse
operating systems and architectures by simply installing mechanisms as well as making
operation easy for users. (6) It is generic for the detecting of diverse kinds of attacks and is
able to distinguish legitimate activities from an attack (false positives). In addition, the IDS
does not fail to recognize actual attacks, referred to as false negatives.

The use of feature selection in detecting intrusion is mainly intended to eradicate data
that are not important and those that are redundant. It is seen as a process whereby a subset
of important features is selected, thus giving a full description of the problem with minimal
degradation in performance [137]. Using all the features of a dataset does not necessarily
guarantee the best performance from the IDS. It might increase the computational cost as
well as the error rate of the system [115]. As the number of selected features increases, the
required computation power, which is needed to process the data, increases, and vice versa.
Therefore, due to correlations between features, selected features can achieve similar or
better results in comparison to using all the features of a dataset.

The irrelevant or redundant data might contain false correlations that obstruct the
learning process of the classifiers. Therefore, feature selection has a significant impact
on intrusion detection system performance, as it reduces the computation cost, removes
information redundancy, increases the accuracy of the detection algorithm, facilitates data
understanding, and improves generalization [137,138].

2.4. Key Challenges

Dissimilar to computer networks that function by users, IoT networks are object
driven, thus making it challenging for applying contemporary computer network security
mechanisms. Thus, there is a need to ensure the securing of specialized tools as well as
ensure the management and preservation of IoT networks and devices from vulnerabilities
and threats that are surfacing. Some key challenges and directions for future research as
taken from the literature outlined in this chapter are as follows: (1) The design of a singular-
based-mechanism IDS is inappropriate for present-day complex and heterogeneous IoT
networks. Thus, the proposal of a more suitable mechanism, which is comprised of
a combination of diverse approaches might produce better results. Nevertheless, it is
important to note that rather than centralizing a model, it could be more reliable to use
the approach of distributed attack detection. (2) There is need for specialization of the
“Rule-based/Specification-based method”, which deals with the definition of laid-down
rules for the behavior of benign networks. Additionally, this specialization needs to be done
topologically, thus resulting in the creation of an overhead at frequent changes of topologies.
(3) There is a gap in the use of signature-based intrusion detection techniques with regard to
present-day evolving zero-day attacks, wherein there is no advance definition of signatures
or patterns. (4) Contrary to signature and rule-based approaches, there is a need to use
anomaly-based IDS with intelligent techniques for learning, which has the capability of
uniquely identifying intrusions that are either known or not known, thus producing more
suitable speed and accuracy. (5) Due to constraints in resources, it is quite challenging
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to apply machine learning as well as other intelligent techniques in IoT. There is a lack
of developed approaches that make use of the aforementioned techniques for IoT; there
is need to validate current approaches diligently via diverse datasets in order to verify
their level of effectiveness in real-time situations using IoT. (6) It is important to note that
performance might be affected by intelligent techniques, such as Machine Learning, which
needs higher processing power and memory to function effectively.

3. Proposed Method

The proposed methods as depicted in Figure 3, are split into different phases, as follows:

• Phase 1: In this work, more focus is given to a simple and efficiently computable
feature extraction technique, involving the pre-processing of data, comprising methods
for extracting features based on Modified Vectors Space, formed from a system call
trace raw data of fixed size, referred to as N-gram. The phase also compares techniques
used in selecting between PCA, MI for memory use, and CPU time.

• Phase 2: This phase covers the application of various anomaly-detection algorithms
on intrusion detection, for enhancing the performance of IDS at all levels, including
classification, clustering, and feature selection. Anomaly detection includes both
supervised and unsupervised techniques. Several algorithms are employed for the
purpose of achieving more suitable results for the detection of anomalies. Various
algorithms for detecting anomalies have been applied to detect intrusion, so as to
enhance the performance of IDSs at all levels, including classification, selection of
features, and clustering. Based on the preceding descriptions of several algorithms for
detecting anomalies, Table 6 presents a comparison of the most relative algorithms.
This comparison provides a summary of the pros and cons of each respective algorithm.
It is important to note that weaknesses exist for knowledge-based detection techniques.
Furthermore, the detection of anomalies consists of both supervised and unsupervised
techniques. This research proposes an overview of the techniques used in machine
learning for the detection of anomalies. Experiments carried out have demonstrated
that supervised learning methods significantly outperform their counterparts, the
unsupervised methods. This is based on the criterion that the attacks in the test data
are not known. Thus, of the supervised methods, the non-linear methods achieved
the best performance; examples of these are multilayer and SVM methods. This is the
model selection phase.

• Phase 3: this refers to the evaluation performance stage, with regard to the rate of
detection using Accuracy, FPR, Recall, FI-measure, ROC, AUC, CPU time, and energy
consumption for testing on a Raspberry Pi.
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Table 6. The pros and cons of various shallow models.

Algorithms Advantages Disadvantages Improvement Measures

ANN
- Can work on non-linear data.
- Strong fitting ability.

- Suffers overfitting issues.
- Can get stuck in local optimum situation.
- Too much time in training models.

- Adopted improved optimizers, activation functions, and loss
functions.

SVM
- Relevant information can be learned from a

minute training set.
- String capability of generation.

- Inability to perform on large data.
- Sensitivity to kernel function parameters during a

classification task.

- Optimized parameters by particle swarm optimization
(PSO) [139].

KNN
- Can be applicable for large data capacity.
- Fast training.
- Can deal with noise.

- Minority class results are not accurate enough.
- Takes much time in testing.
- Sensitivity issues of the K parameter.

- Time spent on comparison can be reduced via trigonometric
inequality techniques.

- Parameters can be optimized by particle swarming.
- Optimization (PSO) [140]; balanced datasets using the

SMOTE [141].

Naïve Bayes
- Can deal with noisy situations.
- Ability for incremental learning. - Poor performance on attribute-related data. - Imported latent variables to relax the independent

assumption [142].

RF
- Simplistic nature (voting result).
- Ability to accommodate large data.
- Automatic scaling of features.

- Poor performance on non-linear data.
- Initialization sensitivity.
- Inability to perform well on non-convex data;

however, for a small/medium-sized dataset, it is a
very good way to build a sophisticated model.

- Overfitting issues.
- Training time (slow training).

- It has a method to balance error when dataset is not balanced.
- Imported regularization to avoid overfitting; thus, basically, RF

is used when looking for high performance with less need for
interpretation.

- The bootstrapping resampling technique [89]

DT
- Feature selection is automatic.
- Strong interpretation.

- Trending of classification result only on the majority
class, leaving the minority helpless.

- Correlation of data is ignored.
- Overfitting issues.

- Balancing datasets with SMOTE; introduction of latent variables.
- DT suffers from overfitting problem, which can be handled by

Bagging and Boosting.
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3.1. Phase 1: Pre-Processing
3.1.1. Feature Extraction

The data used in this article comprise system call traces. These traces refer to rela-
tively shortened series of position integers, referred to as system call numbers; these are
inappropriate for inputting into a regular model of machine learning. For the purpose of
transforming the inputted data’s format into a form of matrix, there is a need to implement
the extraction of features during the stage of pre-processing.

Stage (1)

In this stage, the aforementioned approach is used. For the system call encoding,
only 1-gramam and 2-gram as features are considered. In this stage, vectors from features
are constructed via the consideration of only N-grams, which appear in the data that is
under training. Also at this stage, a dense form of the data matrix is considered, where
it is discovered to be too large, including being large for ample resource-based machines.
Feature extraction refers to the process whereby imputed data is being represented in
a compatible format with the algorithm used for modeling. Specifically, this paper is
concerned about creating a simple technique for the extraction of features, which can as
well be computed in an efficient manner.

Modified Vector Space Representation (MVSR) [143] serves as an extension to prior
representations and takes into consideration the unique terms, only from the data used to
train, via incorporation of the mechanisms needed to handle all unforeseen terms in the
course of testing.

In this work, a feature set is considered as a correspondence of vector sets into traces
of system call applications. There is a need to consider tuples of terms (or calls), not
just the individual term in the model of vector space. The n-gram is defined as tuple
c = (c1, c2, ..., cn) of n terms where n generically denotes a positive integer of small value.
This modified vector space model is recurrently used in NLP and DNA and the analysis of
protein sequences [128,144]. For a given n-gram, c, its weight w(c) in trace T is given, where
f (c) denotes the frequency of c in T, and |T| represents the trace length in Equation (1).

ω(c) =
f (c)
|T| (1)

Example (1)
For illustration of the above notion, the following trace is considered:

T = (6, 174, 174, 174, 6, 45, 33, 192, 33, 192, 174, 174, 6, 174) (2)

Note that |T| = 14. For n = 2, we calculate, for every 2-gram, c, its frequency, and its
weight (see Table 7).

Table 7. The weights and frequencies of all 2-gram.

c f (c) w(c)

(6, 174) 2 0.143
(174, 174) 3 0.214

(174, 6) 2 0.143
(6, 45) 1 0.071

(45, 33) 1 0.071
(33, 192) 2 0.143
(192, 33) 1 0.071
(192, 174) 1 0.071

End Example 1 [21].

The advantage of using this feature type is the inexpensive nature of computationally
calculating the weight of an N-gram. Consequently, the N-gram approach results in an
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additional issue: the data matrix becomes more sparse. Thus, if the data matrix’s dense
form is taken into consideration, it would tend to be very large, even for machines with
ample resources.

Stage (2)

The second stage in feature extraction in this study is the use of compressed matrix
formation [145–147]. Here, the data are entered in the form of a sparse matrix, where only
the weights of features are visible in the trace, thus ignoring zero weights and keeping the
non-zero values. Additionally, algorithms requiring a minimal runtime are implemented.
Regarding the encoding of system calls, which has been done in this research, consideration
was given only to 1-gram and 2-gram, which appear in training data, to be represented as
features for experimentation.

Stage (3)

The following step is used in compensating for all missing N-grams found in the test
data. In this research, a Linear Correlation Coefficient (LCC) was used for the compensation
test, between values of all N-grams, as follows:

LCC(T) =
A− B√

CD
(3)

where the definitions of A, B, C, and D are as follows:

A = N ∑
c

ω(c)ω(c) (4)

B = ∑
c

ω(c) ∑
c

ω(c) (5)

C = N ∑
c

ω(c)2 −
(

∑
c

ω(c)

)2

(6)

D = N ∑
c

ω(c)2 −
(

∑
c

ω(c)

)2

(7)

where ω (c) denotes the mean value of n-gram; c is the positive training dataset; and the
sum is over all n-grams in the training dataset.

3.1.2. Feature Selection

Feature selection is needed for the simplification of the model, so it can achieve a more
suitable performance and ensure reduction in the time used to train. This is performed by
selecting a particular subset from a series of relevant features. In this research, after the
analysis and comparison of feature selection techniques, there are three main methodologies
of feature selection and also a PCA approach. A Filer method was used in ranking features
according to their level of relevance via several criteria, such as the value of information,
correlation, and the value of χ2. Furthermore, due to the low space and complexity in time
encountered in the study, a common feature selection approach, called MI, was used for
classification on the basis of the information value. According to Manning, Raghavan and
Schütze [127], MI is defined as follows:

MI(V; C) = ∑
evec∈{0,1}

P(V = ev , C = ec) log2
P(V = ev , C = ec)

P(V = ev) P(V = ev)
(8)

where V denotes a random variable, taking the values of ev = 1 if the trace contains n-gram
v and ev = 0 if the trace does not contain v. C is a random variable that takes values of ec = 1
if the n-gram belongs to class c and ec = 0 if the trace is not in class c. Connecting this with
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the area of information theory, MI measures how much information an attribute contains
about the class, of which the N-gram used in this scenario. The more similarity existing
between the N-gram and distributions within the class, the less information obtained when
this N-gram is considered.

