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ABSTRACT Target tracking using an unmanned aerial vehicle (UAV) is a challenging robotic problem. It 

requires handling a high level of nonlinearity and dynamics. Model-free control effectively handles the 

uncertain nature of the problem, and reinforcement learning (RL)-based approaches are a good candidate for 

solving this problem. In this article, the Twin Delayed Deep Deterministic Policy Gradient Algorithm (TD3), 

as recent and composite architecture of RL, was explored as a tracking agent for the UAV-based target 

tracking problem. Several improvements on the original TD3 were also performed. First, the proportional-

differential controller was used to boost the exploration of the TD3 in training. Second, a novel reward 

formulation for the UAV-based target tracking enabled a careful combination of the various dynamic 

variables in the reward functions. This was accomplished by incorporating two exponential functions to limit 

the effect of velocity and acceleration to prevent the deformation in the policy function approximation. In 

addition, the concept of multistage training based on the dynamic variables was proposed as an opposing 

concept to one-stage combinatory training. Third, an enhancement of the rewarding function by including 

piecewise decomposition was used to enable more stable learning behaviour of the policy and move out from 

the linear reward to the achievement formula. The training was conducted based on fixed target tracking 

followed by moving target tracking. The flight testing was conducted based on three types of target 

trajectories: fixed, square, and blinking. The multistage training achieved the best performance with both 

exponential and achievement rewarding for the fixed trained agent with the fixed and square moving target 

and for the combined agent with both exponential and achievement rewarding for a fixed trained agent in the 

case of a blinking target. With respect to the traditional proportional differential controller, the maximum 

error reduction rate is 86%. The developed achievement rewarding and the multistage training opens the door 

to various applications of RL in target tracking. 

INDEX TERMS Navigation, Reinforcement Learning, Target Tracking, Twin Delayed Deep Deterministic 

Policy Gradient, Unmanned Aerial Vehicles.

I. INTRODUCTION 

Unmanned aerial vehicle (UAV) applications are increasing 

day by day, and aerial vehicles are being used as part of many 

recent technological applications. Some examples are in 

shipping [1], surveillance [2], [3], [4], battlefield [5], 

rescuing applications [6], [7], and inspection [8], [9]. Aerial 

vehicles are now divided into three categories: teleoperated 

[10], [11], semi-autonomous [12], [13], and full autonomous 

[14]. Enabling aerial vehicle applications requires essential 

autonomous features with regard to autonomy within the 

system. 

Vehicles that can be autonomous must be able to decide on 

and react to events without direct intervention by humans. 

Some fundamental aspects are common to all autonomous 

vehicles. These aspects include sensing and perceiving the 

environment, analysing the gained information, 
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communicating, planning and making decisions, and acting 

using control algorithms and actuators. For example, in the 

autonomous tracking feature of a UAV to a target, a camera 

is used for sensing the environment. Next, the gained 

information is analysed to detect the target. The detection is 

sent to the decision-making algorithm that enables the 

mobility of the UAV autonomously. Once this feature is 

shown to be working in a stable and robust way, it is 

deployed to UAVs as an autonomous feature that assists in 

operating UAVs and human–vehicle interaction. 

Operating unmanned flying vehicles is useful; however, it 

can be challenging when the vehicle interacts with the 

environment. This interaction could be, for instance, in the 

form of landing on the ground or landing pads, docking into 

a station, approaching terrain for inspection, or approaching 

another aircraft for refueling purposes. Such tasks can often 

be solved when the vehicle is remotely piloted, especially 

when the pilot has a first-person view of the environment. 

However, human control may not always be possible. For 

instance, the unavailability of a suitable data link or the 

precision and/or speed required for the maneuver may be 

outside human capabilities. Thus, it is important to find 

effective and flexible strategies to enable vehicles to perform 

such tasks autonomously. 

Well-developed features of autonomous UAV control 

include stability enhancement and waypoint flight, 

autonomous tracking, and autonomous landing. However, 

new developments in the design of UAVs, as well as the 

emergence of new application areas, demand robust and 

adaptive control techniques for different flight conditions, 

such as aggressive maneuvering flight [15], robust 

disturbance rejection [16], obstacle avoidance [17], fault 

tolerance [18], formation flying [19], and the use of new 

sensing and perception paradigms such as computer vision 

[20]. Even when the vehicle performs tasks autonomously, 

the efficiency and reliability of the communication link to 

the ground station or other aerial vehicles are important. This 

is because when the autonomous UAV sends information 

about itself or its environment to the ground station or other 

vehicles, it may also need to receive updated mission 

parameters from the ground station or information from 

other vehicles. These ambitious requirements of autonomous 

operation require systematic and innovative methods for 

planning, navigation, decision-making, control, sensing, and 

communications [21]. 

In dynamic and nonlinear control, building a mathematical 

function of the plant is needed to assure a stable controller. 

The stability of the controller is analyzed based on 

complicated mathematical methods and techniques. In many 

real-world applications, the accuracy of the plant’s 

mathematical model is questionable. Furthermore, engineers 

perform mathematical approximations to simplify the model 

development. These approximations are based on some 

assumptions that limit the generalizability of the controller. 

The assumption can lead to stability and reliability issues, 

such as violating the simplification assumptions considered 

in the approximation when the controller operates in real-

world scenarios. Hence, to avoid such approximations and 

nonvalid assumptions, the concept of free model control is 

used. However, instead of using it based on repeated trial and 

error for tuning a simplified controller, it can be used to 

develop an accurate controller that embeds sufficient gained 

knowledge from the plant [22]. 

Reinforcement learning (RL) is one type of model-free 

control based on artificial intelligence (AI). It has proven 

itself an effective and practical approach to controlling 

nonlinear and complex dynamic systems, especially when 

accurate modeling is difficult. Furthermore, integrating RL 

with a deep-neural network for scene analysis from video 

and decision-making based on extensive training has found 

its niche valuable in AI products in the automotive industry 

and driverless cars [23] and the control of aerial vehicles 

[24]. The reason for this is the ability to train the RL model 

based on an extensive number of driving scenarios and then 

to use the learned knowledge in operation. Hence, RL is 

considered a type of model-free control as it does not require 

a model for control application. Among the RL models, the 

Deep Deterministic Policy Gradient (DDPG) has been 

developed [25]. It is considered the first deterministic actor–

critic that employs deep neural networks for learning in the 

actor and critic. It is a model-free, off-policy algorithm that 

extends both the Deep Q Network (DQN) and the DDPG 

because it uses some insight from DQN, such as replay 

buffer and target network, to make the DPG work with deep 

networks. However, it has a problem of sensitivity to 

hyperparameters. Recently, one algorithm has replaced the 

DDPG: the Twin Delayed Deep Deterministic Policy 

Gradient (TD3) [26]. It is being considered a replacement 

because it is a continuation of the DDPG algorithm, with 

some ingredients that make it more stable with better 

performance, such as reducing the over-estimation bias 

because of the delayed training architecture and the learning 

speed. 

