
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

3-12-2022

DeeProBot: a hybrid deep neural network model for social bot DeeProBot: a hybrid deep neural network model for social bot

detection based on user profile data detection based on user profile data

Kadhim Hayawi
Zayed University

Sujith Mathew
Zayed University, sujith.mathew@zu.ac.ae

Neethu Venugopal
Zayed University

Mohammad M. Masud
United Arab Emirates University

Pin Han Ho
University of Waterloo

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hayawi, Kadhim; Mathew, Sujith; Venugopal, Neethu; Masud, Mohammad M.; and Ho, Pin Han,
"DeeProBot: a hybrid deep neural network model for social bot detection based on user profile data"
(2022). All Works. 4929.
https://zuscholars.zu.ac.ae/works/4929

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4929&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4929&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/4929?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4929&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae

Vol.:(0123456789)1 3

Social Network Analysis and Mining (2022) 12:43
https://doi.org/10.1007/s13278-022-00869-w

ORIGINAL ARTICLE

DeeProBot: a hybrid deep neural network model for social bot
detection based on user profile data

Kadhim Hayawi1 · Sujith Mathew1 · Neethu Venugopal1 · Mohammad M. Masud2 · Pin‑Han Ho3

Received: 23 August 2021 / Revised: 1 February 2022 / Accepted: 3 February 2022
© The Author(s) 2022

Abstract
Use of online social networks (OSNs) undoubtedly brings the world closer. OSNs like Twitter provide a space for express-
ing one’s opinions in a public platform. This great potential is misused by the creation of bot accounts, which spread fake
news and manipulate opinions. Hence, distinguishing genuine human accounts from bot accounts has become a pressing
issue for researchers. In this paper, we propose a framework based on deep learning to classify Twitter accounts as either
‘human’ or ‘bot.’ We use the information from user profile metadata of the Twitter account like description, follower count
and tweet count. We name the framework ‘DeeProBot,’ which stands for Deep Profile-based Bot detection framework. The
raw text from the description field of the Twitter account is also considered a feature for training the model by embedding
the raw text using pre-trained Global Vectors (GLoVe) for word representation. Using only the user profile-based features
considerably reduces the feature engineering overhead compared with that of user timeline-based features like user tweets and
retweets. DeeProBot handles mixed types of features including numerical, binary, and text data, making the model hybrid.
The network is designed with long short-term memory (LSTM) units and dense layers to accept and process the mixed input
types. The proposed model is evaluated on a collection of publicly available labeled datasets. We have designed the model
to make it generalizable across different datasets. The model is evaluated using two ways: testing on a hold-out set of the
same dataset; and training with one dataset and testing with a different dataset. With these experiments, the proposed model
achieved AUC as high as 0.97 with a selected set of features.

Keywords Social bot detection · Twitter · Deep learning · User profile metadata · LSTM · GLoVe embedding

1 Introduction

The rise of technology, mobile smart devices and high-speed
internet have increased the use of OSNs. As per the study by
Kemp (2021), there are 4.2 billion social media users around
the world, which is more than 53 percent of the world’s total
population. Facebook, which is the biggest social media net-
work worldwide, has 2.8 billion monthly active users, and
Twitter has 330 million monthly active users (Tankovska
2021). Twitter provides an open platform to express opinions
publicly that gives Twitter an extra potential to influence the

public. The influence of OSNs on the public encouraged the
emergence of machine accounts or social bots.

As per Ferrara et al. (2016), a social bot is a computer
algorithm that automatically produces content and inter-
acts with humans on social media, trying to emulate and
possibly alter their behavior. As per Varol et al. (2017), up
to 15% of Twitter users are social bots. Recently, a study
by Carnegie Mellon University researchers has shown that
among 200 million tweets discussing coronavirus, 82% of
the influential re-tweeters were bots (Virginia 2020). Also, in
the study by Pew Research Center, it has been estimated that
two thirds of tweeted links to popular websites are posted by
automated accounts and not by humans. As per their study,
bots shared 66% of all tweeted links to popular websites
(Stefan et al. 2018). The statistic in this study is given in
Fig. 1. Social bots have a positive impact when they act
as helpers in aggregating and delivering news feeds, or as
automatic responders for customer care. But they have also
been misused to spread rumors and fake news to mislead

 * Kadhim Hayawi
 Abdul.Hayawi@zu.ac.ae

1 Zayed University, Abu Dhabi, UAE
2 United Arab Emirates University, Abu Dhabi, UAE
3 University of Waterloo, Waterloo, Canada

http://orcid.org/0000-0002-8092-4590
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-022-00869-w&domain=pdf

 Social Network Analysis and Mining (2022) 12:43

1 3

 43 Page 2 of 19

the public. For example, in Mumbai, rumors were spread
in social media that the vaccines were a plot by the govern-
ment to sterilize Muslim children that led to only 50% of
those who were expected to be vaccinated to actually get
the vaccine (Larson 2020). Work by Chang et al. (2021)
studied the effect of social bots and social media manipula-
tion around two major events of 2020, namely the 2020 US
Presidential Election and Covid-19 pandemic. It has been
found that bots generated much higher volumes of election-
related tweets per capita and also tweet supporting a spe-
cific political line. Also, social bots are found responsible for
posting and amplifying less credible information regarding
Covid-19 pandemic (Yang et al. 2020a). Social bots are also
a major source of climate change disinformation that might
drain support from policies to address rising temperatures
(Corbin 2021).

There are several types of bots posing different behav-
iors. For example, traditional spambots generate a lot of
content-promoting products. Social spambots tend to attack
or support political candidates, and fake followers tend to
have aggressive following patterns (Sayyadiharikandeh et al.
2020). The different behavioral patterns of bots make it dif-
ficult to detect, if we look into it through the same lens.
Most of the works for detecting bots concentrate on specific
behavioral patterns that make it difficult to detect all types of
bots. For real-time bot detection, a generalizable bot detec-
tion method is required.

In this work, we are proposing a novel framework to
detect bots in Twitter. The deep neural network-based frame-
work, DeeProBot, is designed to make it generalizable to
detect bots across unseen datasets. Only the user profile
information from the Twitter account is used for detecting
bots. These are the features that we get from the user object
of Twitter Application Programming Interface (Twitter
API). These features include the username, screen name,

tweet count, followers count, friends count, listed count,
user created date, description, location, url, verified flag,
etc. Detecting bots using just the profile information instead
of going deep into the content created by the user reduces
the overhead of extra feature extraction and processing. As
we discussed, bots evolve over time. A traditional bot reveals
much less personal information through the profile. They
have random names for the profile with missing details. At
the same time, recently evolved sophisticated bots have their
profile similar to legitimate human-operated accounts. In
such a scenario, we put forward a novel idea of using the
text in the Twitter account profile description as a feature,
which is usually avoided in relevant works. The description
text always contains useful information in detecting whether
an account is a bot or a human. This led to the design of a
deep neural network-based architecture where the descrip-
tion text is embedded using GloVe (Pennington et al. 2014)
pre-trained word embedding weights and processed using
LSTM units. Other features like followers count and fol-
lowing count are equally important because bots show the
pattern of following large numbers of accounts while having
a smaller number of followers. To capture all these features,
we developed a hybrid architecture to process both numeri-
cal and text features. The major contributions of this work
are as follows:

• We have designed and developed DeeProBot, a general-
izable deep neural network-based framework that uses
profile metadata information for detecting bots in Twitter
achieving better performance compared to state-of-the-
art methods.

• The proposed framework utilizes the potential of the pro-
file description text as a feature and GloVe word embed-
ding in detecting bots.

• We analyze the effect of feature selection in the model
performance.

• We have proposed a hybrid design of deep neural net-
work model using LSTM and dense layers to handle
mixed input types.

• We have performed cross-domain performance evalua-
tion of DeeProBot by training the model on a set of het-
erogeneous Twitter datasets and testing the performance
of the model on four other heterogeneous datasets not
used in training.

The rest of the paper is organized as follows. We dis-
cuss the research works related to bot detection in Sect. 2.
Section 3 provides details of the datasets used. Section 4
describes the DeeProBot framework, including the feature
engineering module, model architecture and algorithms
explaining the framework. The experiments and evaluations
are given in Sect. 5. Finally, Sect. 6 concludes the work and
discusses the future research directions.

