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Abstract
Use of online social networks (OSNs) undoubtedly brings the world closer. OSNs like Twitter provide a space for express-
ing one’s opinions in a public platform. This great potential is misused by the creation of bot accounts, which spread fake 
news and manipulate opinions. Hence, distinguishing genuine human accounts from bot accounts has become a pressing 
issue for researchers. In this paper, we propose a framework based on deep learning to classify Twitter accounts as either 
‘human’ or ‘bot.’ We use the information from user profile metadata of the Twitter account like description, follower count 
and tweet count. We name the framework ‘DeeProBot,’ which stands for Deep Profile-based Bot detection framework. The 
raw text from the description field of the Twitter account is also considered a feature for training the model by embedding 
the raw text using pre-trained Global Vectors (GLoVe) for word representation. Using only the user profile-based features 
considerably reduces the feature engineering overhead compared with that of user timeline-based features like user tweets and 
retweets. DeeProBot handles mixed types of features including numerical, binary, and text data, making the model hybrid. 
The network is designed with long short-term memory (LSTM) units and dense layers to accept and process the mixed input 
types. The proposed model is evaluated on a collection of publicly available labeled datasets. We have designed the model 
to make it generalizable across different datasets. The model is evaluated using two ways: testing on a hold-out set of the 
same dataset; and training with one dataset and testing with a different dataset. With these experiments, the proposed model 
achieved AUC as high as 0.97 with a selected set of features.

Keywords Social bot detection · Twitter · Deep learning · User profile metadata · LSTM · GLoVe embedding

1 Introduction

The rise of technology, mobile smart devices and high-speed 
internet have increased the use of OSNs. As per the study by 
Kemp (2021), there are 4.2 billion social media users around 
the world, which is more than 53 percent of the world’s total 
population. Facebook, which is the biggest social media net-
work worldwide, has 2.8 billion monthly active users, and 
Twitter has 330 million monthly active users (Tankovska 
2021). Twitter provides an open platform to express opinions 
publicly that gives Twitter an extra potential to influence the 

public. The influence of OSNs on the public encouraged the 
emergence of machine accounts or social bots.

As per Ferrara et al. (2016), a social bot is a computer 
algorithm that automatically produces content and inter-
acts with humans on social media, trying to emulate and 
possibly alter their behavior. As per Varol et al. (2017), up 
to 15% of Twitter users are social bots. Recently, a study 
by Carnegie Mellon University researchers has shown that 
among 200 million tweets discussing coronavirus, 82% of 
the influential re-tweeters were bots (Virginia 2020). Also, in 
the study by Pew Research Center, it has been estimated that 
two thirds of tweeted links to popular websites are posted by 
automated accounts and not by humans. As per their study, 
bots shared 66% of all tweeted links to popular websites 
(Stefan et al. 2018). The statistic in this study is given in 
Fig. 1. Social bots have a positive impact when they act 
as helpers in aggregating and delivering news feeds, or as 
automatic responders for customer care. But they have also 
been misused to spread rumors and fake news to mislead 
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the public. For example, in Mumbai, rumors were spread 
in social media that the vaccines were a plot by the govern-
ment to sterilize Muslim children that led to only 50% of 
those who were expected to be vaccinated to actually get 
the vaccine (Larson 2020). Work by Chang et al. (2021) 
studied the effect of social bots and social media manipula-
tion around two major events of 2020, namely the 2020 US 
Presidential Election and Covid-19 pandemic. It has been 
found that bots generated much higher volumes of election-
related tweets per capita and also tweet supporting a spe-
cific political line. Also, social bots are found responsible for 
posting and amplifying less credible information regarding 
Covid-19 pandemic (Yang et al. 2020a). Social bots are also 
a major source of climate change disinformation that might 
drain support from policies to address rising temperatures 
(Corbin 2021).