This article aims to develop a target tracking by a UAV 

using TD3-based RL. The developed algorithm contains a 

proportional differential (PD) controller for boosting the 

exploration and handling the control on one axis, whereas 

TD3 controls the UAV on the other two axes. The article 

includes several contributions as follows: 

1) To the best of the authors’ knowledge, this study is the 

first to apply TD3 for the UAV-based target tracking 

problem with PD for boosting the exploration of the 

TD3 in training. Previously, the work of [27] has applied 

TD3 combined with meta-learning. However, it was 

based on a simple simulation model in XY only without 

addressing the stabilization of the third dimension. In 

this work, TD3 was adopted instead of the DDPG. This 

is because it has an architecture that solves several 

problems in the DDPG.   

2) It proposes a novel reward formulation for UAV-based 

target tracking that enables a careful combination of the 

various dynamic variables in the reward functions. The 

novel rewarding function incorporates two exponential 

functions to limit the effect of velocity and acceleration 
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to prevent the deformation in the policy function 

approximation.  

3) It proposes an enhancement of the rewarding function 

by including piecewise decomposition to enable the 

policy's more stable learning behaviour and move away 

from the linear reward toward achievement formula.  

4) A thorough evaluation is conducted to evaluate the 

developed models and compare them with standard 

evaluation metrics. 

The remainder of the article is organized as follows. The 

literature survey is given in Section II. Next, the 

methodology for target tracking implementation by UAV 

based on TD3 and reinforcement learning is presented in 

Section III. The experimental evaluation and results are 

provided in Section IV. Finally, the conclusion and direction 

for future studies are given in Section V. 

III.  LITERATURE SURVEY 

The UAV-based tracking problem can be categorized into 
trajectory tracking and target tracking. Several approaches 
based on RL are found for trajectory tracking. In [28], RL 
created quadrotor controllers for hovering at a fixed point 
and circular trajectory tracking. Policy gradient-based actor–
critic architectures that use neural networks as the function 
approximator have been used for both the value and policy 
functions. For target tracking, RL-based UAV was used to 
track both the stand-alone UAV and cooperative UAVs. In 
[29], multiagent reinforcement learning (MARL) for target 
tracking was proposed. It includes local and global 
observation definition, action, dedicated reward functions, 
and the learning method with a joint state and action tracker 
for a stable strategy training procedure. Curriculum learning 
and sequencing the intractable pursuit process into four 
statuses is adopted. Each status corresponds to a more 
trackable subtask, and all statuses are organized into a 
curriculum that characterizes the order of solving the 
subtasks. Based on the four predefined statuses, a status-
oriented cooperative pursuit reward is developed to guide 
pursuers in learning complex cooperative pursuit strategies 
by addressing the tractable subtasks sequentially. 

The literature includes numerous works for developing 
target tracking based on RL. In the work of [30], RL-based 
coordination of a swarm of drones for target searching and 
monitoring was proposed. The problem addressed was the 
trajectories planning in cooperative patrolling and tracking 
missions. The environment was split into several grids, and 
the grid represented the location of the UAV. A stationary 
station for refueling the UAV was deployed. The actions of 
RL were formulated at the upper management level of the 
UAV. In other studies, deep RL was used to assist the UAV 
in target detection. In the work of [31], a coarse-to-fine deep 
scheme was used to address the aspect ratio variation in UAV 
tracking. The coarse tracker first produced an initial estimate 
for the target object. Then, a sequence of actions was learned 
to fine-tune the four boundaries of the bounding box. The 
coarse-tracker and the fine-tracker were designed to have 
different action spaces and operating targets. The former 
dominates the entire bounding box, and the latter focuses on 
the refinement of each boundary. They are trained jointly by 

sharing the perception network with an end-to-end RL 
architecture. However, in other research works, RL was 
utilized for commanding the UAV at lower levels. For the 
autonomous landing of an aerial vehicle on a moving target, 
tracking is a vital functionality. Deep Q learning was the 
most used for a single drone [32]. Other approaches have 
adopted deep reinforcement learning to handle the 
continuous nature of control. In the work of [33], tracking 
was used with landing based on decomposition into two 
separate tasks, namely, marker alignment and vertical 
descent. 

In addition, the divide-and-conquer paradigm was used for 
splitting the tasks into two subsequent tasks in which each 
one was assigned to a DQN. In the work of [34], the DDPG 
was integrated with the RL framework. The approach 
considered the tracking in X, Y as part of the reinforcement 
control, whereas Z was separated. In addition, the work 
proposed a rewarding function that does not consider 
adequate dynamics, making the approach applicable only in 
simple maneuvers in landing. In the work of [35], a 
sequential DQN was trained in a simulator before it was 
deployed in the real world, handling noisy conditions. In the 
work of [36], an autonomous landing based on RL solved by 
the least-square policy iteration was performed. The target 
was stationary, and the rewarding functions used two terms, 
one for the position error and the other for the velocity error 
with adaptive weighting. The weights were considered to be 
exponentially changing with respect to the error so that the 
position error gained more weight when the error was large, 
and the velocity error gained more weight when the error was 
small. The authors have not discussed the quantization of the 
velocity and the position in their work. In the work of [37], 
image-based visual serving has been proposed using Kalman 
filtering and RL. Their work has shown the importance of 
using velocity error in the reward function and the 
effectiveness of asymmetric rewards. Considering that the 
reward plays an essential role in the controller's performance, 
some researchers have attempted to design an inverse RL for 
reward optimization. In the work of [38], the hidden reward 
function of a quadratic form from the demonstrated flights 
was learned using inverse RL. Next, the optimal reward 
function that minimizes the trajectory tracking error was 
found, and a reinforcement learning-based controller using 
this reward function was proposed. In the work of [39], 
Target Following DQN (TF-DQN), a deep reinforcement 
learning technique based on DQNs was proposed with a 
curriculum training framework for the UAV to persistently 
track the target in the presence of obstacles and target motion 
uncertainty. For the reward function, a piecewise reward was 
proposed to enable different rewards according to the status 
of the collision compared with the noncollision. In the work 
of [40], the constrained Markov decision process (CMDP) 
was formulated based on the flight decision process with the 
goal of optimizing the redundant UAV flight path. The target 
continuously broadcasts radio frequency signals to all UAVs 
in their work. 