Fig. 1 Proportion of tweeted links to popular websites by bots and
human (Stefan et al. 2018)

Social Network Analysis and Mining (2022) 12:43

1 3

Page 3 of 19 43

2 Related work

The bot detection techniques in OSNs can be broadly classi-
fied as (a) Graph-based methods (b) Crowdsourcing methods
and (c) Machine Learning methods (Alothali et al. 2018).
The graph-based methods capture the network communi-
cation patterns of the users to distinguish them as genuine
or bot (Dorri et al. 2018; Abu-El-Rub and Mueen 2019).
However, graph-based methods mostly depend on assump-
tions. The computational cost can also be high based on
the size of the network. In crowdsourcing methods, human
effort and expertise are utilized in annotating user accounts
as genuine or bot (Wang et al. 2012, 2014). This method is
time-consuming and is prone to human error as it involves
human intelligence. In the literature, researchers have mostly
used machine learning methods for bot detection. Machine
learning methods involve learning from data. Here, features
are extracted from Twitter user accounts, which represent
the behavioral patterns of the users. These features are fed to
the network to classify them as bot or human. In this work,
we are using a machine learning-based model to detect bots.

A user’s profile, content and temporal features can be
extracted from Twitter (Zahra et al. 2020; Shukla et al.
2021). In Sayyadiharikandeh et al. (2020), the diversities
of different types of bots are handled by training classifiers
specialized for each class of bots, and a bot-score is cal-
culated for each classifier. The classifier that outputs the
highest bot-score determines the corresponding class. They
have also done a cross-domain analysis of their classifier by
testing it on separate datasets to demonstrate the generaliz-
ability of the model. They have used a high-dimensional
feature set consisting of 1200 features from six categories:
metadata from accounts and friends, retweet/mention net-
works, temporal features, content information, as well as
sentiment. Considering a rich feature set that includes an
account’s actions and social connections improves accuracy
but reduces scalability (Yang et al. 2020b). In the work by
Yang et al. (2020b), only the profile information of the user
account is considered for training a Random Forest classi-
fier. They proposed a scalable and generalizable bot detec-
tion method and used a data selection criterion to find the
best model. Most of the methods that use only the metadata
information from the user profile are trained using Random
Forest or Adaboost classifiers (Daouadi et al. 2020; Kondeti
et al. 2021). Deep learning techniques are not much explored
when using these sets of features.

Deep learning techniques for bot detection usually use
content information like tweet text along with temporal
data or a combination of all types of features from Twit-
ter account. In the work by Wu et al. (2021), the detection
of social bots from Sina Weibo, one of the most popular
Chinese OSNs in the world, uses 30 features from four

categories, namely metadata-based, interaction-based, con-
tent-based, and timing-based. These are then fed to a deep
neural network (DNN) model consisting of a residual net-
work (ResNet), a bidirectional gated recurrent unit (BiGRU),
and an attention mechanism. They obtained an accuracy of
0.98. Since it has been developed for Sino Weibo, the perfor-
mance of the same for Twitter data needs to be checked. The
work by Braker et al. (2020) uses a multi-layer perceptron
(MLP) network to detect bots in Twitter which is trained
on a lower-dimensional feature set extracted from account
metadata and tweet metadata. They obtained an accuracy
of 0.92 and a lower recall percentage leaving scope for
improvement. The work presented in Kudugunta and Ferrara
(2018) used a contextual-LSTM network to learn the tweet
text along with the metadata features to detect bots. They
have not considered the description feature along with the
metadata features and also have not tested the cross-domain
performance of the model on separate datasets. Similarly,
there are several deep learning works that use the tweet text
for detecting bots in Twitter (Dukić et al. 2020; Mou and Lee
2020). In this work, we are not focusing on tweet text. In a
study by Cresci (2020), unsupervised approaches have been
found effective in detecting groups of coordinated bots. But
such methods are slow as there is a need to consider a group
of accounts for detecting coordinated activity. Currently, this
is not under our scope of work as we are detecting bots based
on individual account features.

To the best of our knowledge, there is no deep learning
approach that considers only the profile information for bot
detection. The proposed work uses data extracted exclusively
from the profile metadata of Twitter account. We use the
profile information in a comprehensive way that includes
numerical, categorical and text features from the user profile.
Additionally, better insights on the model performance could
be provided, if researchers analyze the performance of their
model on datasets that are different from the training dataset
in terms of data crawling or annotation strategies (Sayya-
diharikandeh et al. 2020; Yang et al. 2020b). Rauchfleisch
and Kaiser (2020) has studied that bot detection technique
like botometer gives imprecise results on bot datasets with
bot behavior different from the ones it is trained for. So, a
cross-domain analysis gives a better understanding on the
generalizability of the detection framework which is not
presented for other deep learning works doing bot detection.

3 Datasets

We used the datasets provided by the public bot repository
of the botometer.1 Bot repository is a centralized place to
share annotated datasets of Twitter social bots. The list of

1 https:// botom eter. osome. iu. edu/ bot- repos itory

https://botometer.osome.iu.edu/bot-repository

 Social Network Analysis and Mining (2022) 12:43

1 3

 43 Page 4 of 19

the datasets that we used, with a brief description, is given in
Table 1. The training set is formed by merging the datasets
specified under training set. A combination of heterogenous
datasets as the training data helps in including bots evolved
at different time periods and with different behavioral pat-
terns. Using such a training set makes the model generaliz-
able to detect different types of bots. This combination is
selected based on the work by (Yang et al. 2020b). They
have employed a data selection technique to find the best
subset of data that creates a model, which performs bet-
ter in terms of accuracy and generalizability. midterm-18,
cresci-rtbust and gilani-17 are hold-out datasets considered
separately for cross-domain testing. Another test dataset is
formed by combining botwiki and a subset of verified to
make it a balanced dataset of bots and humans. Here, each
dataset is labeled using different strategies and methods.
Also, they are collected at different time frames. These fac-
tors make the datasets characteristically different from each
other as studied in (Yang et al. 2020b).

3.1 Dataset separability

In this section, we analyze the separability of the test data-
sets with respect to a given set of features to demonstrate
the difficulty in classifying the dataset into different classes
(here the classes are ‘bot’ and ‘human’). We applied Princi-
pal Component Analysis (PCA) on the numerical features of
the four test datasets. PCA is used for dimensionality reduc-
tion, where a higher-dimensional feature set is reduced to
a two-dimensional feature set. This can be plotted in a 2D
plane. As a preprocessing step, power fit transform is applied
to the numerical features before applying PCA to deal with
the skewness in the data (Yeo and Johnson 2000). Figure 2

shows the plot obtained after applying PCA. The separability
decreases from (a)–(d).

The plot for botwiki-verified dataset shows high separa-
bility between bots and humans with the selected set of fea-
tures, whereas for cresci-rtbust and gilani-17, the points are
overlapping indicating a difficult classification task.

These two datasets consider diverse types of accounts that
are manually annotated based on different types of behavior.
For example, gilani-17 dataset is formed by grouping Twit-
ter accounts into four groups based on the number of fol-
lowers and then manually annotated based on some account
properties and rules (Gilani et al. 2017). For cresci-rtbust,
data are collected from 10 M retweets, and their retweet pat-
tern is analyzed. Human accounts are labeled based on clus-
ters with normal retweet patterns, and those with suspicious
retweet patterns are labeled as bot. (Mazza et al. 2019). Yang
et al. (2020b) has presented a more detailed analysis of the
performance of these datasets. This analysis is supported by
the empirical results reported in Sect. 5.3.5, which indicates
that less separability leads to a lesser prediction accuracy.