3.2. Phase 2: Modeling

In this work, Multi-Layer Perceptron (MLP) modeling was used. A presentation on the
comparison of deference classifiers using 1-gram and 2-gram is given. The classifier used
in modeling was chosen based on its wide acceptance rate as compared to other classifier
algorithms. Table 7 provides a comparison of common classifiers used. Various algorithms
used in detecting anomalies have been applied for the detection of intrusion for enhancing
the performance of IDS. In reference to the prior descriptions of diverse algorithms used
in detecting anomalies, comparisons have been made, and such comparisons summarize
the pros and cons of the respective algorithms. In addition, the comparison deduces
the weaknesses of knowledge-based detection techniques. Anomaly detection comprises
supervised techniques; nevertheless, the design of the classifier must be in accordance with
how most classifiers used at the base are designed, such as DT, NB, SVM, RF, and KNN
algorithms for classification. The classifier’s design is based on the majority, with base
model algorithm for classification.

3.2.1. Artificial Neural Network (ANN)

An ANN works in three layers. The input layer receives data, in manner similar to
dendrites. Processing of the input is conducted by the hidden layer, similar to axon and
soma. The output later is responsible for producing the calculated outputs, similar to the
terminals within a dendrite [148,149]. There are basically three types of ANN: supervised,
unsupervised, and reinforcement [69,150].

A perceptron is the founding ground of an Artificial Neural Network, based on in-
spirations from models relating to biological aspects of machine learning. Furthermore, a
perceptron mathematically represents the neuron, which is a fundamental unit of computa-
tion within the brain. As in the nervous system of humans, input signals are received by
neurons from the dendrites, while the output produces signals in line with the axons, which
in turn divert and create a connection between other neurons via a synapse of the dendrites,
as depicted in Figure 4. ANN refers to a paradigm for information processing, based on
biological structures and complex model relationships between inputs and outputs.
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Thus, it is possible for a single perceptron-based mathematical model to denote a
linear classifier. Mapping of the input is as follows: x = (x1, ..., xn), a real-valued vector, to
an output value f (x) in accordance with the following rule:

f (x) =
{

1, i f ∑m
i=1 ωixi + b > 0

0, otherwise
(9)

where w = (ω1, ..., ωn) denotes the weights of real-values; b denotes bias (ω0). Thus,
generalization can be made on the perceptron via application of non-linear transformation
sets, ϕi, in concordance with the inputted vector x. Thus, the output, y, is represented as

y(x, w) = g

(
m

∑
i=1

ωi∅i(x)

)
(10)

where m denotes the number of variables or numbers; g represents the function of a non-
linear activation, an example of which is a Rectified Linear Unit (relu), or a sigmoid, as
depicted in Figure 4. The perceptron is a simple model, which is of much benefit with
regard to the approximation of numerous non-stopping functions. A way of improving the
performance of the model entails the consideration of MLP, which is achieved via the addi-
tion of a minimum of a singular layer that is hidden to the above-stated perceptron model,
as shown in Figure 4. However, a commonly used learning algorithm is backpropagation,
due its generalist nature regarding algorithms of minimal mean squares within a linear
perceptron [151]. Thus, the sigmoid and the relu functions are two functions commonly
used in activating MLP learning models and are given by

sig(x) =
1

1 + exp(−x)
(11)

rule(x) = max(0, x) (12)

3.2.2. Machine Learning Shallow Models

Different algorithms used in detecting anomalies have been applied for the detection of
intrusion, with the sole purpose of enhancing the performance of IDS at all levels, inclusive
of classification, clustering, and selection of features. More information is provided in the
previous chapter on the literature review.

The conventional models used in machine learning (also referred to as shallow models)
for IDS basically comprise the ANN, support vector machine (SVM), K-nearest neighbor
(KNN), naïve Bayes (NB), decision tree (DT), and clustering, as well as combined or hybrid
methods. Some of these methods have been studied for many years, and their methodology
is proven to perform. Their focus is not just on the effect of detection but also on practical
issues, which include management of data and effectiveness of detection. The pros and
cons of various shallow models are presented in Table 6.

3.3. Phase 3: Evaluation Performance

In machine learning, the measuring of performances is very important. Thus, regard-
ing issues of classification, the following can be considered: (1) Evaluation of Metrics:
Recall (R), F-Measure (F1), Accuracy (ACC), False Positive Rate (FPR), Receiver Operating
Characteristics Curve (ROC), Area Under the ROC Curve (AUC); (2) Evaluation of CPU
Usage (Lightweight): Testing Time and Energy Consumption.

To evaluate the model in this study, several metrics were taken into consideration for
evaluation. These metrics are used generally for diverse classification model applications.
First, the following definitions were used: True Positive (TP): amount of detected positive
traces (attack) as positive traces (attack). True Negative (TN): amount of detected negative
traces (normal) as negative traces (normal). False Positive (FP): amount of detected positive
traces (attacks) as negative traces (normal). False Negative (FN): amount of detected
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negative traces (normal) as positive traces (attack). Table 8 presents the confusion matrix
that can be used for deriving additional measures. The definitions presented above are for
purposes of deriving important measures, inclusive of recalls and precision. Precision (P)
refers to the positive predictive values, recall refers to the true positive rate, and F1-measure
represents the harmonic mean for both recall and precision.

Table 8. The confusion matrix for a binary classifier.

True Class

Predicted Class
Positive Negative

Positive TP FP

Negative FN TN

Consequently, accuracy refers to the adequate classification ratio of the overall number
of examples existing in a dataset test. In this research, all of the available contemporary
evaluation metrics widely used in the information retrieval area were used [8].

Furthermore, in evaluating the performance of an IDS, several metrics for evaluation
need to be calculated via the confusion matrix values [17]. Based on the above values, the
most-used metrics in evaluation are given in the following formulas.

3.3.1. Precision or Positive Predictive Value

This is the ratio of the amount of predicted attack traces as actual attack traces, from
the overall number of traces predicted as attack traces.

Precision is defined as
P =

TP
TP + FP

(13)

3.3.2. Recall or Sensitivity

This is also referred to as the True Positive Rate (TPR). Moreover, it is a representation
of the ratio of the number of attacks being predicted as actual attack traces, from the overall
number of traces that are true attacks.

Recall is defined as
R =

TP
TP + FN

(14)

3.3.3. Accuracy

This refers to the proportion of true results (number of attack traces and normal traces
detected correctly) from the overall number of samples.

Accuracy defined as

A =
TP + TN

N
(15)

where N = TP + TN + FP + FN, is the total number of samples.

3.3.4. F1-Measure

This refers to a measure that combines precision and recall into a single measure. It is
calculated as the harmonic mean of precision and recall.

F1-measure is defined as
F1 =

1
(1/P + 1/R)

(16)

3.3.5. FP Rate

False Positive Rate (FPR) is a measure involving the amount of normal trace labelled
as attack trace by a classifier.
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FP Rate is defined as
FPR =

FP
FP + TN

(17)

Finally, regarding the study methodology, this work considered the ROC.

3.3.6. Curve and AUC

• Receiver Operating Characteristics (ROC) Curve: This refers to a graph of true positive
rate against FPR. Thus, it gives a representation of how binary performs, based on the
variations in the discriminated threshold.

• Area under the ROC Curve (AUC): This refers to the coverage area surrounding
the ROC curve. Thus, it is consonant to the possibilities of ranking by the classi-
fier in a randomly selected positive instance, above the randomly selected negative
instance [152,153].

AUC-ROC curve refers to a measure of performance for issues of classifying binary
within diverse thresholds. ROC refers to the curve of probability, while AUC is a represen-
tation of the measure or degree of separation. Furthermore, it gives detailed information
as to the amount of the model needed to carry out variances across classes. Thus, the
higher the AUC, the better the model becomes for the prediction of 0 s and 1 s as 1 s.
Furthermore, the rate at which ROC curves are steeped is of utmost relevance due to it
being the best for the maximization of true positive rate while ensuring the minimization
of the FPR. Normally, ROC curves, with regard to the classification of binary, are used for
the purpose of understanding the outputs from a classifier. Thus, to ensure the extension
of the ROC area as well as the curves to a multi-labelled classification, there is a need for
output conversion to binary. This can be done via the drawing of one ROC curve at each
label, though an ROC curve can also be drawn by taking into consideration each element
from the label matrix as binary predictions (or micro-averaging).

In addition, there is a need to consider the consumption of power, CPU consumption,
and throughput, as these are essential metrics for evaluating IDS, which are being run on
numerous hardware based on a specific setting, including the network’s high speed nature
or limited hardware resources.

4. Experimental Setup

This work was based on evaluating the results of benchmark datasets. Nevertheless,
currently available datasets lack real-life properties, thus explaining why the majority
of systems for detecting anomalies in the intrusion are not applicable in the production
environment [154]. Consequently, this leads to an inability to adapt to non-stop variances
within networks, such as changes in topology, new nodes, and variations in traffic loads,
among others. Therefore, to ensure the evaluation of the proposed framework and algo-
rithm based on their level of effectiveness for detecting attacks in IoT, this research utilized
an intrusion detection dataset. According to the literature, the most preferred datasets for
intrusion detection are NSLKDD and KDDCUP’99 [154–156]. Furthermore, in this work, a
more suitable and modern dataset, the Australian Defence Force Academy Linux Dataset
(ADFA-LD) [157,158], was employed to train and evaluate the performance of the system.

4.1. ADFA-LD Dataset

The collection and generation of traces in system call based on a large scale for the
purposes of research for simplistic tasks, as well as the number of available datasets
for evaluating IDS, are quite limited. Recently, some researchers proposed ADFA-LD
datasets as a novel alternative for outdated datasets [157,159]. From their proposal, it was
revealed that there exists a higher level of complexity in ADFA-LD as compared to other
contemporary datasets. A preliminary performance analysis was conducted on ADFA-
LD by some scholars [160,161], which revealed the ineffectiveness of Euclidean distance
as a medium for separating normal behaviors from those that are instigated by attacks.
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Table 9 presents the distribution between system call traces, splitting them into normal and
different types of attacks under three ADFA-LD groups.

Table 9. ADFA-LD dataset composition based on binary classification of the types of system call traces.

Dataset No. of Traces ADFA-LD Class of Traces

TRAINING_DATA_MASTER 833 Normal
VALIDATION_DATA_MASTER 4372 Normal

ATTACK_DATA_MASTER 746 Attack

Python workbench was employed for evaluating the demonstration of the modified
vector space on the dataset of ADFA-LD. This workbench has the ability to host concurrent
algorithms of machine learning, which also are used for the selected datasets, under
different sizes of terms. A total of nine algorithms for classification were selected out
of six diverse groups [17]. Furthermore, the datasets were gathered and converted to
representations of modified vector space for diverse sizes of terms. The term sizes one
and two were chosen for this experiment. The experiment on the ADFA-LD dataset was
executed in favor of the classification of binary. Out of the two labels, one was used for
each trace, either attack or normal. Additionally, each of the selected algorithms was
run independently according to the chosen options for data conversion. Table 9 gives
a description of a number of extracted features from the ADFA-LD dataset for the size
terming, via a representation of modified spaces within the vector.

In comparison with aforementioned dataset benchmarks, ADFA-LD is seen to have the
most representative nature for handling present-day cyber-attacks. In addition, it offers a
well-organized framework for evaluating performance and developing intrusion detection
systems (IDSs). Furthermore, many system call traces are contained in ADFA-LD, some
of which are retrieved based on diverse situations for the purpose of simulating real-life
scenarios. Additionally, they comprise a quite concise collection of system call traces,
which represents present-day vulnerabilities on system levels as well as attacks. Thus,
the generating of ADFA-LD is from a local Linux server (having a Linux kernel of 2.6.38),
offering advanced as well as popularly used computer systems. ADFA-LD generated
attacks comprise Webshell, Adduser, Hydra-FTP, Meterpreter, and Java-Meterpreter. Each
of these attacks is capable of generating up to 8–20 traces of attack. Table 10 presents the
number of retrieved traces according to individual attack type. Additional information
with regard to the technical aspects of the dataset is available in the literature [157].