The goal is to realize the target within a given time 
threshold. The Q-learning was formulated based on 
coordinated constraint action-based multi-agent Q learning. 
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They aimed to improve the tracking performance based on 
the addition of a constraint on the rewarding. 

In the work of [41], a DDPG-based control framework was 
used to provide learning and autonomous decision-making 
capability for UAVs. In addition, an improved method, 
named mixture noise DDPG (MN-DDPG), for introducing a 
type of mixed noises to assist UAV by exploring stochastic 
strategies for optimal online planning was proposed. Finally, 
an algorithm of task-decomposition and pretraining for 
efficient transfer learning to improve the generalization 
capability of the UAV’s control model was built based on the 
MN-DDPG. In the work of [27], metalearning has been 
incorporated in the training of the TD3 to enable more 
generalization and faster convergence. For metalearning, the 
authors have created a metabuffer. The algorithm samples 
from this buffer were based on the metalearning rate for 
updating the hyperparameters. 

In the work of [42], UAV tracking and landing tasks based 
on a randomly moving platform have been handled using the 
DDPG. The algorithm uses three coordinates for relative 
position and velocity as distance and velocity change as 

action. The reward is the relative distance with a threshold 
penalty. In the work of [35], the DQN was used for landing. 
The approach was based on a divide-and-conquer paradigm 
that split a task into sequential subtasks, each one assigned 
to a DQN. Random sampling was used to improve the 
generalization. In the work of [43], the problem of search and 
rescue based on multiple UAVs was tackled in a 3D 
environment. Cramér–Rao Lower Bound (CRLB) of the 
joint measurement likelihood function was used to select the 
action. The actions in their formulation are discrete, which is 
helpful in simplification but affects fine tracking. In addition, 
the state definition does not include the dynamic information 
of the target, which also does not make the algorithm 
perform well in highly dynamic conditions. Table I includes 
an overview of the various RL-based models developed in 
the literature for UAV tracking application, reviewing their 
developed RL basics and attributes. As observed in the table, 
none of them has used the TD3 as an agent. Hence, this 
confirms that implementing TD3-based tracking has not yet 
been accomplished in the literature, making it one of the 
novelties provided in the current article, as stated earlier. 

TABLE I 

OVERVIEW OF RL-BASED APPROACHES FOR UAV TRACKING APPLICATION  

Author Multi-UAV State Action Reward Agent 

[30] √ A node within Upper 

Confidence Tree (UCT) 

Moving UAV from one 

grid to one of its four 

adjacent grids within the 

searching area 

the fuel status + the sum of the 

probability of whom the grids 

are located inside the fleet’s 

horizon 

Q-learning 

[31] × The appearance 

information + the action 

history information 

Stop-action + expand 

outward and move inward 

depending on the relative 

direction. 

Binary function based on the 

intersection-over-union (IoU) 

Q-learning 

[32] × Extracted features from 

the raw camera image. 

To the speed in the 

quadrotor in x and y 

directions. Speed in the z-

direction is not considered 

The position information of the 

marker and the agent are used 

to construct the reward 

function. The maximal reward 

changes when the altitude 

differs. The lower the height, 

the less the maximal reward. 

Deep Q Reinforcement 

Learning 

[44, 45] × Relative position on x, y, 

and z, Velocity on x, y, 

and altitude 

Acceleration on x and y Relative position, velocity and 

acceleration based on x and y 

Deep Q Reinforcement 

Learning 

[35] × The image acquired by a 

downward-looking 

camera mounted on the 

UAV 

Backwards, right, forward, 

left, stop, descent, land 

-  Sequential Deep Q-

Network (SDQN) 

[36] × Instantaneous error in 

position and velocity 

Control velocities Two-term reward function: one 

uses error with respect to 

position and second uses error 

with respect to velocity 

Least Square Policy 

Iteration (LSPI) based RL 

[46] × Position, angle, velocity, 

and angular rate 

-  quadratic reward function Inverse Reinforcement 

Learning Algorithm 

[40] √ Consists of the received 

signal strength (RSS) 

information obtained by 

the UAV 

The flight direction of the 

UAV 

The improvement in the RSS is 

only considered when the 

action changes significantly 

from the previous action 

Q-learning 

[41] × Distance, velocity 

azimuth and surrounding 

obstacles 

Acceleration and angular 

rate, Mixture noise has 

been added to action for 

generalization 

Four types of reward: track, 

course, safety, steady 

DDPG 

[27] × Position and angle Acceleration and angular 

rate 

Normalized distance and 

penalty 

Metalearning 

[42] × Position and velocity of 

UAV and target 

concerning x, y and z 

The velocity of UAV 

concerning x, y and z 

The relative distance between 

UAV and target 

DDPG 
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VI. METHODOLOGY 

This section provides the developed methodology to 

accomplish target tracking by a UAV based on the TD3 and 

RL. The methodology consists of problem formulation. 

Next, the general framework is presented, followed by the 

observation and state. Next, the definition of the action and 

the rewarding model are provided and, finally, the episode 

completion logic.  

A.  Problem Formulation  

Assume that a target exists within the field of view of a 

UAV and is moving with an unknown trajectory. The 

problem is to control the UAV to maintain the target in the 

center of the image of the UAV’s frame. Without loss of 

generality, it is assumed that the target is moving in the plane 

𝑦𝑧 and the UAV and the TD3-based RL are responsible for 

controlling the UAV to perform its tracking in 𝑦𝑧. For 

dimension 𝑥, a PD controller is responsible for controlling 

the UAV to maintain the same distance with respect to the 

target. The target was detected based on the AprilTag 

detection algorithm. In addition, the low levels command of 

changing the acceleration of the UAV with respect to the 

axes 𝑥, 𝑦 and 𝑧 were performed based on the internal 

proportional integral differential (PID) control embedded in 

the UAV controller, which exists in most commercial UAVs 

nowadays. 

The article focuses on the upper-level TD3-based RL 

training to provide the required tracking within different 

scenarios of target mobility. A conceptual diagram of target 

tracking using the UAV is presented in Figure 1. 
 

Figure 1 The conceptual diagram of target tracking based on UAV. 

B.  The general framework  

The general framework of establishing UAV tracking of 
the target using TD3-based RL is presented in Algorithm 1, 
and a conceptual block diagram for it is depicted in Figure 

2. As shown in the figure, the state estimation provides the 
needed information to the two controllers, namely, the PD 
and the RL agents. Next, a block of inverse Kinematic was 
enabled for outputting the low-level control signals that are 
affecting the environment. After that, the camera and inertial 
sensing were used to update the state of the environment.  