4 Proposed work

Figure 3 shows the overall architecture of the DeeProBot
framework, which consists of several modules, including
data preparation, feature engineering and training the DNN
model. Data preparation consists of building the training
dataset and test datasets. This is already discussed in the
previous section. Feature engineering consists of preproc-
essing and preparing the features. A separate preprocessing
technique is applied based on the type of the feature. The
preprocessed text feature undergoes the GloVe embedding.
Also, a feature selection method is applied on the numerical

Table 1 List of datasets and its description

Dataset Description #Bots #Human

Training set
varol-icwsm (Varol et al. 2017) Manually labeled accounts sampled from different Botometer score deciles 674 1471
cresci_17 (Cresci et al. 2017a, 2017b) This dataset provides four classes of accounts namely genuine users, social spambots,

traditional spambots and fake followers
10,894 3474

Celebrity (Yang et al. 2019) Data based on accounts selected among celebrities 0 5917
botometer-feedback (Yang et al. 2019) Data obtained by manually labeling accounts flagged by feedback from Botometer

users
139 379

political-bots (Yang et al. 2019) Data based on politics-oriented bots shared by a Twitter user 61 0
Test set
Botwiki (Yang et al. 2020b) Data is based on the botwiki.org archive of self-identified bot accounts 697 0
Verified (Yang et al. 2020b) Data obtained by collecting verified accounts from the streaming API 0 1986
midterm-18 (Yang et al. 2020b) Data based on political tweets collected during 2018 US midterm elections 42,445 8092
cresci-rtbust (Mazza et al. 2019) A manually annotated dataset based on Italian retweets between June 17–30, 2018 353 339
gilani-17 (Gilani et al. 2017) Data based on accounts collected using twitter streaming API that were grouped and

manually annotated
1089 1413

Social Network Analysis and Mining (2022) 12:43

1 3

Page 5 of 19 43

Fig. 2 PCA plots for test datasets. This plot shows the separability between each class in the dataset with given set of features. The plots in a and
b show easily separable datasets, while that in c and d show more complex datasets in terms of separability

Fig. 3 Architecture of the DeeProBot framework

 Social Network Analysis and Mining (2022) 12:43

1 3

 43 Page 6 of 19

and binary features. This reduces the dimension of the fea-
ture vector by selecting the best subset of features. These
processed data are then used to train a deep neural network
model to classify bots and humans. Each of these modules
is explained in the following subsections.

4.1 Feature engineering

The features are extracted from the user profile of Twitter
account, which are given in Table 2. These features are
the metadata from the user account. When considering
the extraction of data from Twitter using Twitter API, the
profile metadata of the user is contained in the user object
of Twitter API, and the timeline information of the user
that includes user’s recent tweets and mentions are con-
tained in the user tweet timeline object. Instead of con-
sidering different types of features like content-based and
interaction-based features that are extracted from the user
timeline, we only took the user profile features primarily

to investigate how only profile information can contribute
to efficient bot detection and thereby avoiding the extra
overhead in extracting data from Twitter. Moreover, for all
our datasets except varol-icwsm, the user profile features
were available to download directly from the bot reposi-
tory. We used the Twitter API to extract the account fea-
tures of varol-icwsm database. Unlike other works that use
user account metadata features, we consider the descrip-
tion text of user profile as a feature in the proposed DeeP-
roBot framework. We also derived several features from
the metadata features. The derivations are inspired from
the works by Inuwa-Dutse et al. (2018) and Yang et al.
(2020b). The explanation of some of the derived features
is given here, and the others can be easily understood from
the description in the table.

The derived feature, screen_name_freq, is computed from
the screen_name of the account based on its bigram char-
acter combination.

Table 2 List of features used and its description

Feature name Feature type Feature description

Raw features
Statuses_count Numerical The number of Tweets (including retweets) issued by the user
Followers_count Numerical The number of followers this account has
Friends_count Numerical The number of users this account is following
Favourites_count Numerical Number of favorites obtained from metadata
Listed_count Numerical The number of public lists that this user is a member of
Default_profile Binary When True, indicates that the user has not altered the theme or background of their user profile
Verified Binary When True, indicates that the user has a verified account
Description Text The user-defined text describing their account
Derived Features
User_age Numerical The age of the account in days obtained by taking the difference of data collection date and

account created date
Tweet_freq Numerical Statuses_count/user_age
Followers_growth_rate Numerical Followers_count/user_age
Friends_growth_rate Numerical Friends_count/user_age
Favourites_growth_rate Numerical Favourites_count/user_age
Listed_growth_rate Numerical Listed_count/user_age
Followers_friends_ratio Numerical Followers_count/friends_count
Screen_name_length Numerical Length of screen name
Name_length Numerical Length of name
Description_length Numerical Length of description
Num_digits_in_screen_name Numerical Number of digits in screen name
Num_digits_in_name Numerical Number of digits in name
Screen_name_freq Numerical Mean bigram frequency of characters in screen name
Screen_name_entropy Numerical Entropy of screen_name
Name_entropy Numerical Entropy of name
Description_entropy Numerical Entropy of description string
Name_sim Numerical Similarity between screen name and name
Names_ratio Numerical Ratio of length of screen_name to length of name

Social Network Analysis and Mining (2022) 12:43

1 3

Page 7 of 19 43

where bi is the ith bigram in the screen_name. C
(
bi
)
 is the

total count of the specified bigram in the screen_name, and
K is the total number of unique character bigrams in the
screen_name.

screen_name_entropy, name_entropy and description_
entropy are obtained by calculating the entropy of the spe-
cific character sequence. Entropy of a sequence x is given by,

where |x| is the length of the sequence, and H(x) is the Shan-
non entropy of the sequence given by,

where p(i) is the probability of ith unique character in
sequence x , and K is the total number of unique characters
in sequence x.

The name_sim feature represents the similarity between
the screen_name and name given in the account profile. This
is a numerical value given by,

where M is the number of matches and N is the total number
of elements in both sequences. Table 3 shows an example of
the screen_name and name of both human and bot classes
and their corresponding derived features from these values.

4.1.1 Numerical and binary feature preparation

This section discusses the preprocessing done for numerical
and binary features, and the feature selection method applied
on this set of features.

4.1.1.1 Numerical feature processing Numerical feature
processing involves missing value imputation and stand-

screen_name_freq =

∑K

i=1
C
�
bi
�

K

E(x) =
H(x)

|x|

H(x) = −

K∑

i=1

p(i) ∗ log2 p(i)

name_sim =
2M

N

ardization. We encountered missing values only with the
description_length feature as the description field is null
for some accounts. In such cases, the description_length
is given a value of zero. Further, the numerical features
like followers_count are skewed. The followers_count fea-
ture has a minimum value of 0 and a maximum value of
108,990,846. To deal with the skewness, standardization is
applied to all the numerical features (Shukla et al. 2021). We
obtain the standard score, z for an input x by,

where u and s are mean and standard deviation of the sample,
respectively.

4.1.1.2 Binary feature processing Binary features have dis-
crete data that can take only two different values. The fea-
tures like verified and default_profile take the values True
or False, and hence they are binary. These feature values are
encoded so that the encoded value z for input x is given by,

The same principle is applied to the Label field where,
the class ‘bot’ is encoded as 1 and ‘human’ is encoded as 0.

4.1.1.3 Feature selection Feature selection allows to select
the best subset of features that improves the model’s perfor-
mance. This helps in reducing the complexity of the model
by reducing the dimension of the input vector (Khalid et al.
2014). Further, scalability is a common concern when using
deep learning architectures. We assume that the training of
the model would be done offline, and therefore, scalability
will not be much issue if the model is only used for testing.
In such a scenario, feature selection also helps in improv-
ing the scalability of model in real-time data classification.
There are filter methods and wrapper methods for feature
selection. Filter methods try to find the relevance of features
based on statistical tests on the features. This method is inde-
pendent of its performance on a machine learning algorithm
(Hall 1999; Dash and Liu 2003). Wrapper methods select
the best subset of features based on its performance on a
machine learning algorithm (Kohavi and John 1997). It has
been seen that wrapper methods improve the performance
of the model (Xue et al. 2015). We use backward elimina-
tion for feature selection which is a wrapper-based method.

Feature selection by backward elimination is a sequential
feature selection method (Ferri et al. 1994). In the backward
elimination method, a particular machine learning model
is trained and cross-validated iteratively. It starts with con-
sidering all the features and at each iteration, the least sig-
nificant feature is eliminated so that the cross-validation

z =
(x − u)

s

z =

{
1 if x = True,

0 if x = False

Table 3 Derived features from name and screen_name

Human Bot

Screen_name ShaneRWatson33 Tennessee_hire
Name Shane Watson Tennessee jobs
Screen_name_freq 1 1
Screen_name_entropy 0.241 0.192
Name_entropy 0.257 0.197
Name_sim 0.692 0.571

 Social Network Analysis and Mining (2022) 12:43

1 3

 43 Page 8 of 19

performance of the model is improved. This is repeated until
it reaches an optimum number of features as required. We
used a Random Forest model with threefold-cross-validation
starting with all 24 features except the description feature to
find the best ten features among those. We used the Random
Forest model instead of our own model to reduce the risk
of overfitting and to reduce the time complexity associated
with the sequential feature selection approach. The final set
of features after feature selection is given in Table 4.