Table 10. Attack vectors used to generate the ADFA-LD attack dataset.

Attack Type Attack Payload Description Vector Trace Count

Adduser Add new superuser using poisoned
executables

Client side poisoned
executable 91

Hydra-FTP Bruteforce password guess on FTP port FTP by Hydra 162
Hydra-SSH Bruteforce password guess on SSH port SSH by Hydra 176

Java-Meterpreter Java-based Meterpreter exploit TikiWiki vulnerability
exploit 124

Meterpreter Linux Meterpreter exploit Client side poisoned
executable 75

Webshell Privilege escalation using C100 Webshell PHP remote file inclusion
vulnerability 118

4.2. Software and Platform

The experiments are implemented using Python 2.7 softwar; Scipy and Numpy are
used for experiments and the reprocessing phase. In addition, for the aspect of visualization,
the Matplotlib library was used, while the ScikitLearn library was used for machine
learning [162–165].

In this work, Python programming language is used to implement machine learning
techniques. Python is a great language for machine learning for numerous reasons. First,
it has a clear syntax; second, with python, the manipulation of text is very easy. Thus,
the majority of researchers, including those associated with private and public organiza-



Electronics 2021, 10, 1633 34 of 52

tions, make use of Python, therefore leading to its rapid documentation and development.
Additionally, the compilation of scientific libraries, such as Scikit Learn, an open-source
library for machine learning, developed as part of a project for the Google summer code,
established around 2007 by David Cournapeau [166,167]. The language used in writing this
code is Python, which incorporates both the scientific and numerical libraries of python,
such as NumPy, SciPy, Panda, and matplotlib. Furthermore, it also makes available provi-
sions for effective machine learning tools, such as regression algorithms, classification, and
clustering. Furthermore, it supports feature extraction approaches and offers tutorials for
understanding the respective concepts [19,164].

The testing aspect of the experiment was done via Raspberry Pi 3, a small, low-
powered single board computer made by the UK Raspberry Pi Foundation. The Raspberry
Pi has gained popularity among computer enthusiasts and has been employed for diverse
projects on robotics and IoT, thus making it a perfect choice for IoT-device-related applica-
tions. Among a lot of applications for IoT, Raspberry Pi has been deployed in the form of a
Fog node, referred to in [168–170]. Thus, this experiment makes use of Raspberry Pi 3, the
third generation of Raspberry Pi.

Raspberry Pi 3 comes with a low-powered yet high-speed CPU, named BCM2835
(1.2 GHz 64-bit quad-core ARMv8 CPU), with approximately 40 General Purpose Input
Output (GPIO) pins, which are used in connecting sensors, 1 GB of RAM, SD card 16 GB
class 10, four USB ports, Video Core IV 3D graphics core, full HDMI port, and Ethernet port.

Figure 5 presents the hardware components’ location on the Model B of Raspberry
Pi 3. Correspondingly, Raspberry Pi is installed with Debian Linux based OS, referred to as
Raspbian, which serves as an optimization for the Raspberry Pi hardware. Furthermore,
Raspberry Pi helps in evaluating the time taken in response by a classifier, based on specific
IoT hardware [4]. Thus, the consumption of energy by Raspberry Pi is calculated via
a commonly used technique, not significantly different from a conventional computer
system. The voltage value of Raspberry Pi model 3 B is around +5.1 V. With regards to the
requirements for current, a keyboard and HDMI port were connected to the Raspberry Pi,
resulting in a 400 mA electrical current requirement. The power consumption is yielded by
the combination of the products of both the Voltage (V) and the Current (I), which is then
multiplied by the CPU time (t) to calculate the consumed energy [21,171].

P (Power) = I ∗ V (18)

Energy Consumption = P ∗ t (19)
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5. Results and Discussion

The experiment conducted in this paper was aimed at addressing the need for the
development of an HIDS anomaly based on light weight, which is responsive to most
recent attacks via the usage of ADFA-LD datasets, to employ in IoT-based Fog computing.
Thus, the research tries to address the following issues:

• What techniques that support HIDS anomaly based on light weight can be developed
in IoT-based Fog Computing?

• What Machine Learning computable devices with limited resources can help create
lightweight HIDS in Fog Computing?

• What feature extraction and selection approaches for pre-processing data can produce
high performance?

• Which classifiers can give high accuracy?
• Which classifiers can give low CPU usage and energy consumption in testing data?

Many algorithms were employed for the purpose of achieving adequate results using
these techniques. Thus, the study proposes a general viewpoint for the detection of
anomalies via machine learning techniques. The conducted experiments also proved
that supervised learning approaches perform far better than unsupervised approaches,
provided there are no unknown attacks in the test data. Previous studies revealed that out
of numerous supervised approaches, the best performance can be achieved by RF, SVM-
RBF, and MLP; however, there are differences with regard to their individual capabilities to
detect attack class effectively. In order to compare with other machine learning methods,
contrast experiments are designed at the same time. This is done in the binary classification
experiments, for using more loading instances for lightweight evaluation.

The first step in this experiment involves the computation of 1-gram and 2-gram,
for the system call traces, whereby selections for the top 60 and 80 features for 1-gram,
followed by the top 80 and 120 features for the 2-gram, were made on the basis of the value
of their information using MI, which were combined to train the model. Comprehensively,
the numerals 60, 80, and 120 were selected for the reduction of the data size as well as data
representation [21].

Furthermore, the classifiers were compared with regard to their accuracy, recall, F1-
measure, FPR, ROC Curve, and AUC. In addition, a comparison was made of the testing
time for CPU usage and energy consumption between the different classifiers using 1-gram
and 2-gram, which are the maximum features on the Raspberry Pi platform.

This work did not focus on memory usage testing time, because after the collection of
results and analysis, it was discovered that consumers for each classifier did not exceed
350 Bytes, as shown in Figure 6, for the KNN classifier. Therefore, it is not considered
important in the Raspberry Pi platform.

5.1. Performance of the Feature Extraction and Feature Selection

In this section, the performance of the feature extraction and feature selection meth-
ods are explored in terms of CPU time and memory usage. The 1-gram and 2-gram
transformation modified vector spaces (feature extraction) are tested with two feature
selection methods: Principle Component Analysis (PCA) and Mutual Information (MI)
(filter method). Based on the test, the best feature selection method in term of its “light
weight” was selected for implementation with the MLP classification method. Figure 7a,b
show the CPU time and memory usage, respectively. Based on this figure, we can notice
that (MI) outperforms PCA, which on the contrary has a lesser performance for CPU time
with the consumption of less memory.
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The following stage, traces in the system call, makes use of a sparse matrix formatting
technique from Python to ensure reduction in the size of the memory. This approach to
formatting is of much relevance, as it was able to reduce a reasonable amount of data in
the matrix, as 98.2% of the 2-gram matrix entries were zero values. Figure 8 depicts the
matrix’s compressed form, which is around 4% of the initial dense matrix memory space.

5.2. Performance of the Classification Methods

Subsequent to the normalization of the processed data for more suitable performance,
Figure 9a presents a comparison of recall, F1-measure, and accuracy between the different
classifiers, using 80 features for 1-gram and 120 features for 2-gram, thus selecting the
highest number of features to provide more efficiency and to help in determining the
classifiers of good performance as well those fit for lightweight techniques.

Based on Figure 9a, it is noticeable that MLP outperforms the other classifiers, in
accordance with their accuracy, recall, and F1-measure. Correspondingly, the Naive Bayes
and Decision Tree Models achieved the worst results for these metrics.
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In terms of FPR, Figure 9b reveals that RF, SVM-RBF, and MLP models outperform
by approximately 5% compared to others, which achieved 17.13%. It is also noticeable
that RF and SVM-RBF models achieved higher FPR than MLP, up to a difference of nearly
0.08% FPR. This value is meaningful with reference to the rate of detection; however, it
is observed in Figure 9c, which shows a comparison between ROC curves, that it is a
graph of true positive rate against FPR. It is also noticeable that MLP outperforms the other
classifiers, as it has the highest range over curve. In addition, the AUC value is equivalent
to the probability that a classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one. MLP showed the highest value (95.7%), and this
represents that it was able to achieve a higher performance than the other classifiers.

Furthermore, Figure 9d shows a comparison of CPU usage for the testing time between
the different classifiers. Based on this figure, it is noticeable that Decision Tree (DT) and
MLP outperform the other classifiers in terms of the testing time. However, SVM-RBF, RF,
and KNN models had the worst values for CPU usage for the testing time.

In terms of energy consumption, Figure 9e depicts the Decision Tree (DT), whereby
MLP models outperformed by up to around (0.008) Joules the others models, including
the KNN model (4.3 Joules). In other words, the MLP outperforms the other classifiers in
terms of accuracy, recall, F1-measure, and FPR and achieved low values for CPU usage
and energy consumption.

According to the above results, the best performance is given by the MLP model.
Furthermore, MLP also did well with regard to the amount of CPU time and consumption of
energy achieved for all instances during the testing phase, as compared to other classifiers.
There were only a few cases where simple performances were provided by these techniques.
However, observing the MLP model, it is obvious that it achieved a good performance and
is also compatible with lightweight devices.
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5.3. Performance on the Raspberry Pi

Raspberry Pi has a significantly slower speed as compared to other regularly used
computers; thus its limited resources for computing makes it an appropriate platform to test
the performance of the model. The model’s performance for this experiment was evaluated
via a Raspberry Pi 3 of the Model Type B. The performance showed the median for each
of the 10 iterations tested. Further observation showed that there were 350 instances (i.e.,
“normal” = 200, “attack” = 150) for the experimental testing of the test set.

Furthermore, the optimization of the CPU’s energy and time could be achieved via
the utilization of Fog Computing’s distributive nature. It was observed that the average
time used in testing was around 0.004 s, thus indicating a reasonable delay, as applicable to
many IoT-inclined applications, and the energy consumption rate was 0.008 Joules.

Based on the benchmark, using the ADFA-LD training set and testing set, the ex-
perimental results show that for binary classification, the intrusion detection model of
MLP-IDS through the training set and testing set has higher accuracy than other machine
learning methods and maintains a high recall, F1-measure, and accuracy rate as well as the
highest ROC curve with a high value of AUC, even in the case of FPR. The FPR rate was
low for the other models, such as SVM-RBF and RF; however, though they outperformed,
they had higher CPU time and energy consumption for the testing process and thus were
inappropriate for the lightweight model. Consequently, the DT model outperformed the
MLP model with respect to CPU time and energy consumption for the testing process, but
maintained a lower rate of recall, F1-measure, and accuracy as well as a low ROC curve
and low value of AUC; however, it also achieved a high value of FPR as compared to the
other machine learning methods. Of course, the model proposed from this experiment
will reduce the time and energy consumption for the testing process more effectively, as it
boasts a higher accuracy than the other machine learning methods.

5.4. Performance of the MLP Methods (Parameter)

This work employed an ANN approach to serve as the computational model. This
is due to its influence on biological neural network characteristics for incorporating in-
telligence into the proposed methods. Thus, a particular type of ANN is represented in
the form of a direct graph, for the purpose of transmitting diverse information from the
system over the edge and across nodes, without the formation of a cycle. To achieve this, a
MLP model was adopted. However, in order to achieve an outstanding performance, it is
important to find an optimal parameter when modeling an MLP [162,165].

Fully connected layer: This layer is referred to as a layer that is fully connected due to
the connectivity of the layer’s unit with all other units around the succeeding layer. From a
general perspective, high dimension mapping can be easily achieved via layers that are
fully connected. This will result in more accuracy of the output. The function for non-linear
activation used in this experiment is ReLU.