As observed in algorithm 1, the initialization starts by 
initiating the PD controller and the TD3 networks in line 
number 2. 

 

Figure 2 The conceptual diagram of the developed RL based tracking. 

 
In addition, the initialization includes defining the number 

of episodes to train the TrainingEpsdsNum; the PD 
exploration steps PDExplrStps, the desired relative position 
DsrdRelPos based on the GetDesiredRelativePosition(), and 
the initial UAV position DsrdDronePos. The role of the 
TrainingEpsdsNum was to determine how many episodes 
were needed to finish the training. Increasing the value of 
the TrainingEpsdsNum does not mean a more mature agent 
because of over-fitting. Hence, it is important to enabling 
agent selection based on the validation phase to decide 
which agent is the best among the generated episodes. The 
role of the DsrdRelPos is to define the range of accepted 
errors in this control problem. The role of the DsrdDronePos 
is to enable training from different locations of the initial 
drone position. The PDExplrStps role is to control the 
boosting phase when the PD is used to guide the UAV 
instead of the TD3 until enough maturity is reached by the 
buffer experience to change to the TD3 mode.  

The algorithm starts by launching the simulation at line 7 
using LaunchSimulation(). Next, it uses 
GetBufferExperiencesNum()to update the size of 
BufExpcNum, which shows the index of the current last 
update of the experience buffer. It is important to note that 
this variable is updated upon each control step, as is shown 
in the pseudocode in line number 29. Afterwards, 
ConstructStateVector() was performed to build the state 
vector, respectively. The main loop in the algorithm is 
located between lines 14 and 41, and it is the loop of 
episodes. Inside the loop, there is another loop for each 
episode separately, placed in lines 16 to 34. In this loop, 

[43] √ The absolute position of 

UAVs and the relative 

position between UAVs 

and targets 

Discrete actions of 

changing the position of 

UAVs 

Two Global and one local 

reward 

Deep reinforcement 

learning, Deep Dueling Q-

network 
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there are two branches: the first one is where the PD 
controller is consulted for generating actions for y, z and z 
and angular rotation around z, and the second one is where 
the PD controller is consulted to select actions for only x and 
the angular rotation around z while the TD3 handles y and z 
control, which represents the core tracking part. Upon the 
control, there is a step of updating the buffer using the 
command AddExperienceToBuffer() in line 27. In addition, 
it can be seen that when the buffer gets sufficient data and 
the PD exploration phase finishes, there is a repeated step of 
updating the TD3 knowledge in line 32.  

 
Algorithm 1 Pseudocode Training Main 

1: Initialization 

2: Initialize ()  

3: TrainingEpsdsNum  

4: PDExplrStps  

    DsrdRelPos 

5: end initialization 

6: Start Algorithm 

7:   LaunchSimulation() 

8:  BufExpcNum  GetBufferExperiencesNum() 

9:  PrevStaVec  ConstructStateVector() 

14: for EpsdNum 0, TrainingEpsdsNum do 

15:      EpsdCmplt  False 

16:      While EpsdCmplt =False do 

17:           if BufExpcNum < PDExplrStps then 

18:                [yzActn, xwzActn] GenerateActionUsingPD() 

19:           elseif BufExpcNum >= PDExplrStps then 

20:                xwzActn GenerateActionUsingPD() 

21:                yzActn GenerateActionUsingTD3(PrevStaVec) 

22:           end if 

23:           Advance DroneMotion(xwzActn, yzActn) 

25:           NextStaVec ConstructStateVector() 

27:           AddExperienceToBuffer() 

29:           BufExpcNumGetBufferExperiencesNumber() 

30:           if BufExpcNum > PDExplrStps then 

30:                ExtractRandomMinibatchFromBuffer() 

32:                UpdateTD3PolicyNetwork() 

33:           end if 

34:      end while 

35:      if EpsdCmplt =True then 

36:           RelaunchDroneSimulation() 

39:           PrevStaVec ConstructStateVector() 

40: end if 

41: end for 

42: End Algorithm 

C.  Observation and State  

The observation updated at each moment, 𝑡, includes nine 
variables, calculated based on the position of the drone at the 

moment 𝑡 (𝑥𝑑𝑟𝑜𝑛𝑒,𝑡 , 𝑦𝑑𝑟𝑜𝑛𝑒,𝑡 , 𝑧𝑑𝑟𝑜𝑛𝑒,𝑡) and the position of the 

target at the moment 𝑡 (𝑥𝑡𝑎𝑟𝑔𝑒𝑡,𝑡 , 𝑦𝑡𝑎𝑟𝑔𝑒𝑡,𝑡 , 𝑧𝑡𝑎𝑟𝑔𝑒𝑡,𝑡). 

The observation is given in the vector 

𝑂𝑡(𝑥𝑟𝑒𝑙,𝑡 , 𝑦𝑦,𝑟𝑒𝑙,𝑡 , 𝑧𝑟𝑒𝑙,𝑡 , 𝑣𝑥,𝑟𝑒𝑙,𝑡 , 𝑣𝑦,𝑟𝑒𝑙,𝑡 , 𝑣𝑧,𝑟𝑒𝑙,𝑡 , 𝑎𝑥,𝑟𝑒𝑙,𝑡 , 𝑎𝑦,𝑟𝑒𝑙,𝑡 
, 𝑎𝑧,𝑟𝑒𝑙,𝑡)  

The state is given based on the part of the observation or  

𝑠𝑡 = (𝑦𝑦,𝑟𝑒𝑙,𝑡 , 𝑧𝑟𝑒𝑙,𝑡 , 𝑣𝑦,𝑟𝑒𝑙,𝑡 , 𝑣𝑧,𝑟𝑒𝑙,𝑡)  

D.  Action 

The action vector consists of two elements, 𝑎𝑡 =
(𝑐𝑦,𝑡 , 𝑐𝑧,𝑡) where 𝑐𝑦,𝑡 denotes the action of changing the 

acceleration of 𝑦, 𝑐𝑧,𝑡 denotes the action of changing the 

acceleration of 𝑧. It pointed out that this part is under the 

mission of the TD3, whereas the action of changing the 
acceleration or 𝑥 or the angular rate around 𝑧 is given as 
𝑎𝑐𝑡𝑃𝐷 = (𝑐𝑥,𝑡 , 𝑐𝑤𝑧,𝑡) and it is under the mission of the PD 

controller that is integrated with the TD3. 