There are several types of bots posing different behav-
iors. For example, traditional spambots generate a lot of 
content-promoting products. Social spambots tend to attack 
or support political candidates, and fake followers tend to 
have aggressive following patterns (Sayyadiharikandeh et al. 
2020). The different behavioral patterns of bots make it dif-
ficult to detect, if we look into it through the same lens. 
Most of the works for detecting bots concentrate on specific 
behavioral patterns that make it difficult to detect all types of 
bots. For real-time bot detection, a generalizable bot detec-
tion method is required.

In this work, we are proposing a novel framework to 
detect bots in Twitter. The deep neural network-based frame-
work, DeeProBot, is designed to make it generalizable to 
detect bots across unseen datasets. Only the user profile 
information from the Twitter account is used for detecting 
bots. These are the features that we get from the user object 
of Twitter Application Programming Interface (Twitter 
API). These features include the username, screen name, 

tweet count, followers count, friends count, listed count, 
user created date, description, location, url, verified flag, 
etc. Detecting bots using just the profile information instead 
of going deep into the content created by the user reduces 
the overhead of extra feature extraction and processing. As 
we discussed, bots evolve over time. A traditional bot reveals 
much less personal information through the profile. They 
have random names for the profile with missing details. At 
the same time, recently evolved sophisticated bots have their 
profile similar to legitimate human-operated accounts. In 
such a scenario, we put forward a novel idea of using the 
text in the Twitter account profile description as a feature, 
which is usually avoided in relevant works. The description 
text always contains useful information in detecting whether 
an account is a bot or a human. This led to the design of a 
deep neural network-based architecture where the descrip-
tion text is embedded using GloVe (Pennington et al. 2014) 
pre-trained word embedding weights and processed using 
LSTM units. Other features like followers count and fol-
lowing count are equally important because bots show the 
pattern of following large numbers of accounts while having 
a smaller number of followers. To capture all these features, 
we developed a hybrid architecture to process both numeri-
cal and text features. The major contributions of this work 
are as follows:

• We have designed and developed DeeProBot, a general-
izable deep neural network-based framework that uses 
profile metadata information for detecting bots in Twitter 
achieving better performance compared to state-of-the-
art methods.

• The proposed framework utilizes the potential of the pro-
file description text as a feature and GloVe word embed-
ding in detecting bots.

• We analyze the effect of feature selection in the model 
performance.

• We have proposed a hybrid design of deep neural net-
work model using LSTM and dense layers to handle 
mixed input types.

• We have performed cross-domain performance evalua-
tion of DeeProBot by training the model on a set of het-
erogeneous Twitter datasets and testing the performance 
of the model on four other heterogeneous datasets not 
used in training.

The rest of the paper is organized as follows. We dis-
cuss the research works related to bot detection in Sect. 2. 
Section 3 provides details of the datasets used. Section 4 
describes the DeeProBot framework, including the feature 
engineering module, model architecture and algorithms 
explaining the framework. The experiments and evaluations 
are given in Sect. 5. Finally, Sect. 6 concludes the work and 
discusses the future research directions.

Fig. 1  Proportion of tweeted links to popular websites by bots and 
human (Stefan et al. 2018)
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2  Related work

The bot detection techniques in OSNs can be broadly classi-
fied as (a) Graph-based methods (b) Crowdsourcing methods 
and (c) Machine Learning methods (Alothali et al. 2018). 
The graph-based methods capture the network communi-
cation patterns of the users to distinguish them as genuine 
or bot (Dorri et al. 2018; Abu-El-Rub and Mueen 2019). 
However, graph-based methods mostly depend on assump-
tions. The computational cost can also be high based on 
the size of the network. In crowdsourcing methods, human 
effort and expertise are utilized in annotating user accounts 
as genuine or bot (Wang et al. 2012, 2014). This method is 
time-consuming and is prone to human error as it involves 
human intelligence. In the literature, researchers have mostly 
used machine learning methods for bot detection. Machine 
learning methods involve learning from data. Here, features 
are extracted from Twitter user accounts, which represent 
the behavioral patterns of the users. These features are fed to 
the network to classify them as bot or human. In this work, 
we are using a machine learning-based model to detect bots.