Batch Normalization and Regularization: Dropout (0.01) and Batch Normalization
were employed amidst layers that were fully connected, for the purpose of over-fitting
obviation as well as to ensure a speed-up of the model training of the Deep Neural Network
(DNN). Regarding the alternative architectures, it was discovered that DNNs were able to
over-fit the data used for training very easily, without the need for regularization, including
situations where training was conducted for a large number samples.

Classification: This is the last layer, and it is fully connected as it makes use of the
activation function from sigmoid for the classification of binary, as well as the activation
function from softmax for the classification of multi-classes. Thus, the definition of the
function for prediction loss in sigmoid is achieved via binary cross entropy; moreover,
the definition for the prediction loss of softmax is achieved via categorical cross entropy
as follows:
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The estimation for the prediction loss of Binary classification is achieved via binary
cross entropy, given by

loss(pd, ed) = − 1
N

N

∑
i=1

[edi log pdi + (1− edi) log(1− pdi)] (20)

where pd denotes a vector of the predicted probability for all the testing dataset samples; ed
denotes a vector of expected class label, for which the values lie between 0 and 1

The prediction loss for Multi-class classification is estimated using categorical cross
entropy, given by

loss(pd, ed) = −∑
x

pd(x) log(ed(x)) (21)

where ed represents the true probability distribution; pd denotes the predicted probability
distribution. Furthermore, in this research, adam was used as an optimizer for ensuring the
minimization of the loss of categorical cross entropy as well as binary cross entropy [129,172].

As MLPs are parameterized, as shown in Table 11, the performance is dependent on the
optimized parameters. Determining the parameter that is optimized for both MLP network
topologies and network parameters was achieved via the ADF-LD dataset. For identifying
which parameter is suitable for MLP, this research employed the use of an architecture of
medium size, for the experimentations within specific hidden units, rate of learning, and
the functions of activation, as follows: default (Activation = ‘relu’, Solver = ‘adam’, Alpha
= 0.0001), a small node size, and a single hidden layer. The architecture of MLP contains
three layers. The first is the input layer, the second is the hidden layer or fully connected
layer, and the third is the output later.

Table 11. MLP parameters (activation, solver, alpha).

Function Parameters

Activation: for the hidden layer

‘identity’, no-op activation, useful to implement linear bottleneck, returns
f(x) = x

‘logistic’, the logistic sigmoid function, returns f(x) = 1/(1 + exp(2212x))

‘tanh’, the hyperbolic tan function, returns f(x) = tanh(x)

default ‘relu’, the rectified linear unit function, returns f(x) = max(0, x)

Solver: for weight optimization

‘lbfgs’ is an optimizer in the family of quasi-Newton methods

‘sgd’ refers to stochastic gradient descent

default ‘adam’ refers to a stochastic gradient-based optimizer proposed by
Kingma, Diederik, and Ba

Alpha: L2 penalty (regularization term) parameter

Alpha float, optional, default 0.0001

Both MLP Regressor and MLP Classifier use parameter alpha for
regularization (L2 regularization) term, which helps in avoiding overfitting
by penalizing weights with large magnitudes

The advantages of Multi-layer Perceptron (MLP) are that it is able to (1) learn non-
linear models and (2) learn models in real-time (online learning) via partial fit.

The disadvantages of Multi-Layer Perceptron (MLP) include the following: (1) MLP
has hidden layers consisting of a non-convex loss function and comprising the existence of
more than a single local minimum. Thus, accuracy of diverse validations can occur due
to the initialization of various random weights. (2) MLP requires the tuning of several
hyperparameters, including numerous hidden neurons, iterations, and layers. (1) MLP has
a sensitivity to feature scaling [129].

The evaluation performance for MLP parameters (Recall, F1-Measure, Accuracy, FPR)
is illustrated in Figure 10. The evaluation of light weight is based on the following param-
eters, as illustrated in Figure 11: Evaluation of CPU Usage MLP Parameter; Evaluation
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of Memory Usage MLP Parameter; Evaluation of Energy (Consumption). This process
includes exploring all factors that help to reach the goals of achieving a light weight. This
study obtained performance under the default values of the MLP model that were deemed
the most appropriate; however, some parameters were used to help provide the light
weight. The performance from comparing both alpha values at an equal point of 10.0
shows that there is an improvement in both the processor usage and energy consumption.
in addition, when using activation “identity”, it contributes to the support of light weight,
while the performance of both “identity” and the alpha 10.0 is poor.

5.5. Performance of the MLP Methods (N-gram)

The experiment is performed via combining the top 60 and 80 for the 1-gram, whereas
for the 2-gram, it combined the top 80 and 120, with several numbers of nodes at the
hidden layer, after which the results underwent evaluation. Figure 12a illustrates the
model performance based on accuracy, via the use of combining four top features and their
N-grams, accordingly. From the results, the best accuracy value was achieved for 4 nodes
at the hidden layer, which used 80 1-gram and 120 2-gram.

With regards to the recall values, as depicted in Figure 12b, the best value achieved
around 97%, which was possible under three cases, namely the 2 node model via 80 1-gram
and 80 2-gram; the 4 node model via 60 1-gram and 120 2-gram; the 6 node model via
60 1-gram, and 120 2-gram. The F1 measure values for total combinations of 1-gram as well
as 2-gram are illustrated in Figure 12c. The best value for the F1-measure was achieved on
the 6 node model via 80 1-gram and 80 2-gram.

In terms of FPR, Figure 12d shows that when increasing the number of nodes and
the number of combinations of 1-gram and 2-gram, the models outperform. Figure 12e
shows that the best Area Under Curve (AUC) value achieved during the experiment was
for 6 nodes at the hidden layer, with 80 1-gram and 120 2-gram, which achieve a value
of 94.95%.

In terms of CPU usage and energy consumption, Figure 12f,g depicts the low values.
When using a small number of nodes and small numbers for all combinations of 1-gram
and 2-gram, high values of CPU usage and energy consumption result. When increasing
the number of nodes and the number of combinations of 1-gram and 2-gram, the best
consumption value is achieved on the 2 node model using 60 1-gram and 80 2-gram,
which outperformed by up to around (0.0025) seconds and by a (0.005) Joule energy
consumption rate.

Furthermore, comparisons were made among all performances, such as for accuracy,
recall, F1-measure, FPR, AUC, CPU usage, and energy consumption of the models via
diverse nodes. These comparisons revealed that the overall outstanding performance was
attained at the point where 2 or 4 nodes were used at the hidden layer. However, it is worth
noting that the 5 and 6 node models also produced good values for the recall rate, similar to
that of the 4 node model. Thus, conclusions can be drawn from the above analysis as to the
fact that the model can perform well, provided the hidden layer contains a minute number
of nodes. The use of 4 nodes at the hidden layer is adequate for the majority of applications.
Overall, it can be postulated that the 4 node model of a hidden layer performs far better
than models with a greater number of nodes, working on a mix of several 1-gram and
2-gram. The implication of this is that the addition of more nodes will yield an insignificant
improvement in the performance of the model.
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6. Conclusions

In this article, a novel and intelligent architecture of an IDS is presented. To address the
aforementioned limitations of current systems, the IDS presented here includes the main
function, type, and normal behavior profile of each IoT device connected to the network;
the type of attack deployed is classified. Evaluation of the performance of applying a
supervised machine learning approach to automate each function demonstrates that the
proposed architecture can successfully distinguish between IoT devices on the network
and whether network activity is malicious or benign, and it can detect which attack was
deployed on which device connected to the network automatically. In addition to the
experimental results, this study provides resources that can further support research into
automating IoT-based cyber-attack detection.

In this work, a methodology was presented to develop a lightweight IDS-based machine
learning model that can be used to identify potential attacks against IoT security, considering
their impacts and the ways of mitigating as well as recovering from these attacks. In this
work, the Fog Computing concepts and its security challenges were discussed.

• The proposed method is tested using the ADFA-LD dataset for anomaly HIDS.
• Spares Matrix (Memory Usage)—the compressed form of the matrix is around 4% of

memory space of the original dense matrix.
• Based on these results, we can notice that Mutual Information (MI) outperforms PCA,

with less CPU time and with less memory consumption.
• The research found that MLP outperforms the other classifiers in terms of 96% accuracy,

97% recall, 96% F1-Measure, 5% False Positive Rate (FPR), the highest curve of ROC,
and 96% Area Under The Curve (AUC). It also achieved low CPU time usage of 4.404
ms and a low energy consumption of 8.809 mj.

• This study obtained performance under the default values of the MLP model that
were deemed the most appropriate; however, some parameters were used to help
provide the light weight. The performance from comparing both alpha values at an
equal point of 10.0 shows that there is an improvement in both the processor usage
and energy consumption. in addition, when using activation “identity”, it contributes
to the support of light weight, while the performance of both “identity” and the alpha
10.0 is poor.

• The test is executed with 2, 3, 4, 5, and 6 nodes of the MLP single hidden layer. From
the experiment, we found that 2 nodes of the MLP single hidden layer with 80 1-gram
and 80 2-gram were able to achieve 95% accuracy, 97% recall rate, 94% F1-measure,
and FPR of 7%, and an AUC of 95%. This is comparable to the higher number of nodes
(i.e., 3 nodes to 6 nodes), which give similar results. Since the 2 node model has lower
complexity, and there is no significant advantage when a higher number of nodes is
implemented, the 2 node implementation is suggested for the Fog device.

• Raspberry Pi, which acts as the Fog device with its limited computational resources, is
a suitable platform for testing the model performance. The performance that shows the
median for the CPU time usage is approximately 5 ms, and the energy consumption is
approximatively 9 mj. The testing time could be optimized by utilizing the distributed
nature of Fog Computing.

IoT end devices need novel solutions to protect their privacy. The current paper
employed the application of the concepts of “A Lightweight Perceptron-based Intrusion
Detection System” using Fog Computing to build a distributed lightweight security solu-
tion with high lifespan for IoT security.

7. Future Work

There is a wide gap in the area of IoT device capacity as well as intelligence, as these
IoT systems are known to produce large heterogeneous data every second. Thus, efficient
approaches for managing huge data produced by IoT systems is a tentative drive for
future work. The application of technologies like Fog Computing, big data, and the cloud
can be useful in ensuring a large exchange of information across networks. Furthermore,
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there is hope with regards to efficiency of the technology in being able to manage huge
heterogeneous data in an efficient and secure manner. The concept of a holistic architecture
for IDS in the IoT has begun to be explored. Still in its infancy, this trend will grow,
with continued evaluation of IDS implementation to improve security of alert traffic
and management and further development of applications such as alert correlation and
autonomic management systems.

Author Contributions: Conceptualization, B.S.K.; M.Y.I.I. and A.W.A.W.; methodology, B.S.K.;
M.Y.I.I.; software, A.A.I.; validation, B.S.K., A.W.A.W. and M.A.H.; formal analysis, M.Y.I.I.; A.A.I.; in-
vestigation, B.S.K.; M.Y.I.I. and A.W.A.W.; data curation, B.S.K.; M.Y.I.I. and A.A.I.; writing—original
draft preparation, B.S.K., M.Y.I.I. and M.A.H.; writing—review and editing, M.A.A.; and H.A.S.;
visualization, B.S.K. and M.A.A.; supervision, M.Y.I.I. and A.W.A.W.; M.A.H. All authors provided
critical feedback and helped shape the research, analysis and manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is supported by Universiti Malaya Impact Oriented Interdisciplinary Research
Grant (IIRG008A-19IISS).

Data Availability Statement: This study made use of the ADFA-LD dataset which can be retrieved
from: https://research.unsw.edu.au/projects/adfa-ids-datasets (accessed on 2 February 2017) [158].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khan, S.; Parkinson, S.; Qin, Y. Fog computing security: A review of current applications and security solutions. J. Cloud Comput.

2017, 6, 19. [CrossRef]
2. Sfar, A.R.; Natalizio, E.; Challal, Y.; Chtourou, Z. A roadmap for security challenges in the Internet of Things. Digit. Commun.