E.  Rewarding Model 

The reward is the essential part for guaranteeing a good 

performance of the RL convergence toward the optimal 

policy. It should enable optimal action selection given a 

certain state and provide more stable convergence. The 

previous researchers [45] include the error concerning the 

distance, velocity, and acceleration in the reward. In 

addition, they try to make the reward normalized to make the 

learning more stable. The classical rewarding model is given 

in Equation (1): 

𝑟 = −𝑤𝑝𝑟𝑝̅ −𝑤𝑣𝑟𝑣̅ − 𝑤𝑎𝑟𝑎̅ (1) 

where 𝑤𝑝  denotes the weight of the position rewarding term, 

𝑤𝑣  denotes the weight of the velocity rewarding term, 𝑤𝑎  
denotes the weight of the acceleration rewarding term, and 

𝑟𝑝̅ denotes the normalized relative distance between the 

drone and the target and it is calculated based on Equation 

(2): 

𝒓𝒑̅̅ ̅ =
𝒚𝒓𝒆𝒍,𝒕
𝟐 + 𝒛𝒓𝒆𝒍,𝒕

𝟐

 ‖𝑹𝒑‖
 (2) 

where 𝑅𝑝 denotes the maximum magnitude of 𝑦𝑟𝑒𝑙,𝑡
2 + 𝑧𝑟𝑒𝑙,𝑡

2  

and it is used for normalization, 𝑟𝑣̅ denotes the normalized 

relative distance between the drone and the target and it is 

calculated based on Equation (3): 

𝑟𝑣̅ =
𝑣𝑦𝑟𝑒𝑙,𝑡

2 + 𝑣𝑧𝑟𝑒𝑙,𝑡
2

‖𝑅𝑣‖
 (3) 

where 𝑅𝑎 denotes the maximum magnitude of 𝑣𝑦𝑟𝑒𝑙,𝑡
2 +

𝑣𝑧𝑟𝑒𝑙,𝑡
2  and it is used for normalization, 𝑟𝑎̅ denotes the 

normalized relative acceleration between the drone and the 

target and it is calculated based on Equation (4):  

𝑟𝑎̅ =
𝑎𝑦𝑟𝑒𝑙,𝑡

2 + 𝑎𝑧𝑟𝑒𝑙,𝑡
2

‖𝑅𝑎‖
 (4) 

𝑅𝑎 denotes the maximum magnitude of 𝑎𝑦𝑟𝑒𝑙,𝑡
2 + 𝑎𝑧𝑟𝑒𝑙,𝑡

2  and 

it is used for normalization. 

The modification in the reward is carried out based on the 

following: 

1) A novel approach for rewarding is developed 

where the reward is not given at one time based on the three 

terms of position, velocity, and acceleration. However, it is 

given progressively throughout the training, where the entire 

set of episodes is decomposed into three stages. The 

rewarding based on the position term is given in the first 

stage, the rewarding based on the velocity term is given in 

the second stage, and the rewarding based on the 

acceleration term is given in the last term. This approach is 

called multistage rewarding. The pseudocode of multistage 

rewarding is given in Algorithm 2. As observed in the code, 

from lines 1 to 4, the first stage of position-based rewarding 

is executed. From lines 5 to 7, the second stage of velocity-

based rewarding is given, and from lines 8 to 10, the stage 

of acceleration-based rewarding is given. 
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2) An exponential factor for weighting the velocity 

and acceleration terms in the reward is incorporated. They 

are given in Equation (5-6):  
𝑤𝑣 = 𝑤0,𝑣𝑒

−𝑣 (5) 

𝑤𝑎 = 𝑤0,𝑎𝑒
−𝑎 (6)  

The role of these terms is to assure that the rewarding of 
the dynamics will not exceed its safe level of affecting the 
policy surface.  

3) An achievement concept of rewarding was 

developed where the reward formula changes according to 

entering or exiting a surrounding square frame around the 

target. To elaborate this concept, it was assumed that the 

target is surrounded with 𝐾 frames, presented in the set 𝐹 =

{𝑓1, 𝑓2, … 𝑓𝐾}. The reward is modified in Equation (7): 

𝑟𝑝𝑤(𝑡) =

{
 
 

 
 
𝑟(𝑡) + 𝑐1       𝑖𝑓(𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑓1)

𝑟(𝑡) + 𝑐2
.

     𝑖𝑓(𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑓2)
...

𝑟(𝑡) + 𝑐𝐾    𝑖𝑓(𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑓𝐾)  

  (7) 

where 𝑓1 is surrounding 𝑓2, 𝑓2 is surrounding 𝑓3, and so on 
until the last frame 𝑓𝐾. 𝑐1 < 𝑐2 < ⋯𝑐𝐾. The model is called 
an achievement-based rewarding because the constants 𝑐𝑖 
are given at each frame as an extra reward because of the 
agent's achievement. 

F.  Episode Completion Logic 

The episodes consist of the fixed target set of episodes and 

the moving target set of episodes. The completion of one 

episode and the starting of a new episode is based on 

combinatory logic. More specifically, the episode ends with 

the availability of one of three conditions in the fixed target, 

namely entering the inner area of a square surrounding the 

target, exceeding the area of simulation, or exceeding the 

allocated steps for the episodes. 

On the other side, the episode ends with the availability of 

one of two conditions in the case of the moving target, namely 

exceeding the area of simulation or exceeding the allocated 

steps for the episodes. The algorithm that shows the logic of 

episode completion is given in Algorithm 3. The part from 

line 6 enables the terminal state successfulness flag in the case 

of the fixed target. Lines 7 to 11 enables the flag of failure to 

reach the terminal state due to exceeding the area in the case 

of the moving target. 
 

Algorithm 3 Episode Completion Status 

Input: 

(1) StaVec: State Vector. 

(2) TrmnlStaThrshld: Terminal State Threshold. Index 1 for position 

and 2 for velocity 

(3) MaxRelPos: Maximum Relative Position. 

(4) EpsdStpNum: Episode Step Number. 

(5) MaxEpsdStps: Maximum Episode Steps. 

(6) TagTrajType: Tag Trajectory Type. 

Output: 

EpsdCmplt: Episode Completion. 