A user’s profile, content and temporal features can be 
extracted from Twitter (Zahra et al. 2020; Shukla et al. 
2021). In Sayyadiharikandeh et al. (2020), the diversities 
of different types of bots are handled by training classifiers 
specialized for each class of bots, and a bot-score is cal-
culated for each classifier. The classifier that outputs the 
highest bot-score determines the corresponding class. They 
have also done a cross-domain analysis of their classifier by 
testing it on separate datasets to demonstrate the generaliz-
ability of the model. They have used a high-dimensional 
feature set consisting of 1200 features from six categories: 
metadata from accounts and friends, retweet/mention net-
works, temporal features, content information, as well as 
sentiment. Considering a rich feature set that includes an 
account’s actions and social connections improves accuracy 
but reduces scalability (Yang et al. 2020b). In the work by 
Yang et al. (2020b), only the profile information of the user 
account is considered for training a Random Forest classi-
fier. They proposed a scalable and generalizable bot detec-
tion method and used a data selection criterion to find the 
best model. Most of the methods that use only the metadata 
information from the user profile are trained using Random 
Forest or Adaboost classifiers (Daouadi et al. 2020; Kondeti 
et al. 2021). Deep learning techniques are not much explored 
when using these sets of features.

Deep learning techniques for bot detection usually use 
content information like tweet text along with temporal 
data or a combination of all types of features from Twit-
ter account. In the work by Wu et al. (2021), the detection 
of social bots from Sina Weibo, one of the most popular 
Chinese OSNs in the world, uses 30 features from four 

categories, namely metadata-based, interaction-based, con-
tent-based, and timing-based. These are then fed to a deep 
neural network (DNN) model consisting of a residual net-
work (ResNet), a bidirectional gated recurrent unit (BiGRU), 
and an attention mechanism. They obtained an accuracy of 
0.98. Since it has been developed for Sino Weibo, the perfor-
mance of the same for Twitter data needs to be checked. The 
work by Braker et al. (2020) uses a multi-layer perceptron 
(MLP) network to detect bots in Twitter which is trained 
on a lower-dimensional feature set extracted from account 
metadata and tweet metadata. They obtained an accuracy 
of 0.92 and a lower recall percentage leaving scope for 
improvement. The work presented in Kudugunta and Ferrara 
(2018) used a contextual-LSTM network to learn the tweet 
text along with the metadata features to detect bots. They 
have not considered the description feature along with the 
metadata features and also have not tested the cross-domain 
performance of the model on separate datasets. Similarly, 
there are several deep learning works that use the tweet text 
for detecting bots in Twitter (Dukić et al. 2020; Mou and Lee 
2020). In this work, we are not focusing on tweet text. In a 
study by Cresci (2020), unsupervised approaches have been 
found effective in detecting groups of coordinated bots. But 
such methods are slow as there is a need to consider a group 
of accounts for detecting coordinated activity. Currently, this 
is not under our scope of work as we are detecting bots based 
on individual account features.

To the best of our knowledge, there is no deep learning 
approach that considers only the profile information for bot 
detection. The proposed work uses data extracted exclusively 
from the profile metadata of Twitter account. We use the 
profile information in a comprehensive way that includes 
numerical, categorical and text features from the user profile. 
Additionally, better insights on the model performance could 
be provided, if researchers analyze the performance of their 
model on datasets that are different from the training dataset 
in terms of data crawling or annotation strategies (Sayya-
diharikandeh et al. 2020; Yang et al. 2020b). Rauchfleisch 
and Kaiser (2020) has studied that bot detection technique 
like botometer gives imprecise results on bot datasets with 
bot behavior different from the ones it is trained for. So, a 
cross-domain analysis gives a better understanding on the 
generalizability of the detection framework which is not 
presented for other deep learning works doing bot detection.