4.1.2 Text feature preparation

In the DeeProBot framework, we consider the description
given in the user profile as a feature to the DNN model. The
description of the account gives valid information on the
behavior of the account holder. Table 5 shows the example
of description text for both classes. A more detailed analysis
of the description field is given in Sect. 5.3.2. The descrip-
tion feature is a text field. Here, each word in the description
is encoded as an integer before feeding to the embedding
layer. This is also known as tokenizing the text. The feature
engineering pipeline for the description field involves:

• Missing value imputation: The description field of the
Twitter account is nullable, and because of that the
data will have null values for this feature. The null val-
ues are replaced with a default string, ‘missing.’ The
default string is meant to communicate that the data is

missing. However, the description_length feature for
null description values remains zero.

• Cleaning the text: Cleaning the text involves removing
URLs, hashtags, mentions, and also emojis, emoticons
and special characters in the description text (Srijith
2020).

• Removing stop word: Stop words are those words in
the vocabulary which are common in usage but carry
less information. These words are removed so that the
vocabulary size is reduced, and importance is given
to words containing high-level information (Srijith S
2020).

• Converting to lowercase: All the text is converted to low-
ercase and extra spaces are removed.

• Tokenize the text: Tokenizing the text involves encod-
ing each word in the description text by a unique integer
based on the vocabulary index of each word. A vocabu-
lary index is created by assigning an integer value to each
unique word in the vocabulary. This value is given based
on the word’s frequency of occurrence. So that, the most
frequent word gets an index value of 1 and so on. This
can be performed using the Tokenizer API provided with
Keras (Chollet 2016). So, after tokenizing, a sample text
is converted to the following form:

• Pad/truncate to equate the length: The model expects
equal length input to the embedding layer. So, each
tokenized sequence is padded with 0 to make all the
sequences to be same in length.

4.1.2.1 Glove: Global vectors for word representation We
use an embedding layer on top of the LSTM layers to con-
vert the words in the text to real numbered vectors. This
helps in representing the text in such a way that similar
words have a similar representation based on its semantic
meaning. The weights of this layer can be randomly initial-
ized and updated during model training. If the training data
is small, the model may not be able to learn the embeddings
to capture its semantic relationships.

A more efficient performance can be obtained if we use
pre-trained weight vectors that are built on a larger training

samplebotdecription → [2530265]

Table 4 Final set of features after feature selection

Final set of features Feature type

Statuses_count Numerical
Followers_count Numerical
Friends_count Numerical
Favourites_count Numerical
Listed_count Numerical
Tweet_freq Numerical
Num_digits_in_name Numerical
Screen_name_freq Numerical
Name_entropy Numerical
Description_entropy Numerical
Description Text

Table 5 Example of description
text for bot and human classes

Class Description text

Bot I am a member of a network of stock investing educators. Check out more stock tips &
resources on investing-information.com

The only website dedicated to streaming The Inbetweeners for FREE!!!!!!!
Human The official Twitter of fashion designer Vivienne Tam

Lawyer, dog lover, passionate about music, politics, literature, cricket, and art in that order

Social Network Analysis and Mining (2022) 12:43

1 3

Page 9 of 19 43

set. GLoVe pre-trained word embeddings are made available
by the authors of Pennington et al. (2014), in their website.2
GloVe is an unsupervised learning algorithm for obtaining
vector representations for words. The GloVe is trained on
the nonzero entries of a global word–word co-occurrence
matrix, which tabulates how frequently words co-occur with
one another in a corpus. GloVe is a log-bilinear model with
a weighted least-squares objective. The training objective
of GloVe is to learn word vectors such that their dot prod-
uct equals the logarithm of the word’s probability of co-
occurrence. They provide embeddings specific for Twitter
data. The pre-trained GLoVe model for Twitter is trained
on 2 billion tweets with 27 billion tokens. Four models with
different word vector dimensions are available. We used the
50-dimensional model after experimenting with each model,
and the results are analyzed in Sect. 5.3.2. Hence, each word
will be represented by a vector of length 50.

4.2 Model architecture

Our proposed framework detects bots using the profile fea-
tures including the description text. We have designed a

deep neural network-based architecture as shown in Fig. 4.
A DNN-based model has been proven to perform better in
NLP-based tasks. At the same time, we need to learn from
the non-text features like followers count and friends count,
which are considered as the potential features for bot detec-
tion. Keeping that in mind, we designed a hybrid model
with two input layers. One is for the description text and the
other for the set of numerical features obtained after feature
selection. The tokenized description text is represented by
a vector of 30 integers. This dimension is selected based on
the word count in the description text. In our dataset, the
longest description consists of 49 words. But a word count
above 40 is found only in two cases. So, we have chosen 30
as the integer vector size because 95% of the description
has 30 or fewer words. This ensures that we include the
needed information in the description text without causing
over-clipping of data. This sequence is then converted to
GLoVe embedded word vectors using the embedding layer.
After embedding, each word in the sequence is represented
by a vector of 50 real numbers. This embedded descrip-
tion text is then processed by two long short-term memory
(LSTM) layers with 32 units each. LSTM is a specific type
of recurrent neural network (RNN) architecture, which is
mainly used in processing time-series data (Hochreiter and
Schmidhuber 1997). It has been successfully used in natural

Fig. 4 Deep learning model architecture for bot detection

2 https:// nlp. stanf ord. edu/ proje cts/ glove

https://nlp.stanford.edu/projects/glove

 Social Network Analysis and Mining (2022) 12:43

1 3

 43 Page 10 of 19

language processing (NLP) where text data is processed to
solve different types of tasks like classification and predic-
tion (Wang et al. 2018; Yilmaz and Toklu 2020). The output
from the LSTM units is concatenated with the ten-dimen-
sional numerical features obtained after feature selection.
This concatenated input vector is fed through two dense
layers having 128 and 32 neurons respectively, with ‘relu’
activation. A dense layer is a fully connected layer that gen-
erally performs a linear operation on its inputs and is passed
through a nonlinear activation function. Then, it is fed to the
final dense layer with one neuron with sigmoid activation
function. This layer classifies the input as a human or bot.
Our architecture combines the strength of LSTM units to
learn from the description text and that of the dense layers
to learn from other features.

4.2.1 Strategies for improving generalizability

In many cases, the bot detection frameworks that perform
exceptionally on the validation data fail to perform so in an
unseen dataset or with a separate bot distribution. This is
because of the lack of generalizability of the model. Deep
learning models are prone to overfitting which reduces the
generalizability of the model. In the proposed DeeProBot
framework, the model is designed to reduce overfitting so
that it can perform well on the hold-out datasets. We have
incorporated dropout layers and regularization techniques to
address the problem of overfitting and, thereby achieving a
high degree of generalization.

• Dropout: Adding dropout is a simple and effective solu-
tion for reducing overfitting and improving generaliza-
tion. Dropout means dropping out units in a neural net-
work. Randomly chosen units based on a dropout rate are
temporarily removed from the network during training
(Srivastava et al. 2014). Adding a dropout layer has the
effect of combining different neural network architec-
tures efficiently like that of an ensemble model. In this
design, we have introduced dropout layers with a 10 per-
cent dropout rate before each of the first two dense layers.
The parameter value is set based on the performance of
the model.

• Regularization: One of the disadvantages of LSTM is
that they are prone to overfitting. This can be controlled
by introducing regularization to the LSTM layers. Regu-
larization adds an extra penalty term to the error func-
tion and this term controls the coefficients from taking
extreme values. Hence, regularization is a technique that
discourages learning of a complex model and in turn
avoids the risk of overfitting. We used activity regulariza-
tion in the LSTM layer so that the weight and bias values
are adjusted to keep the output small. There are several
types of regularizers that we can use, and the commonly

used ones are L1 regularizer and L2 regularizer (Hoerl
and Kennard 1970; Tibshirani 1996). L1 regularizer adds
absolute value of the magnitude of layer output as a pen-
alty term to the loss function, whereas L2 regularizer
adds squared magnitude of layer output as penalty term
to the loss function. We use the combination of both L1
and L2 regularizers in the LSTM layer as the activity
regularizer (Zou and Hastie 2005). The regularized loss
will be defined as,

where |x| is the absolute value of magnitude of layer out-
put and x2 is the squared magnitude of layer output. l1 and
l2 are the regularization factors.