1: Start Algorithm 

2: EpsdCmplt False 

3: TrmnlStaStatus False 

4: FlgAreaExcd False 

5: MaxEpsdStpsStatus False 

6: if absolute(StaVec[’yAxisLinearPos’]) < TrmnlStaThrshld(1) and 

absolute(StaVec[’zAxisLinearPos’]) < TrmnlStaThrshld(1) and 

absolute(StaVec[’yAxisLinearVelocity’]) < TrmnlStaThrshld(2) and 

absolute(StaV ec[’zAxisLinearVelocity’]) < TrmnlStaThrshld(2) then 

7:      TrmnlStaStatus True 

8: end if 

9: if absolute(StaV ec[’yAxisLinearPos’]) > MaxRelPos[’yAxis’] or 

absolute(StaV ec[’zAxisLinearPos’])>MaxRelPos[’zAxis’] then 

10:      FlgAreaExcd True 

11: end if 

12: if EpsdStpNum = MaxEpsdStps then 

13:      MaxEpsdStpsStatus True 

14: end if 

15: if TagTrajType =’fixed’ then 

16:      if TrmnlStaStatus =True or FlgAreaExcd =True or 

MaxEpsdStpsStatus =True then 

17:           EpsdCmplt True 

18:      end if 

19: end if 

20: if TagTrajType =’moving’ then 

21:      if FlgAreaExcd =True or MaxEpsdStpsStatus =True then 

22:           EpsdCmplt True 

23:      end if 

24: end if 

25: End Algorithm 

VII. EXPERIMENTAL EVALUATION AND RESULTS  

For simulation, the Gazebo simulator was used. It is a three-

dimensional dynamic simulator that can correctly and 

effectively model UAVs and robots. For training, the set of 

the initial random positions was selected with 𝑁 = 9, and it 

is given as:  

𝑅𝑃 =
{(0,0.15,0.5), (0,0.15,1.15), (0,0.15,1.5), (0,0.5,0.5) ,
(0,0.5,1.15), (0,0.5,1.5) , (0, −0.5,0.5),
(0, −0.5,1.15),   (0, −0.5,1.5)}. 

For the multistage rewarding, 𝐾 = 5, 𝑐1 = 20, 𝑐2 =
40, 𝑐3 = 60, 𝑐4 = 80 and 𝑐5 = 100 werre used. The 

parameters of the experiments are presented in Table II. In 

addition, the TD3 parameters in Table III are presented. As 

given in the table, the number of hidden layers is 2, and the 

number of hidden neurons in each layer is 256. Other 

parameters are the standards used by researchers for TD3 

implementation.  

 

 
 

Algorithm 2 Pseudocode Multi Stage Shaping Function 

Input: 

(1)EpsdNum: Episode Number. 

PosEpsdsNum 

VelEpsdsNum 

AcelEpsdsNum 

Output: 

Shaping  

1: Start Algorithm 

2: if  EpsdNum < PosEpsdsNum then 

3: Shaping=CalPositionTerm() 

4: else if (EpsdNum > PosEpsdsNum) and  

5:               (EpsdNum <VelEpsdsNum)then 

6:               Shaping =CalVelTerm() 

7: else if (EpsdNum > VelEpsdsNum) and 9:(EpsdNum < 

8:AcelEpsdsNum) then 

9: Shaping =CalAccTerm() 

10: end if 

11: End Algorithm 
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TABLE II  

PARAMETERS OF THE REWARDING MODEL 

Parameter Name Value 

PosEpsdsNumForFixedTag 1000 

VelEpsdsNumForFixedTag  500 

AcelEpsdsNumForFixedTag 100 

PosEpsdsNumForMovingTag 150 

VelEpsdsNumForMovingTag 75 

AcelEpsdsNumForMovingTag 15 

𝑐1  20 

𝑐2  40 

𝑐3  60 

𝑐4  80 

𝑐5  100 

𝐾  5 

 

TABLE III  

PARAMETERS OF TD3 ALGORITHM 

Parameter Name Value 

Hidden layers number 2 

Hidden layer nodes number 256 

Discount factor 0.99 

Optimizer Adam 

Learning rate for Actor 

networks 
0.0003 

Learning rate for Q-networks 0.0003 

Buffer size 10800000 

Batch size 256 

PD exploration steps 10000 

Episodes number 1840 

Maximum episode steps 4500 (150 2nds at 30Hz frequency) 

Soft update coefficient 0.005 

Policy delay 2 

Action noise 𝑁(0,0.12) 
Target noise 𝑁(0,0.22) 
Noise clip 0.5 

 

The evaluation results were reported under boxplot 

visualization to characterize the random behavior of the 

performance for each model. The labelling coding presented 

in Table IV was used for the various models evaluated. The 

type of evaluated agent from the models was added as a title 

for each figure. The original TD3 model does not include 

achievement reward or exponential weighting. In addition, 

it was based on the combined training of position, velocity 

and acceleration, named as combined (C). Two types exist 

agents: agents trained by fixed target only (F) and agents 

trained by fixed and moving target (FM). For FM agents, the 

training was based on the first stage of training on a fixed 

target and the second stage of training on moving targets 

within the square path with a diameter of 0.5, 1 and 1.5 

meters. It is pointed out that the C agent of FM can be called 

metalearning TD3 because it used the same concept of [27]. 
Two evaluation metrics are presented for each agent type, 

namely the accumulated error on the y axis, which is named 

as 𝐸𝑦 and the accumulated error on the z axis, which is 

named as 𝐸𝑧. They both indicate the accumulated root mean 

square error.  

 

 

 

 

 

TABLE IV  

LABELLING CODING FOR THE MODELS USED IN THE EVALUATION 

Model name 
Label 

code 

Achievement 

reward 

Exponential 

weighting 

Combined C No No 

Combined-Achievement CA Yes No 

Combined-Exponential CE No Yes 

Combined- Achievement- 

Exponential 
CAE Yes Yes 

Multilevel ML No No 

Multilevel-Achievement MLA Yes No 

Multilevel -Exponential MLE No Yes 

Multilevel - Achievement- 

Exponential 
MLAE Yes Yes 

Proportional Differential PD No No 

 

A. Fixed Target 

The developed TD3-based tracking was evaluated based 

on two types of analysis. The first one is the analysis of the 

statistical results of the errors in both Y and Z, given in 

Subsection 1. The second one is the evaluation of the time 

series of the relative distance between the UAV and the 

target in both Y and Z throughout the experiment, given in 

Subsection 2. For both analyses, a boxplot was selected to 

capture the random behavior in the experiments and 

incorporate it in the evaluation. 

1)  STATISTICAL RESULTS 

It was observed in Figures 3, 4, 5 and 6 that the 

accumulated error on Y and Z, for the F agent axis, shows 

that the best achieving agent was Multilevel - Achievement- 

Exponential (MLAE) with an accumulated error of less than 

50. The worst performance was observed for Combined-

Exponential (CE), which has reached an error of close to 350 

for Y and 400 for Z. This provides that incorporating the 

exponential weighting in the combined rewarding is not 

useful in improving the latter.  