3  Datasets

We used the datasets provided by the public bot repository 
of the botometer.1 Bot repository is a centralized place to 
share annotated datasets of Twitter social bots. The list of 

1 https:// botom eter. osome. iu. edu/ bot- repos itory

https://botometer.osome.iu.edu/bot-repository
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the datasets that we used, with a brief description, is given in 
Table 1. The training set is formed by merging the datasets 
specified under training set. A combination of heterogenous 
datasets as the training data helps in including bots evolved 
at different time periods and with different behavioral pat-
terns. Using such a training set makes the model generaliz-
able to detect different types of bots. This combination is 
selected based on the work by (Yang et al. 2020b). They 
have employed a data selection technique to find the best 
subset of data that creates a model, which performs bet-
ter in terms of accuracy and generalizability. midterm-18, 
cresci-rtbust and gilani-17 are hold-out datasets considered 
separately for cross-domain testing. Another test dataset is 
formed by combining botwiki and a subset of verified to 
make it a balanced dataset of bots and humans. Here, each 
dataset is labeled using different strategies and methods. 
Also, they are collected at different time frames. These fac-
tors make the datasets characteristically different from each 
other as studied in (Yang et al. 2020b).

3.1  Dataset separability

In this section, we analyze the separability of the test data-
sets with respect to a given set of features to demonstrate 
the difficulty in classifying the dataset into different classes 
(here the classes are ‘bot’ and ‘human’). We applied Princi-
pal Component Analysis (PCA) on the numerical features of 
the four test datasets. PCA is used for dimensionality reduc-
tion, where a higher-dimensional feature set is reduced to 
a two-dimensional feature set. This can be plotted in a 2D 
plane. As a preprocessing step, power fit transform is applied 
to the numerical features before applying PCA to deal with 
the skewness in the data (Yeo and Johnson 2000). Figure 2 

shows the plot obtained after applying PCA. The separability 
decreases from (a)–(d).

The plot for botwiki-verified dataset shows high separa-
bility between bots and humans with the selected set of fea-
tures, whereas for cresci-rtbust and gilani-17, the points are 
overlapping indicating a difficult classification task.

These two datasets consider diverse types of accounts that 
are manually annotated based on different types of behavior. 
For example, gilani-17 dataset is formed by grouping Twit-
ter accounts into four groups based on the number of fol-
lowers and then manually annotated based on some account 
properties and rules (Gilani et al. 2017). For cresci-rtbust, 
data are collected from 10 M retweets, and their retweet pat-
tern is analyzed. Human accounts are labeled based on clus-
ters with normal retweet patterns, and those with suspicious 
retweet patterns are labeled as bot. (Mazza et al. 2019). Yang 
et al. (2020b) has presented a more detailed analysis of the 
performance of these datasets. This analysis is supported by 
the empirical results reported in Sect. 5.3.5, which indicates 
that less separability leads to a lesser prediction accuracy.

4  Proposed work

Figure 3 shows the overall architecture of the DeeProBot 
framework, which consists of several modules, including 
data preparation, feature engineering and training the DNN 
model. Data preparation consists of building the training 
dataset and test datasets. This is already discussed in the 
previous section. Feature engineering consists of preproc-
essing and preparing the features. A separate preprocessing 
technique is applied based on the type of the feature. The 
preprocessed text feature undergoes the GloVe embedding. 
Also, a feature selection method is applied on the numerical 

Table 1  List of datasets and its description

Dataset Description #Bots #Human

Training set
varol-icwsm (Varol et al. 2017) Manually labeled accounts sampled from different Botometer score deciles 674 1471
cresci_17 (Cresci et al. 2017a, 2017b) This dataset provides four classes of accounts namely genuine users, social spambots, 

traditional spambots and fake followers
10,894 3474

Celebrity (Yang et al. 2019) Data based on accounts selected among celebrities 0 5917
botometer-feedback (Yang et al. 2019) Data obtained by manually labeling accounts flagged by feedback from Botometer 

users
139 379

political-bots (Yang et al. 2019) Data based on politics-oriented bots shared by a Twitter user 61 0
Test set
Botwiki (Yang et al. 2020b) Data is based on the botwiki.org archive of self-identified bot accounts 697 0
Verified (Yang et al. 2020b) Data obtained by collecting verified accounts from the streaming API 0 1986
midterm-18 (Yang et al. 2020b) Data based on political tweets collected during 2018 US midterm elections 42,445 8092
cresci-rtbust (Mazza et al. 2019) A manually annotated dataset based on Italian retweets between June 17–30, 2018 353 339
gilani-17 (Gilani et al. 2017) Data based on accounts collected using twitter streaming API that were grouped and 

manually annotated
1089 1413
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Fig. 2  PCA plots for test datasets. This plot shows the separability between each class in the dataset with given set of features. The plots in a and 
b show easily separable datasets, while that in c and d show more complex datasets in terms of separability