• Early Stopping: As the training of the network proceeds,
there is a point of time when the network starts deviat-
ing from the goal by the noise in the training dataset.
Thereby, it reduces the generalizability of the network
and starts overfitting. More precisely, from this point, as
the network is learning increasingly from training data,
the training loss continues to decrease, but the valida-
tion loss starts increasing. This results in poor model
performance across unseen datasets. As a solution to this,
we can tune the hyperparameter, number_of_epochs, to
select the parameter value that gives the best model. A
more efficient and simpler alternative is to introduce an
early stopping strategy (Prechelt 1998; Yao et al. 2007).
In this method, at each epoch of training, we validate the
performance of the model on a hold-out validation set
and track the validation metric. The training is stopped
as soon as the validation metric starts deteriorating. A
more stable stopping criterion is to monitor the perfor-
mance for some more additional epochs to confirm that
the performance is not getting better. We have used the
early stopping strategy to decide when to stop the model
training. At each epoch, the validation loss is monitored.
The validation loss is expected to decrease on each
epoch. Once the validation loss stops improving after
a certain number of epochs, it can be a sign of overfit-
ting. The validation loss is monitored over some more
epochs characterized by the patience parameter to check
if it improves further. If the validation loss still does not
improve, the training process is halted.

4.3 DeeProBot algoithms

In this section, we summarize the whole training phase
of the DeeProBot framework with the help of algorithms.
The testing and analysis will be discussed in the following
sections.

Algorithm 1 describes the text feature processing sub-
module. The function in each step is also described in detail

Lossreg = Loss + l1
∑

|x| + l2
∑

x2,

Social Network Analysis and Mining (2022) 12:43

1 3

Page 11 of 19 43

in Sect. 4.1.2. Here, the input is the text data from the train-
ing set. In step 1, we define a for loop to handle each user’s
text description separately. If the text description is empty,
it is replaced by a default string D in step 3, as explained in
Sect. 4.1.2. In step 5, the text sequence is filtered to remove
all hashtags, mentions, symbols, emoticons, stop words and
extra white spaces. The filtered text is then converted to low-
ercase in step 6. Now, we have the updated text data contain-
ing filtered text sequences. Step 8 creates an object of the
Keras tokenizer class, which is fit on the filtered text data in
step 9. Step 10 tokenizes the text using the tokenizer object
where each word in the text is integer encoded. Finally in
step 11, the tokenized text is padded to a finite length, L so
that all sequences have equal length. This returns the pro-
cessed text as output.

We describe the steps in creating the deep neural network
model in Algorithm 2. Here the inputs, D1 and D2 are the
dimensions of text feature and non-text feature, respectively.
Steps 1 and 2 define the input layers for text and non-text
features based on their respective dimensions. In step 3,
embedding layer is defined to embed the text feature using
GloVe. Step 4 presents the LSTM layers to process GloVe
embedded data. The concatenation layer in step 5 is to con-
catenate the non-text input, Ix with the LSTM output, Ll.
Step 6 defines the dropout and dense layers to process the

concatenated output. The output layer in step 7 is a dense
layer with sigmoid activation function. Step 8 creates the
model, and this is returned as the output. The detailed
architecture of the model is given in Fig. 4 and explained
in Sect. 4.2.

Algorithm 3 describes the whole DeeProBot framework.
The input is the training data that consists of numerical fea-
tures, binary features and text features along with the labels.
In step 1, the numerical data is standardized, and in step 2,
the binary data is encoded as described in Sect. 4.1.1. In
step 3, we get the processed text data following the steps in
Algorithm 1. In step 4, we use the processed numerical and
binary data to get the K selected subset of features based on
feature selection explained in Sect. 4.1.1. In steps 5 and 6,
we select the subset of numerical and binary data based on
the selected set of features. Steps 7 and 8 update the training
set based on the selected features and the processed text data.
Step 9 creates the model as described in Algorithm 2. Steps
10 and 11 compile the model and train the model and return
the trained model as output.

5 Experiments

This section describes the experimental setup, implementa-
tion details and result analysis of the work done. The DeeP-
roBot framework focuses on detecting bots in Twitter.

 Social Network Analysis and Mining (2022) 12:43

1 3

 43 Page 12 of 19

5.1 Hardware and software

We have implemented the whole framework on Intel Core
i7 CPU with 8 GB RAM under Windows 10 with 64-bit
Operating System. We used the Anaconda platform for
developing the work. Anaconda is an open-source platform
for developing data science and machine learning projects
using Python or R. It also supports different Python libraries
like NumPy, Pandas, Scikit-Learn, Keras etc. and various
Integrated Development Environments (IDEs) like ‘spy-
der’ ‘jupyter notebook’ etc. for code development. We have
implemented the application using Python 3.6. The deep
learning module is implemented using Keras Library with
TensorFlow as backend.

5.2 Parameter setting

The DeeProBot framework is a bot detection framework
based on DNN where the network learns from the profile
metadata information of Twitter account. Our training set
is obtained by merging five different datasets. The merged
training dataset has a balanced set of bots and humans
as shown in Fig. 5. The DNN model is trained using the
description feature and the ten numerical features obtained
by backward elimination feature selection, as explained in
Sect. 4.1.1. Other hyperparameters used in the model are
given in Table 6.

5.3 Evaluation

Throughout this section, we report the results obtained by
different evaluation strategies, such as how feature selec-
tion has helped in the better generalization of the model,
the effect of using description text as a feature to detect bots
etc. We also observe the impact of using the GLoVe word
embedding, to represent the description feature. Finally, we
compare our results with the baseline techniques in terms of
feature richness, hold-out test set performance, and cross-
domain performance.

Fig. 5 Bar plot showing the number of samples in each class of train-
ing dataset. This shows a balanced distribution of bots and human in
training set

Table 6 Hyperparameters for neural network model

Hyperparameters Value

Batch size 40
Learning rate 0.001
Optimizer Adam
Loss Binary cross entropy
L1_L2 Regularizer L1 = 0.01, L2 = 0.001
Dropout rate 0.1
Early stopping metric Validation loss
Early stopping patience 5

Social Network Analysis and Mining (2022) 12:43

1 3

Page 13 of 19 43

We use the Area Under Curve (AUC) of Receiver Opera-
tor Characteristic (ROC) as a metric for evaluating the per-
formance of the model. ROC is a probability curve that plots
the True Positive Rate (TPR) against False Positive Rate
(FPR) at various threshold values.

where TP , FP and FN stand for True Positive, False Positive
and False Negative counts, respectively. We have done anal-
ysis on a hold-out test set, and we have done cross-domain
performance analysis. Twenty percent of data from the train-
ing set is kept aside as a hold-out test set, and performance
analysis is done on that data. For cross-domain analysis, we
test the performance of the model on four test datasets that
are not used for training or validation.

5.3.1 Effect of feature selection

The current results are obtained using a reduced set of 11
features from profile metadata that includes ten numerical
features and the description text. Table 7 shows a compari-
son of the performance of the model with and without fea-
ture selection. Even though the AUC on the hold-out test set
has been reduced after the feature selection, the performance
on unseen datasets has been mostly improved. The perfor-
mance on the midterm-18 dataset has been improved by 10%
and that of gilani-17 has been improved by 5%, while the

TPR =
TP

TP + FN

FPR =
FP

FP + TN

hold-out test score and the performance of botwiki-verified
have been slightly decreased (only by 1- 2%). The raw set of
features were contributing to the slightly higher performance
of the model on botwiki-verified dataset. However, it has
been shown that, by backward elimination feature selection,
we can reduce the dimensionality of the feature set and sig-
nificantly improve the performance of the model on majority
of the datasets.

5.3.2 Effect of adding description as a feature

As per our knowledge, the previous works for bot detection
simply excluded the description text while considering some
of its statistical measures like length and entropy as features.
The description field usually has the content that depicts the
behavior of the account owner. Using the description text
for bot detection is not much analyzed in the literature. We
have done a study on the description field to check how it
can contribute to the bot detection framework.