Netw. 2018, 4, 118–137. [CrossRef]
3. Sun, F.; Guo, G. Research of Immunity-based Anomaly Intrusion Detection and Its Application for Security Evaluation of

E-government Affair Systems. Int. J. Digit. Content Technol. Its Appl. 2012, 6, 429.
4. Verma, A.; Ranga, V. Machine learning based intrusion detection systems for IoT applications. Wirel. Pers. Commun. 2020, 111,

2287–2310. [CrossRef]
5. Perez, D.; Astor, M.A.; Abreu, D.P.; Scalise, E. Intrusion detection in computer networks using hybrid machine learning techniques.

In Proceedings of the 2017 XLIII Latin American Computer Conference (CLEI), Cordoba, Argentina, 4–8 September 2017; pp.
1–10.

6. Jan, S.U.; Ahmed, S.; Shakhov, V.; Koo, I. Toward a lightweight intrusion detection system for the internet of things. IEEE Access
2019, 7, 42450–42471. [CrossRef]

7. Gao, S.; Thamilarasu, G. Machine-learning classifiers for security in connected medical devices. In Proceedings of the 2017 26th
International Conference on Computer Communication and Networks, Vancouver, BC, Canada, 31 July–3 August 2017; pp. 1–5.

8. Tian, Q.; Li, J.; Liu, H. A Method for Guaranteeing Wireless Communication Based on a Combination of Deep and Shallow
Learning. IEEE Access 2019, 7, 38688–38695. [CrossRef]

9. Alharbi, S.; Rodriguez, P.; Maharaja, R.; Iyer, P.; Bose, N.; Ye, Z. FOCUS: A fog computing-based security system for the Internet
of Things. In Proceedings of the 2018 15th IEEE Annual Consumer Communications & Networking Conference, Las Vegas, NV,
USA, 12–15 January 2018; pp. 1–5.

10. Arrington, B.; Barnett, L.; Rufus, R.; Esterline, A. Behavioral modeling intrusion detection system (bmids) using internet of
things (iot) behavior-based anomaly detection via immunity-inspired algorithms. In Proceedings of the 2016 25th International
Conference on Computer Communication and Networks, Waikoloa, HI, USA, 1–4 August 2016; pp. 1–6.

11. Javed, F.; Afzal, M.K.; Sharif, M.; Kim, B.-S. Internet of things (IoT) operating Systems support, networking technologies,
applications, and challenges: A comparative review. IEEE Commun. Surv. Tutor. 2018, 20, 2062–2100. [CrossRef]

12. An, X.; Zhou, X.; Lü, X.; Lin, F.; Yang, L. Sample Selected Extreme Learning Machine Based Intrusion Detection in Fog Computing
and MEC. Wirel. Commun. Mob. Comput. 2018. [CrossRef]

13. Hosseinpour, F.; Vahdani Amoli, P.; Plosila, J.; Hämäläinen, T.; Tenhunen, H. An Intrusion Detection System for Fog Computing
and IoT based Logistic Systems using a Smart Data Approach. Int. J. Digit. Content Technol. Its Appl. 2016, 10, 34–46.

14. Alrawais, A.; Alhothaily, A.; Hu, C.; Cheng, X. Fog computing for the internet of things: Security and privacy issues. IEEE Internet
Comput. 2017, 21, 34–42. [CrossRef]

15. Xie, M.; Hu, J.; Yu, X.; Chang, E. Evaluating host-based anomaly detection systems: Application of the frequency-based algorithms
to adfa-ld. In Evaluating Host-Based Anomaly Detection Systems: Application of the Frequency-Based Algorithms to Adfa-ld; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 542–549.

https://research.unsw.edu.au/projects/adfa-ids-datasets
http://doi.org/10.1186/s13677-017-0090-3
http://doi.org/10.1016/j.dcan.2017.04.003
http://doi.org/10.1007/s11277-019-06986-8
http://doi.org/10.1109/ACCESS.2019.2907965
http://doi.org/10.1109/ACCESS.2019.2905754
http://doi.org/10.1109/COMST.2018.2817685
http://doi.org/10.1155/2018/7472095
http://doi.org/10.1109/MIC.2017.37


Electronics 2021, 10, 1633 47 of 52

16. Xie, M.; Hu, J.; Slay, J. Evaluating host-based anomaly detection systems: Application of the one-class svm algorithm to adfa-ld’.
Preceedings of the International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Xiamen, China, 19–21 August
2014; pp. 978–982.

17. Borisaniya, B.; Patel, D. Evaluation of modified vector space representation using adfa-ld and adfa-wd datasets. J. Inf. Secur. 2015,
6, 250. [CrossRef]

18. Da Costa, K.A.; Papa, J.P.; Lisboa, C.O.; Munoz, R.; de Albuquerque, V.H.C. Internet of Things: A survey on machine learning-
based intrusion detection approaches. Comput. Netw. 2019, 151, 147–157. [CrossRef]

19. Hussain, F.; Hussain, R.; Hassan, S.A.; Hossain, E. Machine learning in IoT security: Current solutions and future challenges.
IEEE Commun. Surv. Tutor. 2020, 22, 1686–1721. [CrossRef]

20. Computing, F. The Internet of Things: Extend the Cloud to Where the Things Are; Cisco White Paper; Cisco: San Francisco, CA, USA, 2015.
21. Sudqi Khater, B.; Abdul Wahab, A.W.B.; Idris, M.Y.I.B.; Abdulla Hussain, M.; Ahmed Ibrahim, A. A lightweight perceptron-based

intrusion detection system for fog computing. Appl. Sci. 2019, 9, 178. [CrossRef]
22. Dinh, H.T.; Lee, C.; Niyato, D.; Wang, P. A survey of mobile cloud computing: Architecture, applications, and approaches. Wirel.

Commun. Mob. Comput. 2013, 13, 1587–1611. [CrossRef]
23. Jararweh, Y.; Doulat, A.; AlQudah, O.; Ahmed, E.; Al-Ayyoub, M.; Benkhelifa, E. The future of mobile cloud computing: Integrat-

ing cloudlets and mobile edge computing. In Proceedings of the 2016 23rd International Conference on Telecommunications,
Thessaloniki, Greece, 16–18 May 2016; pp. 1–5.

24. Pierson, R. How Does Fog Computing Differ from Edge Computing. Available online: https://readwrite.com/2016/08/05/fog-
computing-different-edge-computing-pl1/ (accessed on 12 June 2021).

25. Ha, K.; Satyanarayanan, M. Openstack++ for Cloudlet Deployment; School of Computer Science Carnegie Mellon University
Pittsburgh: Pittsburgh, PA, USA, 2015.

26. Jaiswal, A.; Thakare, V.; Sherekar, S. Performance based Analysis of Cloudlet Architectures in Mobile Cloud Computing. Int. J.
Comput. Appl. 2015, 975, 8887.

27. Bahl, V. Emergence of micro datacenter (cloudlets/edges) for mobile computing. Microsoft Devices Netw. Summit 2015, 2015, 23.
28. Lee, K.; Kim, D.; Ha, D.; Rajput, U.; Oh, H. On security and privacy issues of fog computing supported Internet of Things

environment. In Proceedings of the 2015 6th International Conference on the Network of the Future, Montreal, QC, Canada, 30
September–2 October 2015; pp. 1–3.

29. Wang, Y.; Uehara, T.; Sasaki, R. Fog computing: Issues and challenges in security and forensics. In Proceedings of the 2015 IEEE
39th annual computer software and applications conference, Taichung, Taiwan, 1–5 July 2015; pp. 53–59.

30. Chiang, M.; Zhang, T. Fog and IoT: An overview of research opportunities. IEEE Internet Things J. 2016, 3, 854–864. [CrossRef]
31. Calabretta, M.; Pecori, R.; Vecchio, M.; Veltri, L. MQTT-Auth: A token-based solution to endow MQTT with authentication and

authorization capabilities. J. Commun. Softw. Syst. 2018, 14, 320–331. [CrossRef]
32. Napiah, M.N.; Idris, M.Y.I.B.; Ramli, R.; Ahmedy, I. Compression header analyzer intrusion detection system (cha-ids) for

6lowpan communication protocol. IEEE Access 2018, 6, 16623–16638. [CrossRef]
33. Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J. Fog computing: A platform for internet of things and analytics. In Big Data and

Internet of Things: A Roadmap for Smart Environments; Springer: Berlin/Heidelberg, Germany, 2014; pp. 169–186.
34. Roman, R.; Lopez, J.; Mambo, M. Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges.

Future Gener. Comput. Syst. 2018, 78, 680–698. [CrossRef]
35. Wang, X.; Han, Y.; Leung, V.C.; Niyato, D.; Yan, X.; Chen, X. Convergence of edge computing and deep learning: A comprehensive

survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [CrossRef]
36. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.

Cybersecurity 2019, 2, 1–22. [CrossRef]
37. Ahmed, M.; Mahmood, A.N.; Hu, J. A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 2016, 60, 19–31.

[CrossRef]
38. Fernandes, G.; Rodrigues, J.J.; Carvalho, L.F.; Al-Muhtadi, J.F.; Proença, M.L. A comprehensive survey on network anomaly

detection. Telecommun. Syst. 2019, 70, 447–489. [CrossRef]
39. Summerville, D.H.; Zach, K.M.; Chen, Y. Ultra-lightweight deep packet anomaly detection for Internet of Things devices. In

Proceedings of the 2015 IEEE 34th International Performance Computing and Communications Conference (IPCCC), Nanjing,
China, 14–16 December 2015; pp. 1–8.

40. Thanigaivelan, N.K.; Nigussie, E.; Kanth, R.K.; Virtanen, S.; Isoaho, J. Distributed internal anomaly detection system for Internet-
of-Things. In Proceedings of the 2016 13th IEEE Annual Consumer Communications & Networking Conference, Las Vegas, NV,
USA, 9–12 January 2016; pp. 319–320.

41. Pongle, P.; Chavan, G. Real time intrusion and wormhole attack detection in internet of things. Int. J. Comput. Appl. 2015, 121, 5–7.
[CrossRef]

42. Sha, K.; Yang, T.A.; Wei, W.; Davari, S. A survey of edge computing based designs for IoT security. Digit. Commun. Netw. 2019, 6,
195–202. [CrossRef]

43. Fadlullah, Z.M.; Tang, F.; Mao, B.; Kato, N.; Akashi, O.; Inoue, T.; Mizutani, K. State-of-the-art deep learning: Evolving machine
intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Commun. Surv. Tutor. 2017, 19, 2432–2455.
[CrossRef]

http://doi.org/10.4236/jis.2015.63025
http://doi.org/10.1016/j.comnet.2019.01.023
http://doi.org/10.1109/COMST.2020.2986444
http://doi.org/10.3390/app9010178
http://doi.org/10.1002/wcm.1203
https://readwrite.com/2016/08/05/fog-computing-different-edge-computing-pl1/
https://readwrite.com/2016/08/05/fog-computing-different-edge-computing-pl1/
http://doi.org/10.1109/JIOT.2016.2584538
http://doi.org/10.24138/jcomss.v14i4.604
http://doi.org/10.1109/ACCESS.2018.2798626
http://doi.org/10.1016/j.future.2016.11.009
http://doi.org/10.1109/COMST.2020.2970550
http://doi.org/10.1186/s42400-019-0038-7
http://doi.org/10.1016/j.jnca.2015.11.016
http://doi.org/10.1007/s11235-018-0475-8
http://doi.org/10.5120/21565-4589
http://doi.org/10.1016/j.dcan.2019.08.006
http://doi.org/10.1109/COMST.2017.2707140


Electronics 2021, 10, 1633 48 of 52

44. Jose, S.; Malathi, D.; Reddy, B.; Jayaseeli, D. A survey on anomaly based host intrusion detection system. In A Survey on Anomaly
Based Host Intrusion Detection System; IOP Publishing: Bristol, UK, 2018; p. 012049.