Fig. 3  Architecture of the DeeProBot framework
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and binary features. This reduces the dimension of the fea-
ture vector by selecting the best subset of features. These 
processed data are then used to train a deep neural network 
model to classify bots and humans. Each of these modules 
is explained in the following subsections.

4.1  Feature engineering

The features are extracted from the user profile of Twitter 
account, which are given in Table 2. These features are 
the metadata from the user account. When considering 
the extraction of data from Twitter using Twitter API, the 
profile metadata of the user is contained in the user object 
of Twitter API, and the timeline information of the user 
that includes user’s recent tweets and mentions are con-
tained in the user tweet timeline object. Instead of con-
sidering different types of features like content-based and 
interaction-based features that are extracted from the user 
timeline, we only took the user profile features primarily 

to investigate how only profile information can contribute 
to efficient bot detection and thereby avoiding the extra 
overhead in extracting data from Twitter. Moreover, for all 
our datasets except varol-icwsm, the user profile features 
were available to download directly from the bot reposi-
tory. We used the Twitter API to extract the account fea-
tures of varol-icwsm database. Unlike other works that use 
user account metadata features, we consider the descrip-
tion text of user profile as a feature in the proposed DeeP-
roBot framework. We also derived several features from 
the metadata features. The derivations are inspired from 
the works by Inuwa-Dutse et al. (2018) and Yang et al. 
(2020b). The explanation of some of the derived features 
is given here, and the others can be easily understood from 
the description in the table.

The derived feature, screen_name_freq, is computed from 
the screen_name of the account based on its bigram char-
acter combination.

Table 2  List of features used and its description

Feature name Feature type Feature description

Raw features
Statuses_count Numerical The number of Tweets (including retweets) issued by the user
Followers_count Numerical The number of followers this account has
Friends_count Numerical The number of users this account is following
Favourites_count Numerical Number of favorites obtained from metadata
Listed_count Numerical The number of public lists that this user is a member of
Default_profile Binary When True, indicates that the user has not altered the theme or background of their user profile
Verified Binary When True, indicates that the user has a verified account
Description Text The user-defined text describing their account
Derived Features
User_age Numerical The age of the account in days obtained by taking the difference of data collection date and 

account created date
Tweet_freq Numerical Statuses_count/user_age
Followers_growth_rate Numerical Followers_count/user_age
Friends_growth_rate Numerical Friends_count/user_age
Favourites_growth_rate Numerical Favourites_count/user_age
Listed_growth_rate Numerical Listed_count/user_age
Followers_friends_ratio Numerical Followers_count/friends_count
Screen_name_length Numerical Length of screen name
Name_length Numerical Length of name
Description_length Numerical Length of description
Num_digits_in_screen_name Numerical Number of digits in screen name
Num_digits_in_name Numerical Number of digits in name
Screen_name_freq Numerical Mean bigram frequency of characters in screen name
Screen_name_entropy Numerical Entropy of screen_name
Name_entropy Numerical Entropy of name
Description_entropy Numerical Entropy of description string
Name_sim Numerical Similarity between screen name and name
Names_ratio Numerical Ratio of length of screen_name to length of name
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where bi is the ith bigram in the screen_name. C
(
bi
)
 is the 

total count of the specified bigram in the screen_name, and 
K is the total number of unique character bigrams in the 
screen_name.

screen_name_entropy, name_entropy and description_
entropy are obtained by calculating the entropy of the spe-
cific character sequence. Entropy of a sequence x is given by,

where |x| is the length of the sequence, and H(x) is the Shan-
non entropy of the sequence given by,

where p(i) is the probability of ith unique character in 
sequence x , and K is the total number of unique characters 
in sequence x.