In Twitter, the user provides his/her bio in the description
field during account creation. This field can be left blank too.
Figure 6 shows the proportion of empty description text in
both human and bot classes. Only 10 percentage of human
class has an empty description field, whereas the field is
empty for approximately 50 percentage of bots. We also
analyzed the most frequent words appearing in the descrip-
tion text for both human and bot classes. To do the analysis,
we removed the stop words from the description text that
appears frequently but provide less information. Figure 7
shows the top 10 common words along with their frequency
counts found in both human and bot classes. It can be seen
that the top 10 common words and their frequencies are

Table 7 Result analysis based
on feature selection

Hold-out set
(AUC)

Botwiki-verified
(AUC)

Midterm-18
(AUC)

Cresci-rtbust
(AUC)

Gilani-17
(AUC)

Without feature selection 0.98 0.99 0.86 0.69 0.62
With feature selection 0.97 0.97 0.96 0.72 0.67

Fig. 6 Proportion of empty
description field in both human
and bot classes. a Shows the
description field status of
human class where only 9.7% of
users have an empty description
field. b Shows the status of bot
class where almost half of the
users have an empty descrip-
tion text

 Social Network Analysis and Mining (2022) 12:43

1 3

 43 Page 14 of 19

significantly different for both classes. This clearly states
that the inherent behavior in description text can definitely
contribute to distinguish between human and bot classes.

We utilized the potential of LSTM cells to process the
description text. This method has been adopted in process-
ing tweet texts in other bot detection works. We also analyze
how adding the description as a feature and its embedding
strategy affects the results of DeeProBot. To get the model
performance without description feature, we only used the
dense layers in the model to process the numerical fea-
tures. Table 8 shows it clearly that the performance of the
model on unseen datasets, consistently improved after add-
ing the description feature. Even though it does not show
any improvement on the hold-out test set, it can improve
the generalization capability of the model. After adding the
description text as a feature, we analyzed the performance of
the model without GLoVe embedding. In the model without
GLoVe embedding, the embedding layer is initialized with
random weight values. It will learn an embedding for all
the integer encoded words in the training set when model
training is done. The results presented in Table 8 show the
effect of using GLoVe pre-trained word embedding weights
instead of training the embedding weights from randomly
initialized values. We used the GLoVe model for Twitter
data that was trained on 27 billion unique tokens extracted

from a set of 2 billion tweets. It can be seen from the results
that training our own embedding layer has degraded the per-
formance as the network failed to learn the embedding from
our limited set of vocabulary. Also, we tested with all the
four GLoVe models provided and the best performance was
obtained by using the 50-dimensional model.

5.3.3 Comparison with other baselines

Here, we compare the performance of our model with the
work by Yang et al. (2020b) and other machine learning
techniques. In the work by Yang et al. (2020b), they pro-
posed a data selection method to find the best subset of
data for training, to get the best generalizable model. The
results are shown in Table 9. They have used Random For-
est for the classification task and trained the model with
different combinations of training datasets. They found
the best combination of training dataset based on cross-
validation and cross-domain performance. We adopted
their best-performing training dataset combination for our
work too. We reproduced their results by using the same
dataset and the same set of features with Random For-
est classifier. The AUC values obtained are different from
those mentioned in the base paper. This can be due to the

Fig. 7 a Shows the top 10 common words in Bot Class. b Shows the top 10 common words in Human Class. The words and their frequencies are
entirely different for both classes

Table 8 Result analysis of
adding description text as a
feature

Hold-out
set (AUC)

Botwiki-
verified
(AUC)

Mid-
term-18
(AUC)

Cresci-
rtbust
(AUC)

Gilani-17
(AUC)

Without description 0.97 0.95 0.94 0.66 0.63
Without GLoVe embedding 0.93 0.78 0.84 0.68 0.60
With 25D GLoVe embedding 0.96 0.95 0.93 0.69 0.60
With 50D GLoVe embedding (DeeProBot) 0.97 0.97 0.96 0.72 0.67
With 100D GLoVe embedding 0.97 0.97 0.94 0.71 0.64
With 200D GLoVe embedding 0.96 0.96 0.94 0.66 0.67

Social Network Analysis and Mining (2022) 12:43

1 3

Page 15 of 19 43

changes in the updated database files from the repository.
We also extracted the data of varol-icwsm through Twitter
API. This data may also have undergone changes from that
used in their work. Based on the results we got, we can say
that the feature selection technique along with data selec-
tion can improve the generalization ability of the model.
Even though the performance of the DeeProBot model
is slightly lower (only 1% reduction) on the hold-out set
and lower by 2% in the performance of gilani-17 dataset,
the proposed model achieves significantly higher AUC in
cresci-rtbust dataset (by 24% improvement) and 3% higher
AUC in botwiki-verified dataset. We also tested our data
with other machine learning techniques like Adaboost,
Gated Recurring Unit (GRU) and Convolutional Neural
Networks (CNN). Even though Adaboost is showing a bet-
ter performance with the hold-out test set, its performance
drastically decreases for cross-domain test datasets. GRU
and CNN networks are also showing poor performance
compared to the proposed framework. Based on these
comparisons, it is evident that the DeeProBot framework
shows an overall better cross-domain performance.

5.3.4 Effect of overfitting reduction mechanisms

Figure 8 shows the performance of the proposed model
based on the training history of the model. Here, we plot the
training loss versus validation loss for 25 epochs. The plot on
the left shows the performance of the model without drop-
out and activity regularizer. It can be seen that the model
fails to fit properly without these strategies. Even though the
training loss decreases per epoch, the validation loss tends
to increase. This means that the model is overfitting with
the training data and hence reduces the generalizability of
the model. The plot in the right shows the performance of
the model with dropout and activity regularizer. Here, we
can see that the overfitting problem has been controlled by
introducing dropout and regularization. The model sustains a
good fit performance until a certain number of epochs. Even
though the model tends to overfit after almost 15 epochs,
the training process will be accordingly halted by the early
stopping strategy. This shows that introducing regularizers,
dropout and early stopping helped us in getting the best gen-
eralizable model.

Table 9 Comparison of DeeProBot framework with other methods based on AUC

Method Feature set Hold-out set
(AUC)

Botwiki-verified
(AUC)

Midterm-18
(AUC)

Cresci-rtbust
(AUC)

Gilani-17
(AUC)

Yang KC et al.(Yang
et al. 2020b)

20 features based on user profile 0.98 0.94 0.96 0.48 0.69

AdaBoost 11 features based on user profile 0.99 0.82 0.95 0.42 0.59
GRU 11 features based on user profile 0.96 0.90 0.84 0.61 0.61
CNN 11 features based on user profile 0.95 0.82 0.83 0.63 0.66
DeeProBot 11 features based on user profile 0.97 0.97 0.96 0.72 0.67

Fig. 8 Training loss versus validation loss based on training history
for 25 epochs. a Learning curve for the model without dropout and
activity regularizer. The model fails to fit without these regularization

strategies b Learning curve for model with dropout and activity regu-
larizer shows the model fits its best through initial epochs

 Social Network Analysis and Mining (2022) 12:43

1 3

 43 Page 16 of 19

5.3.5 ROC curve analysis on test data

Figure 9 shows the ROC-AUC curves for the test datasets.
Considering the overall performance across the four different
test datasets, the model has performed well with botwiki-
verified and midterm-18 datasets. The performance is low
for cresci-rtbust and gilani-17 datasets. In the dataset analy-
sis explained in Sect. 3.1, these two datasets were found to
be the most complicated datasets in terms of separability.
cresci-rtbust dataset is annotated based on group activity
and retweet behavior. Our work tries to find individual bot
accounts and these types of bots may not appear suspicious
when considered individually. This led to the lower AUC
values for cresci-rtbust. gilani-17 dataset includes sophis-
ticated bots from different categories annotated by human.
One of the reasons for a lower AUC for gilani-17 is the
absence of such types of bots in the training dataset. Sec-
ondly, we assume that the selected features for our work
may not be sufficient to distinguish bot accounts from this
dataset and may require some other high-level features to
learn the peculiar bot behavior. Third, gilani-17 dataset is
annotated manually. Annotating such sophisticated data is a
difficult task for human and are prone to error (Nasim et al.
2018). A study by Madahali and Hall (2020) shows that both

bots and human in gilani-17 have similar and unexpected
behavior. Additionally, it is to be noted that, even the works
that consider content-based and network-based features also
perform comparatively lower on these two datasets (Sayya-
diharikandeh et al. 2020). The performance of a supervised
machine learning model largely depends on the data it is
trained on. However, we can say that, by using the deep
learning approach, we are able to improve the performance

Fig. 9 ROC curves for the performance of DeeProBot on test datasets. a ROC of botwiki-verified and b ROC of midterm-18 show superior per-
formance while c ROC of cresci-rtbust and d ROC of gilani-17 which are separably complicated datasets show a lower performance

Fig. 10 F1-scores for different threshold values

Social Network Analysis and Mining (2022) 12:43

1 3

Page 17 of 19 43

and generalizability of the model even by using a reduced
set of features.