In addition, it was observed that all Multilevel-

Achievement (MLA), Combined- Achievement- 

Exponential (CAE) and Combined-Achievement (CA) have 

provided much better performances than both proportional 

differential (PD) and Combined (C), which are just classical 

TD3-based models with no modifications. The ranges of 

errors provide that adding an achievement term to the TD3 

is useful for improving the tracking performance and 

reducing the error. Furthermore, combining both the 

achievement rewarding formula and the exponential 

weighting terms provides better performance than using the 

achievement rewarding alone. Another observation is that 

the width of the boxplot is reduced for the achievement-

based agents, namely CA, CAE, MLA and MLAE, which 

means more stability in the performance when they are 

trained on a fixed target, i.e., F-agent. More specifically, as 

is observed from Table V of the summary of the errors in Y 

and Z that F-agent MLAE with the error of Y of 39.53 in Y 

axis has increased to 125 in Fixed then Moving trained 

(FM), and the error of Z has increased from 51 in the F 

training case to 122 in the FM agent. The stability generated 

from achievement rewarding is interpreted by the piecewise 

formula that makes the agent aware of its progress in the 
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tracking and its motivation when it passes from one region 

to another closer to the target. Also, it was observed that the 

best agent in the FM training was MLA, with an error of 64 

on Y and 113 on Z.  

The time series is presented in Figure. 5, showing good 

tracking performance by maintaining the location of the 

target in both Y and Z despite the frequent sensor failure 

cases that are shown at the bottom graph. 

 

Figure. 3 Boxplot of an error on Y-axis for various agent types trained 
on fixed target and tested on fixed trajectory scenario. 
 

Figure. 4 Boxplot of an error on Z-axis for various agent types trained 
on fixed target and tested on fixed trajectory scenario. 
 

Figure 5 Boxplot of an error on the Y-axis for various agent types 
trained on fixed and moving target and tested on fixed trajectory 
scenario. 

Figure 6 Boxplot of an error on Z-axis for various agent types trained 
on fixed and moving target and tested on fixed trajectory scenario. 
 

TABLE V  

SUMMARY OF THE ERRORS IN Y AND Z FOR F AND FM TRAINING TYPES 

AND THE DIFFERENT TYPES OF THE AGENTS FOR FIXED TARGET TESTING 

Training 

Type 
F FM 

Agent 

Type 

ErrorY ErrorZ ErrorY ErrorZ 

C 169.601 151.403 166.922 211.281 

CE 270.580 150.576 336.036 112.968 

CA 103.095 203.972 161.246 154.457 

CAE 89.3708 216.347 91.9356 141.056 

ML 192.755 117.360 124.874 167.104 

MLE 191.440 125.371 120.427 142.800 

MLA 106.995 181.061 64.8968 113.958 

MLAE 39.536 51.4315 125.353 122.805 

PD 194.773767 208.118 194.774 208.118 

Error 

Reduction 

Rate 

70% 75% 67% 42% 

 

2) TIME SERIES RESULTS 

The visualization of the dynamic performance is given by 

presenting the time series of the unit step response. As 

depicted in Figure 7, the tracking shows good performance 

for both Y and Z despite the cases of sensor failures caused 

by the nondetection of the tag. Hence, the model shows good 

robustness of the UAV tracking.  

 

 

Figure 7 Time response of the scenario of one example fixed target 
scenario for the best agent. 
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B. Moving with Square Trajectory 

The evaluation of the target that moves along a square 

trajectory was decomposed into two subsections. The first is 

the statistical evaluation, presented in (1), and the second is 

the time series evaluation, presented in (2).  

1) STATISTICAL RESULTS  

Similarly, the tracking performance of the square 

trajectory scenarios conducted by the object observed from 

Figures 8, 9, 10, and 11 show that the best-achieved tracking 

performance was accomplished by MLAE for the F-agent, 

with an accumulated error in Y and Z close to 50. On the 

other side, the maximum error has occurred by the PD, 

showing an error of approximately 300 in Y and Z. 

Additionally, a decline in the performance for the FM agents 

with the well-accomplished performance of MLA and the 

least performance of CE was observed. The median values 

of the errors are shown in Table VI, demonstrating that 

MLAE has generated an error of 43 and 54 in Y and Z, 

respectively. In addition, good tracking performance in the 

time-series graph in the table for the MLAE model is 

visualized. 

 

Figure 8 Boxplot of an error on Y-axis for various agent types trained 
on fixed target and tested on square trajectory scenario. 

Figure 9 Boxplot of an error on Z-axis for various agent types trained 
on fixed target and tested on square trajectory scenario. 

Figure 10 Boxplot of an error on Y-axis for various agent types trained 
on fixed followed by moving target and tested on square trajectory. 

Figure 11 Boxplot of an error on Z-axis for various agent types trained 
on fixed followed by moving target and tested on square trajectory 
scenario. 
 

TABLE VI  

SUMMARY OF THE ERRORS IN Y AND Z FOR F AND FM TRAINING TYPES 

AND THE DIFFERENT TYPES OF THE AGENTS FOR SQUARE TARGET TESTING 

Training 

Type 
F FM 

Agent 

Type 
Error Y Error Z Error Y Error Z 

C 184.166 177.681 189.982 216.855 

CE 264.580 209.041 384.108 141.549 

CA 123.832 213.582 159.404 186.677 

CAE 100.680 210.517 114.026 150.481 

ML 220.008 153.393 182.467 190.611 

MLE 210.726 154.562 142.353 173.775 

MLA 122.576 181.085 79.970 118.095 

MLAE 43.3472 54.3656 164.230 151.103 

PD 299.611 318.629 299.611 318.629 

Error 

Reduction 

Rate 

86% 83% 73% 63% 

 

2) TIME SERIES RESULTS  

For visualizing the dynamic behavior of the tracking, the 

time series of the UAV compared with the target in Y and Z 

is provided in Figure 12. The tracking shows less deviation 
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between the two-time series, showing good tracking 

performance despite the cases of sensor failures in detecting 

the tag, which is represented by pulses in the bottom graph. 

 

Figure 12 Time response of the scenario of one example square target 
scenario for the best agent. 

c.  Blinking Target 

The final testing scenario was conducted on the blinking 

target, which explores the dynamic aspect of the tracking 

performance when the target moves in a disconnected way. 

1) STATISTICAL RESULTS  

The statistical results of the simulation experiments were 

also conducted for the blinking target. As observed in 

Figures 13, 14, 15, and 16, the least generated error on Y 

was 51 for the CAE agent, and the least generated error on 

Z was 52 for the MLE agent in the case of the F-trained 

agent. 