45. Sultana, N.; Chilamkurti, N.; Peng, W.; Alhadad, R. Survey on SDN based network intrusion detection system using machine
learning approaches. Peer Peer Netw. Appl. 2019, 12, 493–501. [CrossRef]

46. Hodo, E.; Bellekens, X.; Hamilton, A.; Tachtatzis, C.; Atkinson, R. Shallow and deep networks intrusion detection system: A
taxonomy and survey. arXiv 2017, arXiv:1701.02145. preprint.

47. Wang, L.; Jones, R. Big data analytics for network intrusion detection: A survey. Int. J. Netw. Commun. 2017, 7, 24–31.
48. Bridges, R.A.; Glass-Vanderlan, T.R.; Iannacone, M.D.; Vincent, M.S.; Chen, Q. A survey of intrusion detection systems leveraging

host data. ACM Computing Surveys (CSUR) 2019, 52, 1–35. [CrossRef]
49. Zarpelão, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A survey of intrusion detection in Internet of Things. J. Netw.

Comput. Appl. 2017, 84, 25–37. [CrossRef]
50. Vasilomanolakis, E.; Daubert, J.; Luthra, M.; Gazis, V.; Wiesmaier, A.; Kikiras, P. On the security and privacy of Internet of Things

architectures and systems. In Proceedings of the 2015 International Workshop on Secure Internet of Things, Vienna, Austria,
21–25 September 2015; pp. 49–57.

51. Ghribi, S.; Makhlouf, A.M.; Zarai, F. C-DIDS: A Cooperative and Distributed Intrusion Detection System in Cloud environment.
In Proceedings of the 2018 14th International Wireless Communications & Mobile Computing Conference, Limassol, Cyprus,
25–29 June 2018; pp. 267–272.

52. Shterenberg, S.; Poltavtseva, M.A. A distributed intrusion detection system with protection from an internal intruder. Autom.
Control Comput. Sci. 2018, 52, 945–953. [CrossRef]

53. Goodman, D.L.; Hofmeister, J.; Wagoner, R. Advanced diagnostics and anomaly detection for railroad safety applications: Using
a wireless, IoT-enabled measurement system. In Proceedings of the 2015 IEEE AUTOTESTCON, National Harbor, MD, USA,
2–5 November 2015; pp. 273–279.

54. Han, M.L.; Lee, J.; Kang, A.R.; Kang, S.; Park, J.K.; Kim, H.K. A statistical-based anomaly detection method for connected cars in
internet of things environment. In A Statistical-Based Anomaly Detection Method for Connected Cars in Internet of Things Environment;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 89–97.

55. Da Xu, L.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243.
56. Hajiheidari, S.; Wakil, K.; Badri, M.; Navimipour, N.J. Intrusion detection systems in the Internet of things: A comprehensive

investigation. Comput. Netw. 2019, 160, 165–191. [CrossRef]
57. Elrawy, M.F.; Awad, A.I.; Hamed, H.F. Intrusion detection systems for IoT-based smart environments: A survey. J. Cloud Comput.

2018, 7, 1–20. [CrossRef]
58. Ukil, A.; Bandyoapdhyay, S.; Puri, C.; Pal, A. IoT healthcare analytics: The importance of anomaly detection. In Proceedings of

the 2016 IEEE 30th international conference on advanced information networking and applications, Crans-Montana, Switzerland,
23–25 March 2016; pp. 994–997.

59. Borkar, A.; Donode, A.; Kumari, A. A survey on Intrusion Detection System (IDS) and Internal Intrusion Detection and protection
system (IIDPS). In Proceedings of the 2017 International conference on inventive computing and informatics, Coimbatore, India,
23–24 November 2017; pp. 949–953.

60. Bijone, M. A survey on secure network: Intrusion detection & prevention approaches. Am. J. Inf. Syst. 2016, 4, 69–88.
61. Wu, S.X.; Banzhaf, W. The use of computational intelligence in intrusion detection systems: A review. Appl. Soft Comput. 2010, 10,

1–35. [CrossRef]
62. Kishan, B.; Reddy, A.S.; Datta, M.; Raghunath, B.; Vinay, C.; Reddy, K.G. Intrusion Detection Systems for Iot-Based Smart

Environments: A Survey. Complex. Int. 2020, 24, 3–4.
63. Mishra, P.; Varadharajan, V.; Tupakula, U.; Pilli, E.S. A detailed investigation and analysis of using machine learning techniques

for intrusion detection. IEEE Commun. Surv. Tutor. 2018, 21, 686–728. [CrossRef]
64. Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012.
65. Ahmadian Ramaki, A.; Rasoolzadegan, A.; Javan Jafari, A. A systematic review on intrusion detection based on the Hidden

Markov Model. Stat. Anal. Data Min. ASA Data Sci. J. 2018, 11, 111–134. [CrossRef]
66. Fenanir, S.; Semchedine, F.; Baadache, A. A Machine Learning-Based Lightweight Intrusion Detection System for the Internet of

Things. Rev. D’intelligence Artif. 2019, 33, 203–211. [CrossRef]
67. Aburomman, A.A.; Reaz, M.B.I. Survey of learning methods in intrusion detection systems. In Proceedings of the 2016

International Conference on Advances in Electrical, Electronic and Systems Engineering, Putrajaya, Malaysia, 14–16 November
2016; pp. 362–365.

68. Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.K.; Du, X.; Ali, I.; Guizani, M. A survey of machine and deep learning methods for
internet of things (IoT) security. IEEE Commun. Surv. Tutor. 2020, 22, 1646–1685. [CrossRef]

69. Chinnamgari, S.K. R Machine Learning Projects: Implement Supervised, Unsupervised, and Reinforcement Learning Techniques Using R
3.5′; Packt Publishing Ltd.: Birmingham, UK, 2019.

70. Thakkar, A.; Lohiya, R. A Review on Machine Learning and Deep Learning Perspectives of IDS for IoT: Recent Updates, Security
Issues, and Challenges. Arch. Comput. Methods Eng. 2020, 28, 3211–3243. [CrossRef]

71. De Andrade, B.M.; de Gois, J.S.; Xavier, V.L.; Luna, A.S. Comparison of the performance of multiclass classifiers in chemical data:
Addressing the problem of overfitting with the permutation test. Chemom. Intell. Lab. Syst. 2020, 201, 104013. [CrossRef]

http://doi.org/10.1007/s12083-017-0630-0
http://doi.org/10.1145/3344382
http://doi.org/10.1016/j.jnca.2017.02.009
http://doi.org/10.3103/S0146411618080230
http://doi.org/10.1016/j.comnet.2019.05.014
http://doi.org/10.1186/s13677-018-0123-6
http://doi.org/10.1016/j.asoc.2009.06.019
http://doi.org/10.1109/COMST.2018.2847722
http://doi.org/10.1002/sam.11377
http://doi.org/10.18280/ria.330306
http://doi.org/10.1109/COMST.2020.2988293
http://doi.org/10.1007/s11831-020-09496-0
http://doi.org/10.1016/j.chemolab.2020.104013


Electronics 2021, 10, 1633 49 of 52

72. Heba, F.E.; Darwish, A.; Hassanien, A.E.; Abraham, A. Principle components analysis and support vector machine based intrusion
detection system. In Proceedings of the 2010 10th International Conference on Intelligent Systems Design and Applications,
Cairo, Egypt, 29 November–1 December 2010; pp. 363–367.

73. Javaid, A.; Niyaz, Q.; Sun, W.; Alam, M. A deep learning approach for network intrusion detection system. Eai Endorsed Trans.
Secur. Saf. 2016, 3, e2.

74. Zanero, S.; Savaresi, S.M. Unsupervised learning techniques for an intrusion detection system. In Proceedings of the 2004 ACM
Symposium on Applied Computing, Nicosia, Cyprus, 14–17 March 2004; pp. 412–419.

75. Syarif, I.; Prugel-Bennett, A.; Wills, G. Unsupervised clustering approach for network anomaly detection. In Unsupervised
Clustering Approach for Network Anomaly Detection; Springer: Berlin/Heidelberg, Germany, 2012; pp. 135–145.

76. Oh, D.; Kim, D.; Ro, W.W. A malicious pattern detection engine for embedded security systems in the Internet of Things. Sensors
2014, 14, 4188. [CrossRef]

77. Qu, X.; Yang, L.; Guo, K.; Ma, L.; Sun, M.; Ke, M.; Li, M. A survey on the development of self-organizing maps for unsupervised
intrusion detection. Mob. Netw. Appl. 2019, 26, 808–829. [CrossRef]

78. Haweliya, J.; Nigam, B. Network intrusion detection using semi supervised support vector machine. Int. J. Comput. Appl. 2014, 85.
[CrossRef]

79. Li, W.; Meng, W.; Au, M.H. Enhancing collaborative intrusion detection via disagreement-based semi-supervised learning in IoT
environments. J. Netw. Comput. Appl. 2020, 161, 102631. [CrossRef]

80. Al-Jarrah, O.Y.; Al-Hammdi, Y.; Yoo, P.D.; Muhaidat, S.; Al-Qutayri, M. Semi-supervised multi-layered clustering model for
intrusion detection. Digit. Commun. Netw. 2018, 4, 277–286. [CrossRef]

81. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

82. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.

83. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971. preprint.

84. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952. preprint.
85. Alharbi, S.; Rodriguez, P.; Maharaja, R.; Iyer, P.; Subaschandrabose, N.; Ye, Z. Secure the internet of things with challenge

response authentication in fog computing. In Proceedings of the 2017 IEEE 36th International Performance Computing and
Communications Conference (IPCCC), San Diego, CA, USA, 10–12 December 2017; pp. 1–2.

86. Shafi, Q.; Basit, A.; Qaisar, S.; Koay, A.; Welch, I. Fog-assisted SDN controlled framework for enduring anomaly detection in an
IoT network. IEEE Access 2018, 6, 73713–73723. [CrossRef]

87. Xuan, S.; Man, D.; Yang, W.; Wang, W.; Zhao, J.; Yu, M. Identification of unknown operating system type of Internet of Things
terminal device based on RIPPER. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718806707. [CrossRef]

88. Ham, H.-S.; Kim, H.-H.; Kim, M.-S.; Choi, M.-J. Linear SVM-based android malware detection for reliable IoT services. J. Appl.
Math. 2014, 2014. [CrossRef]

89. Azmoodeh, A.; Dehghantanha, A.; Conti, M.; Choo, K.-K.R. Detecting crypto-ransomware in IoT networks based on energy
consumption footprint. J. Ambient Intell. Humaniz. Comput. 2018, 9, 1141–1152. [CrossRef]

90. Caminha, J.; Perkusich, A.; Perkusich, M. A smart trust management method to detect on-off attacks in the internet of things.
Secur. Commun. Netw. 2018, 2018. [CrossRef]

91. Chiu, W.; Su, C.; Fan, C.-Y.; Chen, C.-M.; Yeh, K.-H. Authentication with what you see and remember in the internet of things.
Symmetry 2018, 10, 537. [CrossRef]

92. Doshi, R.; Apthorpe, N.; Feamster, N. Machine learning ddos detection for consumer internet of things devices. In Proceedings of
the 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 24 May 2018; pp. 29–35.

93. Kotenko, I.; Saenko, I.; Branitskiy, A. Framework for mobile Internet of Things security monitoring based on big data processing
and machine learning. IEEE Access 2018, 6, 72714–72723. [CrossRef]

94. Wei, L.; Luo, W.; Weng, J.; Zhong, Y.; Zhang, X.; Yan, Z. Machine learning-based malicious application detection of android. IEEE
Access 2017, 5, 25591–25601. [CrossRef]

95. Park, W.; You, Y.; Lee, K. Detecting Potential Insider Threat: Analyzing Insiders’ Sentiment Exposed in Social Media. Secur.
Commun. Networks 2018, 2018, 1–8. [CrossRef]

96. Goeschel, K. Reducing false positives in intrusion detection systems using data-mining techniques utilizing support vector
machines, decision trees, and naive Bayes for off-line analysis. In Proceedings of the SoutheastCon 2016, Norfolk, VA, USA, 30
March–3 April 2016; pp. 1–6.

97. Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE
Commun. Surv. Tutor. 2016, 18, 1153–1176. [CrossRef]

98. Abe, S. Minimal Complexity Support Vector Machines. In Proceedings of the IAPR Workshop on Artificial Neural Networks in
Pattern Recognition, Winterthur, Switzerland, 2–4 September 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 89–101.

99. Liu, Y.; Pi, D. A Novel Kernel SVM Algorithm with Game Theory for Network Intrusion Detection. KSII Trans. Internet Inf. Syst.
2017, 11. [CrossRef]

http://doi.org/10.3390/s141224188
http://doi.org/10.1007/s11036-019-01353-0
http://doi.org/10.5120/14870-3245
http://doi.org/10.1016/j.jnca.2020.102631
http://doi.org/10.1016/j.dcan.2017.09.009
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://doi.org/10.1109/ACCESS.2018.2884293
http://doi.org/10.1177/1550147718806707
http://doi.org/10.1155/2014/594501
http://doi.org/10.1007/s12652-017-0558-5
http://doi.org/10.1155/2018/6063456
http://doi.org/10.3390/sym10110537
http://doi.org/10.1109/ACCESS.2018.2881998
http://doi.org/10.1109/ACCESS.2017.2771470
http://doi.org/10.1155/2018/7243296
http://doi.org/10.1109/COMST.2015.2494502
http://doi.org/10.3837/tiis.2017.08.016


Electronics 2021, 10, 1633 50 of 52

100. Pajouh, H.H.; Javidan, R.; Khayami, R.; Dehghantanha, A.; Choo, K.-K.R. A Two-Layer Dimension Reduction and Two-Tier
Classification Model for Anomaly-Based Intrusion Detection in IoT Backbone Networks. IEEE Trans. Emerg. Top. Comput. 2016, 7,
314–323. [CrossRef]

101. Li, L.; Zhang, H.; Peng, H.; Yang, Y. Nearest neighbors based density peaks approach to intrusion detection. Chaos, Solitons
Fractals 2018, 110, 33–40. [CrossRef]

102. Chang, Y.; Li, W.; Yang, Z. Network intrusion detection based on random forest and support vector machine. In Proceedings of
the 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on
Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; pp. 635–638.

103. Meidan, Y.; Bohadana, M.; Shabtai, A.; Ochoa, M.; Tippenhauer, N.O.; Guarnizo, J.D.; Elovici, Y. Detection of unauthorized iot
devices using machine learning techniques. arXiv 2017, arXiv:1709.04647. preprint.

104. Laskov, P.; Düssel, P.; Schäfer, C.; Rieck, K. Learning intrusion detection: Supervised or unsupervised? In Proceedings of the
International Conference on Image Analysis and Processing, Cagliari, Italy, 6–8 September 2005; Springer: Berlin/Heidelberg,
Germany, 2005; pp. 50–57.

105. Li, Q.; Zhang, K.; Cheffena, M.; Shen, X. Channel-based sybil detection in industrial wireless sensor networks: A multi-kernel
approach. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December
2017; pp. 1–6.

106. Xie, M.; Huang, M.; Bai, Y.; Hu, Z. The anonymization protection algorithm based on fuzzy clustering for the ego of data in the
internet of things. J. Electr. Comput. Eng. 2017. [CrossRef]

107. Kfoury, E.; Saab, J.; Younes, P.; Achkar, R. A Self Organizing Map Intrusion Detection System for RPL Protocol Attacks. Int. J.
Interdiscip. Telecommun. Netw. 2019, 11, 30–43. [CrossRef]

108. Janarthanan, T.; Zargari, S. Feature selection in UNSW-NB15 and KDDCUP’99 datasets. In Proceedings of the 2017 IEEE 26th
international symposium on industrial electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 1881–1886.

109. Dua, M. Machine Learning Approach to IDS: A Comprehensive Review. In Proceedings of the 2019 3rd International conference
on Electronics, Communication and Aerospace Technology (ICECA), Tamil Nadu, India, 2–14 June 2019; pp. 117–122.

110. Soe, Y.N.; Feng, Y.; Santosa, P.I.; Hartanto, R.; Sakurai, K. Implementing Lightweight iot-ids on Raspberry pi Using Correlation-
Based Feature Selection and Its Performance Evaluation. 2019. Available online: https://kyushu-u.pure.elsevier.com/en/
publications/implementing-lightweight-iot-ids-on-raspberry-pi-using-correlatio (accessed on 30 May 2021).

111. Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 4–37.
[CrossRef]

112. Li, D.; Deng, L.; Lee, M.; Wang, H. IoT Data Feature Extraction and Intrusion Detection System for Smart Cities Based on Deep
Migration Learning. Int. J. Inf. Manag. 2019, 49, 533–545. [CrossRef]

113. Ramaki, A.A.; Rasoolzadegan, A.; Bafghi, A.G. A systematic mapping study on intrusion alert analysis in intrusion detection
systems. ACM Computing Surveys (CSUR) 2018, 51, 1–41. [CrossRef]

114. Zhang, K.; Luo, S.; Xin, Y.; Zhu, H.; Chen, Y. Online Mining Intrusion Patterns from IDS Alerts. Appl. Sci. 2020, 10, 2983.
[CrossRef]

115. Manikandan, G.; Abirami, S. A survey on feature selection and extraction techniques for high-dimensional microarray datasets.
In Knowledge Computing and Its Applications; Springer: Singapore, 2018; pp. 311–333.

116. Aminanto, M.E.; Choi, R.; Tanuwidjaja, H.C.; Yoo, P.D.; Kim, K. Deep abstraction and weighted feature selection for Wi-Fi
impersonation detection. IEEE Trans. Inf. Forensics Secur. 2017, 13, 621–636. [CrossRef]

117. Ghaffarian, S.M.; Shahriari, H.R. Software vulnerability analysis and discovery using machine-learning and data-mining
techniques: A survey. ACM Computing Surveys (CSUR) 2017, 50, 1–36. [CrossRef]

118. Manzoor, I.; Kumar, N. A feature reduced intrusion detection system using ANN classifier. Expert Syst. Appl. 2017, 88, 249–257.
119. Vergara, J.R.; Estévez, P.A. A review of feature selection methods based on mutual information. Neural Comput. Appl. 2014, 24,

175–186. [CrossRef]
120. Yu, L.; Liu, H. Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the 20th

International Conference on Machine Learning, Fort Lauderdale, FL, USA, 21–24 August 2003; pp. 856–863.
121. Biswas, S.; Bordoloi, M.; Purkayastha, B. Review on Feature Selection and Classification using Neuro-Fuzzy Approaches. Int. J.

Appl. Evol. Comput. (IJAEC) 2016, 7, 28–44. [CrossRef]
122. Cateni, S.; Vannucci, M.; Vannocci, M.; Colla, V. Variable selection and feature extraction through artificial intelligence techniques.

Multivar. Anal. Manag. Eng. Sci. 2012, 103–118. [CrossRef]
123. Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [CrossRef]
124. Salo, F.; Nassif, A.B.; Essex, A. Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection.

Comput. Netw. 2019, 148, 164–175. [CrossRef]
125. Zhao, S.; Li, W.; Zia, T.; Zomaya, A.Y. A dimension reduction model and classifier for anomaly-based intrusion detection

in internet of things. In Proceedings of the 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure
Computing, Orlando, FL, USA, 6–10 November 2017.

126. Zheng, Y.; Vanderbeek, B.; Daniel, E.; Stambolian, D.; Maguire, M.; Brainard, D.; Gee, J. An automated drusen detection system for
classifying age-related macular degeneration with color fundus photographs. In Proceedings of the 2013 IEEE 10th International
Symposium on Biomedical Imaging, San Francisco, CA, USA, 7–11 April 2013; pp. 1448–1451.

http://doi.org/10.1109/TETC.2016.2633228
http://doi.org/10.1016/j.chaos.2018.03.010
http://doi.org/10.1155/2017/2970673
http://doi.org/10.4018/IJITN.2019010103
https://kyushu-u.pure.elsevier.com/en/publications/implementing-lightweight-iot-ids-on-raspberry-pi-using-correlatio
https://kyushu-u.pure.elsevier.com/en/publications/implementing-lightweight-iot-ids-on-raspberry-pi-using-correlatio
http://doi.org/10.1109/34.824819
http://doi.org/10.1016/j.ijinfomgt.2019.04.006
http://doi.org/10.1145/3184898
http://doi.org/10.3390/app10082983
http://doi.org/10.1109/TIFS.2017.2762828
http://doi.org/10.1145/3092566
http://doi.org/10.1007/s00521-013-1368-0
http://doi.org/10.4018/IJAEC.2016100102
http://doi.org/10.5772/53862
http://doi.org/10.1016/0169-7439(87)80084-9
http://doi.org/10.1016/j.comnet.2018.11.010


Electronics 2021, 10, 1633 51 of 52

127. Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008.
128. Kowsari, K.; Jafari Meimandi, K.; Heidarysafa, M.; Mendu, S.; Barnes, L.; Brown, D. Text classification algorithms: A survey.

Information 2019, 10, 150. [CrossRef]
129. Vinayakumar, R.; Alazab, M.; Soman, K.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S. Deep learning approach for

intelligent intrusion detection system. IEEE Access 2019, 7, 41525–41550. [CrossRef]
130. Rai, K.; Devi, M.S.; Guleria, A. Packet-based Anomaly Detection using n-gram Approach. Int. J. Comput. Sci. Eng. 2018, 6, 6.

[CrossRef]
131. Khreich, W.; Khosravifar, B.; Hamou-Lhadj, A.; Talhi, C. An anomaly detection system based on variable N-gram features and

one-class SVM. Inf. Softw. Technol. 2017, 91, 186–197. [CrossRef]
132. Subba, B.; Biswas, S.; Karmakar, S. Host based intrusion detection system using frequency analysis of n-gram terms. In

Proceedings of the TENCON 2017-2017 IEEE Region 10 Conference, Penang, Malaysia, 5–8 November 2017; pp. 2006–2011.
133. Gaydhani, A.; Doma, V.; Kendre, S.; Bhagwat, L. Detecting hate speech and offensive language on twitter using machine learning:

An n-gram and tfidf based approach. arXiv 2018, arXiv:1809.08651. preprint.
134. Rumez, M.; Lin, J.; Fuchß, T.; Kriesten, R.; Sax, E. Anomaly Detection for Automotive Diagnostic Applications Based on N-Grams.

In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference, Madrid, Spain, 13–17 July 2020;
pp. 1423–1429.

135. Tran, C.T.; Zhang, M.; Andreae, P.; Xue, B.; Bui, L.T. Improving performance of classification on incomplete data using feature
selection and clustering. Appl. Soft Comput. 2018, 73, 848–861. [CrossRef]

136. Scherer, P.; Vicher, M.; Drazdilova, P.; Martinovic, J.; Dvorsky, J.; Snasel, V. Using Svm and Clustering Algorithms in Ids Systems;
Citeseer: Princeton, NJ, USA, 2011.

137. Pham, N.T.; Foo, E.; Suriadi, S.; Jeffrey, H.; Lahza, H.F.M. Improving performance of intrusion detection system using ensemble
methods and feature selection. In Proceedings of the Proceedings of the Australasian Computer Science Week Multiconference,
Sydney, Australia, 29–31 January 2019; pp. 1–6.