5.3.6 Performance analysis of the model

The model achieves an accuracy of 0.92 and an F1-score
of 0.83 on the hold-out dataset. A fine-tuned selection of
threshold maximizes the F1-score. F1-scores for differ-
ent threshold values are given in Fig. 10. The threshold of
0.34 gives an F1-score of 0.93. The results open a scope for
improvement in its accuracy value.

A further analysis on the classified data is shown in
Fig. 11. Based on the predictions, we divided the whole
test data into four groups. (a) Group of bot accounts that
are predicted correctly as bots (TrueBotPredictedBot), (b)
Group of bots that are predicted as human (TrueBotPredict-
edHuman), (c) Group of human accounts predicted correctly
as human (TrueHumanPredictedHuman) and (d) Group of
human accounts predicted as bot (TrueHumanPredictedBot).
Here, groups ‘b’ and ‘d’ represent the misclassified data. It
can be seen that a larger statuses_count or favourites_count
favor the prediction of human. As a result, bots with higher
counts for these features are misclassified. Looking back to
our training data, it lacks a good representation of bots with
higher counts for these features. In training data, the average
statuses_count for human is 18145, whereas that of bot is
2784. A better representation of all types of bots in the train-
ing dataset can further improve the accuracy of the model.
We also did an example-based analysis on the description
feature of the classified data. Examples of description feature
from correctly classified data include:

Human: ‘A senior accounting taxation professional
inspired chief accountant.

Bot: ‘Internet marketing help succeed making money
online.’

Considering the above examples, the model could dis-
tinguish an individual-centered description from that of a
promotional description. Analyzing a misclassified sam-
ple, where a bot is classified as human, has the following
description:

‘I’m poor bot I need sympathy.’

Here, even though description text is individual-centered,
the semantics of the description clearly states that it is a
bot. However, the model failed to capture it and wrongly
classified the sample as human. This leaves the scope for a
better embedding of description text for a better classifica-
tion. Another potential limitation of the model is regard-
ing its usability in multilingual settings. However currently
our work focuses on analyzing the significance of including
description as a feature to detect bots. Using a multilingual
framework for text feature processing can take the work to
the next level.

6 Conclusion

This paper has proposed a novel framework, DeeProBot,
which uses deep learning technique to detect bots from the
user profile metadata-based features from Twitter. Using
only the profile-based features including the description
text to detect bots is a novel idea put forward in this work.
The proposed framework consists of preparing the training
and test datasets, feature engineering and the deep neural
network design for detecting bots. Using the description text
improved the cross-domain performance of the model across
the test datasets. We have used the backward elimination

Fig. 11 Average feature values across groups of correctly classified and misclassified test data

 Social Network Analysis and Mining (2022) 12:43

1 3

 43 Page 18 of 19

feature selection in selecting the best subset of features that
make the model to perform better with a lower-dimensional
feature set. Also, embedding the text feature using GLoVe
helped in better learning from the feature. DeeProBot uses
a hybrid DNN model to detect bots, where the description
feature was learned using the LSTM units and the rest of
the features were learned using the dense layers. The gen-
eralizability of the model is preserved by adding activity
regularizer to LSTM layers and by adding dropout layers in
between the dense layers. Further, early stopping helps in
stopping the training process when the model starts overfit-
ting. We evaluated the performance of the model against
a 20% hold-out subset of the same dataset used for train-
ing and we evaluated the cross-domain performance of the
model by testing the model on four separate test datasets.
DeeProBot could detect bots with an AUC of 0.97 on the
hold-out test set. Also, the model obtained a better generali-
zation than that of baseline with a reduced set of features.

One of our plans for future work involves testing the
detection of bots with a real-time stream of Twitter data
which also gives us an analysis on the scalability of DeeP-
roBot. Also, bots with new behavioral patterns are evolving
day by day, making it necessary to come up with a model
that can capture these changing patterns. As a future work,
we plan to design the model so as to learn these behavioral
patterns. Furthermore, it remains to be seen whether with an
extra overload of extracting other types of features like con-
tent-based and interaction-based features, the performance
of the model can be improved.

Funding This work was funded by Zayed University under the research
grant RIF R20132.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abu-El-Rub N, Mueen A (2019) Botcamp: bot-driven interactions
in social campaigns. In: The World Wide Web Conference, pp
2529–2535

Alothali E, Zaki N, Mohamed EA, Alashwal H (2018) Detecting
social bots on twitter: a literature review. In: 2018 International

Conference on Innovations in Information Technology (IIT),
IEEE, pp 175–180

Braker C, Shiaeles S, Bendiab G et al (2020) BotSpot: Deep learning
classification of bot accounts within twitter. In: Olga G, Sergey
A et al (eds) Internet of things, smart spaces, and next generation
networks and systems. Springer, Cham, pp 165–175

Chang H-CH, Chen E, Zhang M, et al (2021) Social bots and social
media manipulation in 2020: The Year in Review.arXiv: 21020
8436 arXiv preprint arXiv:210208436

Chollet F (2016) Using pre-trained word embeddings in a Keras model.
In: The Keras Blog. https:// blog. keras. io/ using- pre- train ed- word-
embed dings- in-a- keras- model. html

Corbin H (2021) Twitter bots are a major source of climate disinforma-
tion. https:// www. scien tific ameri can. com/ artic le/ twitt er- bots- are-
a- major- source- of- clima te- disin forma tion

Cresci S (2020) A decade of social bot detection. Commun ACM
63:72–83

Cresci S, Di Pietro R, Petrocchi M et al (2017a) Social fingerprinting:
detection of spambot groups through DNA-inspired behavioral
modeling. IEEE Trans Dependable Secur Comput 15:561–576

Cresci S, Di Pietro R, Petrocchi M et al (2017b) The paradigm-shift
of social spambots: evidence, theories, and tools for the arms
race. In: Proceedings of the 26th international conference on
world wide web companion, pp 963–972

Daouadi KE, Rebaï RZ, Amous I (2020) Real-time bot detection from
twitter using the twitterbot+ framework. J UCS 26:496–507

Dash M, Liu H (2003) Consistency-based search in feature selection.
Artif Intell 151:155–176

Dorri A, Abadi M, Dadfarnia M (2018) SocialBotHunter: botnet
detection in Twitter-like social networking services using semi-
supervised collective classification. In: 2018 IEEE 16th Intl
Conf on dependable, autonomic and secure computing, 16th
Intl Conf on pervasive intelligence and computing, 4th Intl Conf
on big data intelligence and computing and cyber science and
technology congress (DASC/PiCom/DataCom/CyberSciTech),
IEEE, pp 496–503

Dukić D, Keča D, Stipić D (2020) Are you human? Detecting bots
on twitter using BERT. In: 2020 IEEE 7th international confer-
ence on data science and advanced analytics (DSAA). IEEE,
pp 631–636

Ferrara E, Varol O, Davis C et al (2016) The rise of social bots.
Commun ACM 59:96–104

Ferri FJ, Pudil P, Hatef M, Kittler J (1994) Comparative study of
techniques for large-scale feature selection. Machine Intelli-
gence and Pattern Recognition, vol 16. Elsevier, North Hol-
land, pp 403–413

Gilani Z, Farahbakhsh R, Tyson G, et al (2017) Of bots and humans
(on twitter). In: Proceedings of the 2017 IEEE/ACM international
conference on advances in social networks analysis and mining
2017, pp 349–354

Hall MA (1999) Correlation-based feature selection for machine
learning

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural
Comput 9:1735–1780

Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for
nonorthogonal problems. Technometrics 12:55–67

Inuwa-Dutse I, Liptrott M, Korkontzelos I (2018) Detection of spam-
posting accounts on twitter. Neurocomputing 315:496–511

Kemp S (2021) Digital 2021: The latest insights into the ‘state of digi-
tal’. https:// weare social. com/ blog/ 2021/ 01/ digit al- 2021- the- latest-
insig hts- into- the- state- of- digit al.