On the other side, the least generated error on Y was 60 for 

the CAE agent, and on Z, it was 56 for the CE agent in the 

case of the FM trained agent. This indicates the superiority 

of the CAE performance at blinking-targets tracking. In 

addition, observing the behavior of the boxplot, the testing 

of the FM trained agents has resulted in a longer box, which 

shows less stability than the case of testing on the F-trained 

agents. The median values of the errors are shown in Table 

VII. 

Figure 13 Boxplot of an error on Y-axis for various agent types trained 
on fixed target and tested on blinking target scenario. 

Figure 14 Boxplot of an error on Z-axis for various agent types trained 
on fixed target and tested on blinking target scenario. 

Figure 15 Boxplot of an error on Y-axis for various agent types trained 
on fixed followed by moving target and tested on blinking target 
scenario. 

0 50 100 150 200 250 300

time [sec]

1

1.5

Y

square 0.5 ExpNo.1 ErrorY = 154.0126

UAV-Y

target-Y

0 50 100 150 200 250 300

time [sec]

-0.4

-0.2

0

Z

square 0.5 ExpNo.1 ErrorZ = 211.4758

UAV-Z

target-Z

0 50 100 150 200 250 300

time [sec]

0

0.5

1
Sensor Failure

TD3 CE CA CAE ML MLE MLA MLAE PD

20

40

60

80

100

120

140

160

180

200

220

E
rr

o
rY

F Agent

TD3 CE CA CAE ML MLE MLA MLAE PD

40

60

80

100

120

140

E
rr

o
rZ

F Agent

Meta-TD3 CE CA CAE ML MLE MLA MLAE PD

20

40

60

80

100

120

140

160

180

200

220

E
rr

o
rY

FM Agent



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154388, IEEE Access

 

VOLUME XX, 2017 9 

Figure 16 Boxplot of an error on Z-axis for various agent types trained 
on fixed followed by moving target and tested on blinking target 
scenario. 

 

TABLE VII 

SUMMARY OF THE ERRORS IN Y AND Z FOR F AND FM TRAINING TYPES 

AND THE DIFFERENT TYPES OF THE AGENTS FOR BLINKING TARGET 

TESTING 

Training 

Type 

F FM 

Agent 

Type 

Error Y Error Z Error Y Error Z 

C 74.770 83.772 71.722 75.915 

CE 86.037 60.663 89.645 56.110 

CA 52.727 76.731 66.527 71.640 

CAE 51.554 67.295 60.585 62.225 

ML 68.559 71.521 80.934 67.519 

MLE 56.393 52.823 68.363 76.365 

MLA 77.294 74.054 61.153 77.516 

MLAE 57.952 62.598 60.699 72.917 

PD 63.443 74.056 63.443 74.056 

 

2) TIME SERIES RESULTS  

The tracking response of one scenario from the experiments 

of the best accomplishing agent with respect to both Y and 

Z signals is visualized in Figure 17. The results show that 

within 5 seconds, the UAV was capable of maintaining 

minimum error on both Y and Z with respect to the target. 

In addition, the UAV was not affected by the frequent sensor 

failure that occurs because of the reduced quality of the 

UAV camera as it is considered as a cheap sensor. 

Figure 17. Time response of the scenario of one example blinking target 
scenario for the best agent 

D- Cross Analysis  

Comparing the various models based on both F agent and 

FM agent for the fixed scenario, it is found that MLAE has 

accomplished the least errors for F agent, 39 and 51 for 𝑌 

and 𝑍 respectively, while MLA has accomplished the least 

error for FM agent in Y which is 65 and the second least in 

Z which is 114. The same was observed for the moving 

scenario. However, the superiority of MLAE and MLA was 

not found for the blinking scenario. This is interpreted by the 

difference between training an agent using standard fixed or 

moving scenarios on one side and training on random 

movement (blinking) on the other side. The latter is more 

challenging in providing represented knowledge to the 

agent.  

E- Learned Lessons  

It was observed from the three sets of scenarios that the 

developed RL based tracking improves the performance of 

the moving scenarios. This improvement is accomplished by 

minimizing the distance between the target and UAV, 

considering the dynamical variables such as velocity and 

acceleration, and capturing the behavior of target mobility. 

Additionally, the multi-level rewarding based training 

(MLA) based on position, followed by velocity and 

acceleration, is more beneficial for improving the learning 

of the dynamical behavior based on RL than combining the 

three variables in one rewarding function. Also, it was 

observed that the piecewise rewarding function or 

achievement rewaeding (CA) is useful for increasing 

learning effectiveness for dynamical behavior such as 

tracking than the simple continuous rewarding function. 

Lastly, the agent selection algorithm helps avoid overfitting, 

resulting from a higher allocated number of episodes for 

training.  

VIII.  CONCLUSION AND FUTURE WORKS 

In this article, a novel algorithm for target tracking using the 
UAV is presented. The algorithm uses a recently developed 
agent architecture of RL, named TD3. The agent is 
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responsible for Y and Z control, whereas the third 
dimension, 𝑥, is controlled by the PID controller. This is by 
considering that the target only moves within 𝑦 and 𝑧 
dimensions. The state contains the relative position and 
velocity between the UAV and the target. The actions are 
responsible for changing the acceleration of 𝑦 and 𝑧. The 
reward was formulated based on three terms: position, 
velocity, and acceleration rewarding. The training was 
carried out based on two concepts: single-stage and 
combinatory rewarding of the three terms and multistage 
rewarding based on position, velocity, and acceleration one 
after the other. In addition, two methods were used for 
training: 1-fixed target training to produce the F-agent 2-
fixed, followed by moving target training to produce the FM 
agent. 

Two developments were added: (1) exponential factor was 
added to the velocity and acceleration terms to limit their 
effect on the policy surface, and (2) achievement rewarding 
to add more stability to the performance. The evaluation was 
based on three testing scenarios: fixed target, square 
trajectory target, and blinking target. The results showed that 
the best-accomplished performance was achieved by the 
multistage concept with both exponential and achievement 
rewarding for the fixed trained agent in the case of the fixed 
and square moving target and for a combined agent with 
both exponential and achievement rewarding for fixed 
trained agent in the case of the blinking target. This reveals 
that both combinatory and multistage training with both 
exponential and achievement when conducting the training 
on a fixed target is more effective for learning. Furthermore, 
the role of the exponential term in limiting the effect on the 
dynamic target, which is secondary in the learning and the 
role of achievement in boosting the training and stabilizing 
it, are promising concepts for developing more complicated 
models of tracking. Future work should extend the model to 
3D-based RL tracking and explore its applicability to 
specific real-world applications such as target following in 
the military. 
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