The name_sim feature represents the similarity between 
the screen_name and name given in the account profile. This 
is a numerical value given by,

where M is the number of matches and N is the total number 
of elements in both sequences. Table 3 shows an example of 
the screen_name and name of both human and bot classes 
and their corresponding derived features from these values.

4.1.1  Numerical and binary feature preparation

This section discusses the preprocessing done for numerical 
and binary features, and the feature selection method applied 
on this set of features.

4.1.1.1 Numerical feature processing Numerical feature 
processing involves missing value imputation and stand-

screen_name_freq =

∑K

i=1
C
�
bi
�

K

E(x) =
H(x)

|x|

H(x) = −

K∑

i=1

p(i) ∗ log2 p(i)

name_sim =
2M

N

ardization. We encountered missing values only with the 
description_length feature as the description field is null 
for some accounts. In such cases, the description_length 
is given a value of zero. Further, the numerical features 
like followers_count are skewed. The followers_count fea-
ture has a minimum value of 0 and a maximum value of 
108,990,846. To deal with the skewness, standardization is 
applied to all the numerical features (Shukla et al. 2021). We 
obtain the standard score, z for an input x by,

where u and s are mean and standard deviation of the sample, 
respectively.

4.1.1.2 Binary feature processing Binary features have dis-
crete data that can take only two different values. The fea-
tures like verified and default_profile take the values True 
or False, and hence they are binary. These feature values are 
encoded so that the encoded value z for input x is given by,

The same principle is applied to the Label field where, 
the class ‘bot’ is encoded as 1 and ‘human’ is encoded as 0.

4.1.1.3 Feature selection Feature selection allows to select 
the best subset of features that improves the model’s perfor-
mance. This helps in reducing the complexity of the model 
by reducing the dimension of the input vector (Khalid et al. 
2014). Further, scalability is a common concern when using 
deep learning architectures. We assume that the training of 
the model would be done offline, and therefore, scalability 
will not be much issue if the model is only used for testing. 
In such a scenario, feature selection also helps in improv-
ing the scalability of model in real-time data classification. 
There are filter methods and wrapper methods for feature 
selection. Filter methods try to find the relevance of features 
based on statistical tests on the features. This method is inde-
pendent of its performance on a machine learning algorithm 
(Hall 1999; Dash and Liu 2003). Wrapper methods select 
the best subset of features based on its performance on a 
machine learning algorithm (Kohavi and John 1997). It has 
been seen that wrapper methods improve the performance 
of the model (Xue et al. 2015). We use backward elimina-
tion for feature selection which is a wrapper-based method.

Feature selection by backward elimination is a sequential 
feature selection method (Ferri et al. 1994). In the backward 
elimination method, a particular machine learning model 
is trained and cross-validated iteratively. It starts with con-
sidering all the features and at each iteration, the least sig-
nificant feature is eliminated so that the cross-validation 

z =
(x − u)

s

z =

{
1 if x = True,

0 if x = False

Table 3  Derived features from name and screen_name 

Human Bot

Screen_name ShaneRWatson33 Tennessee_hire
Name Shane Watson Tennessee jobs
Screen_name_freq 1 1
Screen_name_entropy 0.241 0.192
Name_entropy 0.257 0.197
Name_sim 0.692 0.571
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performance of the model is improved. This is repeated until 
it reaches an optimum number of features as required. We 
used a Random Forest model with threefold-cross-validation 
starting with all 24 features except the description feature to 
find the best ten features among those. We used the Random 
Forest model instead of our own model to reduce the risk 
of overfitting and to reduce the time complexity associated 
with the sequential feature selection approach. The final set 
of features after feature selection is given in Table 4.