138. Boutaba, R.; Salahuddin, M.A.; Limam, N.; Ayoubi, S.; Shahriar, N.; Estrada-Solano, F.; Caicedo, O.M. A comprehensive survey on
machine learning for networking: Evolution, applications and research opportunities. J. Internet Serv. Appl. 2018, 9, 16. [CrossRef]

139. Kuang, F.; Zhang, S.; Jin, Z.; Xu, W. A novel SVM by combining kernel principal component analysis and improved chaotic
particle swarm optimization for intrusion detection. Soft Comput. 2015, 19, 1187–1199. [CrossRef]

140. Syarif, A.R.; Gata, W. Intrusion detection system using hybrid binary PSO and K-nearest neighborhood algorithm. Preceedings of
the 11th International Conference on Information, Communication Technology and System (ICTS 2017), Surabaya, Indonesia, 31
October 2017; pp. 181–186.

141. Pajouh, H.H.; Dastghaibyfard, G.; Hashemi, S. Two-tier network anomaly detection model: A machine learning approach. J.
Intell. Inf. Syst. 2017, 48, 61–74. [CrossRef]

142. Mahmood, H.A. Network intrusion detection system (NIDS) in cloud environment based on hidden Naïve Bayes multiclass
classifier. Al-Mustansiriyah J. Sci. 2018, 28, 134–142. [CrossRef]

143. Borisaniya, B.; Patel, K.; Patel, D. Evaluation of applicability of modified vector space representation for in-VM malicious activity
detection in Cloud. In Proceedings of the 2014 Annual IEEE India Conference (INDICON), Pune, India, 11–13 December 2014;
pp. 1–6.

144. Leslie, C.; Eskin, E.; Noble, W.S. The spectrum kernel: A string kernel for SVM protein classification. In Biocomputing; World
Scientific: Singapore, 2001; pp. 564–575.

145. Bunch, J.R.; Rose, D.J. Sparse Matrix Computations; Academic Press: Cambridge, MA, USA, 2014.
146. D’Azevedo, E.F.; Fahey, M.R.; Mills, R.T. Vectorized sparse matrix multiply for compressed row storage format. In Proceedings of

the International Conference on Computational Science, Amsterdam, The Netherlands, 3–5 June 2005; pp. 99–106.
147. Jamalmohammed, S.B.; Lavanya, K.; Thaseen, S.; Biju, V. Review on Sparse Matrix Storage Formats With Space Complexity

Analysis. In Applications of Artificial Intelligence for Smart Technology; IGI Global: Hershey, PA, USA, 2020; pp. 122–145.
148. Zheng, J.; Hu, M.-Z.; Zhang, H.-L. A new method of data preprocessing and anomaly detection. In Proceedings of the 2004

International Conference on Machine Learning and Cybernetics, Shanghai, China, 26–29 August 2004; pp. 2685–2690.
149. Tian, C.; Fei, L.; Zheng, W.; Xu, Y.; Zuo, W.; Lin, C.-W. Deep learning on image denoising: An overview. Neural Netw. 2020, 131.

[CrossRef]
150. Wang, J.; Hong, X.; Ren, R.-R.; Li, T.-H. A real-time intrusion detection system based on PSO-SVM. In Proceedings of the The 2009

International Workshop on Information Security and Application, Jeju Island, South Korea, 26–28 August 2020; p. 319.
151. Ahmed, H.I.; Elfeshawy, N.A.; Elzoghdy, S.F.; El-Sayed, H.S.; Faragallah, O.S. A neural network-based learning algorithm for

intrusion detection systems. Wirel. Pers. Commun. 2017, 97, 3097–3112. [CrossRef]
152. Fawcett, T. Introduction to Receiver Operator Curves. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
153. Sachs, M.C. plotROC: A tool for plotting ROC curves. J. Stat. Softw. 2017, 79. [CrossRef] [PubMed]
154. Viegas, E.K.; Santin, A.O.; Oliveira, L.S. Toward a reliable anomaly-based intrusion detection in real-world environments. Comput.

Netw. 2017, 127, 200–216. [CrossRef]
155. Hindy, H.; Brosset, D.; Bayne, E.; Seeam, A.; Tachtatzis, C.; Atkinson, R.; Bellekens, X. A taxonomy and survey of intrusion

detection system design techniques, network threats and datasets. arXiv 2018, arXiv:1806.03517. preprint.

http://doi.org/10.3390/info10040150
http://doi.org/10.1109/ACCESS.2019.2895334
http://doi.org/10.26438/ijcse/v6i5.366372
http://doi.org/10.1016/j.infsof.2017.07.009
http://doi.org/10.1016/j.asoc.2018.09.026
http://doi.org/10.1186/s13174-018-0087-2
http://doi.org/10.1007/s00500-014-1332-7
http://doi.org/10.1007/s10844-015-0388-x
http://doi.org/10.23851/mjs.v28i2.508
http://doi.org/10.1016/j.neunet.2020.07.025
http://doi.org/10.1007/s11277-017-4663-8
http://doi.org/10.1016/j.patrec.2005.10.010
http://doi.org/10.18637/jss.v079.c02
http://www.ncbi.nlm.nih.gov/pubmed/30686944
http://doi.org/10.1016/j.comnet.2017.08.013


Electronics 2021, 10, 1633 52 of 52

156. Sharafaldin, I.; Gharib, A.; Lashkari, A.H.; Ghorbani, A.A. Towards a reliable intrusion detection benchmark dataset. Softw. Netw.
2018, 2018, 177–200. [CrossRef]

157. Creech, G.; Hu, J. Generation of a new IDS test dataset: Time to retire the KDD collection. In Proceedings of the 2013 IEEE
Wireless Communications and Networking Conference, Shanghai, China, 7–10 April 2013; pp. 4487–4492.

158. Available online: https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-IDS-Datasets/ (accessed on 2
February 2017).

159. Haider, W.; Creech, G.; Xie, Y.; Hu, J. Windows based data sets for evaluation of robustness of host based intrusion detection
systems (IDS) to zero-day and stealth attacks. Future Internet 2016, 8, 29. [CrossRef]

160. Abubakar, A.I.; Chiroma, H.; Muaz, S.A.; Ila, L.B. A Review of the Advances in Cyber Security Benchmark Datasets for Evaluating
Data-Driven Based Intrusion Detection Systems. Procedia Comput. Sci. 2015, 62, 221–227. [CrossRef]

161. Xie, M.; Hu, J. Evaluating host-based anomaly detection systems: A preliminary analysis of adfa-ld. In Proceedings of the 2013
6th International Congress on Image and Signal Processing, Hangzhou, Chia, 16–18 December 2013; Manning Publications Co.:
Helter Island, NY, USA, 2012.

162. Harrington, P. Machine learning in action. 2012. Available online: https://www.accenture.com/hk-en/services/ai-
artificial-intelligence-index?c=acn_glb_brandexpressiongoogle_12238967&n=psgs_0621&gclid=EAIaIQobChMI19OiroXT8
QIVFwkrCh0HYAR3EAAYASAAEgILTfD_BwE (accessed on 2 June 2021).

163. Ranjani, J.; Sheela, A.; Meena, K.P. Combination of NumPy, SciPy and Matplotlib/Pylab-a good alternative methodology to
MATLAB-A Comparative analysis. In Proceedings of the 2019 1st International Conference on Innovations in Information and
Communication Technology, Hennai, India, 25–26 April 2019; pp. 1–5.

164. Müller, A.C.; Guido, S. Introduction to Machine Learning with Python: A Guide for Data Scientists; O’Reilly Media, Inc.: Newton, MA,
USA, 2016.

165. Bisong, E. The Multilayer Perceptron (MLP). In Building Machine Learning and Deep Learning Models on Google Cloud Platform;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 401–405.

166. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

167. Saleh, H. Machine Learning Fundamentals: Use Python and Scikit-Learn to Get Up and Running with the Hottest Developments in Machine
Learning; Packt Publishing: Birmingham, UK, 2018.

168. Borthakur, D.; Dubey, H.; Constant, N.; Mahler, L.; Mankodiya, K. Smart fog: Fog computing framework for unsupervised
clustering analytics in wearable internet of things. In Proceedings of the 2017 IEEE Global Conference on Signal and Information
Processing, Montreal, QC, Canada, 14–16 November 2017; pp. 472–476.

169. Constant, N.; Borthakur, D.; Abtahi, M.; Dubey, H.; Mankodiya, K. Fog-assisted wiot: A smart fog gateway for end-to-end
analytics in wearable internet of things. arXiv 2017, arXiv:1701.08680. preprint.

170. Lavassani, M.; Forsström, S.; Jennehag, U.; Zhang, T. Combining fog computing with sensor mote machine learning for industrial
IoT. Sensors 2018, 18, 1532. [CrossRef]

171. Learning, U. Raspberry Pi 3: Get Started with Raspberry Pi 3 a Simple Guide TO Understanding and Programming Raspberry Pi 3
(Raspberry Pi 3 User Guide, Python Programming, Mathematica Programming); CreateSpace Independent Publishing Platform: Scotts
Valley, CA, USA, 2016.

172. Castro, W.; Oblitas, J.; Santa-Cruz, R.; Avila-George, H. Multilayer perceptron architecture optimization using parallel computing
techniques. PLoS ONE 2017, 12, e0189369. [CrossRef] [PubMed]

http://doi.org/10.13052/jsn2445-9739.2017.009
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-IDS-Datasets/
http://doi.org/10.3390/fi8030029
http://doi.org/10.1016/j.procs.2015.08.443
https://www.accenture.com/hk-en/services/ai-artificial-intelligence-index?c=acn_glb_brandexpressiongoogle_12238967&n=psgs_0621&gclid=EAIaIQobChMI19OiroXT8QIVFwkrCh0HYAR3EAAYASAAEgILTfD_BwE
https://www.accenture.com/hk-en/services/ai-artificial-intelligence-index?c=acn_glb_brandexpressiongoogle_12238967&n=psgs_0621&gclid=EAIaIQobChMI19OiroXT8QIVFwkrCh0HYAR3EAAYASAAEgILTfD_BwE
https://www.accenture.com/hk-en/services/ai-artificial-intelligence-index?c=acn_glb_brandexpressiongoogle_12238967&n=psgs_0621&gclid=EAIaIQobChMI19OiroXT8QIVFwkrCh0HYAR3EAAYASAAEgILTfD_BwE
http://doi.org/10.3390/s18051532
http://doi.org/10.1371/journal.pone.0189369
http://www.ncbi.nlm.nih.gov/pubmed/29236744

	Classifier Performance Evaluation for Lightweight IDS Using Fog Computing in IoT Security
	Recommended Citation
	Author First name, Last name, Institution

	Introduction 
	Motivation 
	The Work Contribution 

	Related Work 
	Fog Computing and IoT 
	Fog Computing and Similar Technologies 
	Fog Computing Mitigating Security Challenges in IoT 
	Advantages of Fog Computing over Traditional IoT 

	Relevant Work 
	Lightweight IDS-Based Machine Learning 
	IDS Techniques—Location and Exploration of Source of Data 
	Datasets in IDS 
	Machine Learning Techniques for IDS on IoT 
	Feature Reduction (Feature Selection) Techniques for IDS on IoT 

	Key Challenges 

	Proposed Method 
	Phase 1: Pre-Processing 
	Feature Extraction 
	Feature Selection 

	Phase 2: Modeling 
	Artificial Neural Network (ANN) 
	Machine Learning Shallow Models 

	Phase 3: Evaluation Performance 
	Precision or Positive Predictive Value 
	Recall or Sensitivity 
	Accuracy 
	F1-Measure 
	FP Rate 
	Curve and AUC 


	Experimental Setup 
	ADFA-LD Dataset 
	Software and Platform 

	Results and Discussion 
	Performance of the Feature Extraction and Feature Selection 
	Performance of the Classification Methods 
	Performance on the Raspberry Pi 
	Performance of the MLP Methods (Parameter) 
	Performance of the MLP Methods (N-gram) 

	Conclusions 
	Future Work 
	References