Khalid S, Khalil T, Nasreen S (2014) A survey of feature selection and
feature extraction techniques in machine learning. In: 2014 sci-
ence and information conference, IEEE, pp 372–378

Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif
Intell 97:273–324

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/210208436
http://arxiv.org/abs/210208436
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
https://www.scientificamerican.com/article/twitter-bots-are-a-major-source-of-climate-disinformation
https://www.scientificamerican.com/article/twitter-bots-are-a-major-source-of-climate-disinformation
https://wearesocial.com/blog/2021/01/digital-2021-the-latest-insights-into-the-state-of-digital
https://wearesocial.com/blog/2021/01/digital-2021-the-latest-insights-into-the-state-of-digital

Social Network Analysis and Mining (2022) 12:43

1 3

Page 19 of 19 43

Kondeti P, Yerramreddy LP, Pradhan A, Swain G (2021) Fake account
detection using machine learning. In: Suma V, Bouhmala N et al
(eds) Evolutionary computing and mobile sustainable networks.
Springer, pp 791–802

Kudugunta S, Ferrara E (2018) Deep neural networks for bot detection.
Inf Sci 467:312–322

Larson HJ (2020) Stuck: how vaccine rumors start–and why they don’t
go away. Oxford University Press, Oxford

Madahali L, Hall M (2020) Application of the Benford’s law to Social
bots and Information Operations activities. In: 2020 international
conference on cyber situational awareness, data analytics and
assessment (CyberSA), IEEE, pp 1–8

Mazza M, Cresci S, Avvenuti M et al (2019) Rtbust: exploiting tempo-
ral patterns for botnet detection on twitter. In: Proceedings of the
10th ACM conference on web science, pp 183–192

Mou G, Lee K (2020) Malicious bot detection in online social net-
works: arming handcrafted features with deep learning. In: Samin
A, Kalina B et al (eds) International conference on social infor-
matics, Springer, Cham, pp 220–236

Nasim M, Nguyen A, Lothian N et al (2018) Real-time detection of
content polluters in partially observable twitter networks. In:
Companion proceedings of the the web conference, pp 1331–1339

Pennington J, Socher R, Manning CD (2014) Glove: Global vectors
for word representation. In: Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP),
pp 1532–1543

Prechelt L (1998) Early stopping-but when? In: Neural networks: tricks
of the trade, Springer, pp 55–69

Rauchfleisch A, Kaiser J (2020) The False positive problem of
automatic bot detection in social science research. PLoS ONE
15(10):e0241045

Sayyadiharikandeh M, Varol O, Yang K-C et al (2020) Detection of
novel social bots by ensembles of specialized classifiers. In: Pro-
ceedings of the 29th ACM international conference on informa-
tion & knowledge management. pp 2725–2732

Shukla H, Jagtap N, Patil B (2021) Enhanced twitter bot detection
using ensemble machine learning. In: 2021 6th international con-
ference on inventive computation technologies (ICICT), IEEE,
pp 930–936

Srijith S (2020) Efficient tweet preprocessing. https:// www. kaggle. com/
sreej iths0/ effic ient- tweet- prepr ocess ing

Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple
way to prevent neural networks from overfitting. J Mach Learn
Res 15:1929–1958

Stefan W, Solomon M, Aaron S et al (2018) Bots in the twittersphere.
https:// www. pewre search. org/ inter net/ 2018/ 04/ 09/ bots- in- the-
twitt ersph ere/

Tankovska H (2021) Number of monthly active twitter users worldwide
from 1st quarter 2010 to 1st quarter 2019. https:// www. stati sta.
com/ stati stics/ 282087/ number- of- month ly- active- twitt er- users.

Tibshirani R (1996) Regression shrinkage and selection via the lasso.
J Roy Stat Soc: Ser B (methodol) 58:267–288

Varol O, Ferrara E, Davis C et al (2017) Online human-bot interactions:
detection, estimation, and characterization. In: Proceedings of the
international AAAI conference on web and social media

Virginia AY (2020) Nearly half of the twitter accounts discussing
“reopening america” may be bots. https:// www. cs. cmu. edu/
news/ nearly- half- twitt er- accou nts- discu ssing- reope ning- ameri
ca- may- be- bots.

Wang J, Peng B, Zhang X (2018) Using a stacked residual LSTM model
for sentiment intensity prediction. Neurocomputing 322:93–101

Wang G, Mohanlal M, Wilson C et al (2012) Social turing tests:
Crowdsourcing sybil detection, arXiv preprint arXiv:12053856

Wang G, Wang T, Zheng H, Zhao BY (2014) Man vs machine: practi-
cal adversarial detection of malicious crowdsourcing workers. In:
23rd {USENIX} security symposium ({USENIX} security 14),
pp 239–254

Wu Y, Fang Y, Shang S et al (2021) A novel framework for detecting
social bots with deep neural networks and active learning. Know-
Based Syst 211:106525

Xue B, Zhang M, Browne WN (2015) A comprehensive comparison
on evolutionary feature selection approaches to classification. Int
J Comput Intell Appl 14:1550008

Yang K-C, Varol O, Davis CA et al (2019) Arming the public with
artificial intelligence to counter social bots. Hum Behav Emerg
Technol 1:48–61

Yang K-C, Torres-Lugo C, Menczer F (2020a) Prevalence of low-
credibility information on twitter during the covid-19 outbreak,
arXiv preprint arXiv:200414484

Yang K-C, Varol O, Hui P-M, Menczer F (2020b) Scalable and general-
izable social bot detection through data selection. In: Proceedings
of the AAAI conference on artificial intelligence, pp 1096–1103

Yao Y, Rosasco L, Caponnetto A (2007) On early stopping in gradient
descent learning. Constr Approx 26:289–315

Yeo I-K, Johnson RA (2000) A new family of power transformations to
improve normality or symmetry. Biometrika 87:954–959

Yilmaz S, Toklu S (2020) A deep learning analysis on question clas-
sification task using Word2vec representations. Neural Comput
Appl 32(7):2909–2928

Zahra AA, Widyawan W, Fauziati S (2020) Development of bot detec-
tion applications on twitter social media using machine learning
with a random forest classifier algorithm. IJITEE (int J Inf Tech-
nol Elect Eng) 4:66–73

Zou H, Hastie T (2005) Regularization and variable selection via the
elastic net. J R Stat Soc: Ser B (stat Methodol) 67:301–320

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.kaggle.com/sreejiths0/efficient-tweet-preprocessing
https://www.kaggle.com/sreejiths0/efficient-tweet-preprocessing
https://www.pewresearch.org/internet/2018/04/09/bots-in-the-twittersphere/
https://www.pewresearch.org/internet/2018/04/09/bots-in-the-twittersphere/
https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users
https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users
https://www.cs.cmu.edu/news/nearly-half-twitter-accounts-discussing-reopening-america-may-be-bots
https://www.cs.cmu.edu/news/nearly-half-twitter-accounts-discussing-reopening-america-may-be-bots
https://www.cs.cmu.edu/news/nearly-half-twitter-accounts-discussing-reopening-america-may-be-bots

	DeeProBot: a hybrid deep neural network model for social bot detection based on user profile data
	Recommended Citation

	DeeProBot: a hybrid deep neural network model for social bot detection based on user profile data
	Abstract
	1 Introduction
	2 Related work
	3 Datasets
	3.1 Dataset separability

	4 Proposed work
	4.1 Feature engineering
	4.1.1 Numerical and binary feature preparation
	4.1.1.1 Numerical feature processing
	4.1.1.2 Binary feature processing
	4.1.1.3 Feature selection

	4.1.2 Text feature preparation
	4.1.2.1 Glove: Global vectors for word representation

	4.2 Model architecture
	4.2.1 Strategies for improving generalizability

	4.3 DeeProBot algoithms

	5 Experiments
	5.1 Hardware and software
	5.2 Parameter setting
	5.3 Evaluation
	5.3.1 Effect of feature selection
	5.3.2 Effect of adding description as a feature
	5.3.3 Comparison with other baselines
	5.3.4 Effect of overfitting reduction mechanisms
	5.3.5 ROC curve analysis on test data
	5.3.6 Performance analysis of the model

	6 Conclusion
	References