4.1.2  Text feature preparation

In the DeeProBot framework, we consider the description 
given in the user profile as a feature to the DNN model. The 
description of the account gives valid information on the 
behavior of the account holder. Table 5 shows the example 
of description text for both classes. A more detailed analysis 
of the description field is given in Sect. 5.3.2. The descrip-
tion feature is a text field. Here, each word in the description 
is encoded as an integer before feeding to the embedding 
layer. This is also known as tokenizing the text. The feature 
engineering pipeline for the description field involves:

• Missing value imputation: The description field of the 
Twitter account is nullable, and because of that the 
data will have null values for this feature. The null val-
ues are replaced with a default string, ‘missing.’ The 
default string is meant to communicate that the data is 

missing. However, the description_length feature for 
null description values remains zero.

• Cleaning the text: Cleaning the text involves removing 
URLs, hashtags, mentions, and also emojis, emoticons 
and special characters in the description text (Srijith 
2020).

• Removing stop word: Stop words are those words in 
the vocabulary which are common in usage but carry 
less information. These words are removed so that the 
vocabulary size is reduced, and importance is given 
to words containing high-level information (Srijith S 
2020).

• Converting to lowercase: All the text is converted to low-
ercase and extra spaces are removed.

• Tokenize the text: Tokenizing the text involves encod-
ing each word in the description text by a unique integer 
based on the vocabulary index of each word. A vocabu-
lary index is created by assigning an integer value to each 
unique word in the vocabulary. This value is given based 
on the word’s frequency of occurrence. So that, the most 
frequent word gets an index value of 1 and so on. This 
can be performed using the Tokenizer API provided with 
Keras (Chollet 2016). So, after tokenizing, a sample text 
is converted to the following form:

• Pad/truncate to equate the length: The model expects 
equal length input to the embedding layer. So, each 
tokenized sequence is padded with 0 to make all the 
sequences to be same in length.

4.1.2.1 Glove: Global vectors for  word representation We 
use an embedding layer on top of the LSTM layers to con-
vert the words in the text to real numbered vectors. This 
helps in representing the text in such a way that similar 
words have a similar representation based on its semantic 
meaning. The weights of this layer can be randomly initial-
ized and updated during model training. If the training data 
is small, the model may not be able to learn the embeddings 
to capture its semantic relationships.

A more efficient performance can be obtained if we use 
pre-trained weight vectors that are built on a larger training 

samplebotdecription → [2530265]

Table 4  Final set of features after feature selection

Final set of features Feature type

Statuses_count Numerical
Followers_count Numerical
Friends_count Numerical
Favourites_count Numerical
Listed_count Numerical
Tweet_freq Numerical
Num_digits_in_name Numerical
Screen_name_freq Numerical
Name_entropy Numerical
Description_entropy Numerical
Description Text

Table 5  Example of description 
text for bot and human classes

Class Description text

Bot I am a member of a network of stock investing educators. Check out more stock tips & 
resources on investing-information.com

The only website dedicated to streaming The Inbetweeners for FREE!!!!!!!
Human The official Twitter of fashion designer Vivienne Tam

Lawyer, dog lover, passionate about music, politics, literature, cricket, and art in that order
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set. GLoVe pre-trained word embeddings are made available 
by the authors of Pennington et al. (2014), in their website.2 
GloVe is an unsupervised learning algorithm for obtaining 
vector representations for words. The GloVe is trained on 
the nonzero entries of a global word–word co-occurrence 
matrix, which tabulates how frequently words co-occur with 
one another in a corpus. GloVe is a log-bilinear model with 
a weighted least-squares objective. The training objective 
of GloVe is to learn word vectors such that their dot prod-
uct equals the logarithm of the word’s probability of co-
occurrence. They provide embeddings specific for Twitter 
data. The pre-trained GLoVe model for Twitter is trained 
on 2 billion tweets with 27 billion tokens. Four models with 
different word vector dimensions are available. We used the 
50-dimensional model after experimenting with each model, 
and the results are analyzed in Sect. 5.3.2. Hence, each word 
will be represented by a vector of length 50.

4.2  Model architecture

Our proposed framework detects bots using the profile fea-
tures including the description text. We have designed a 

deep neural network-based architecture as shown in Fig. 4. 
A DNN-based model has been proven to perform better in 
NLP-based tasks. At the same time, we need to learn from 
the non-text features like followers count and friends count, 
which are considered as the potential features for bot detec-
tion. Keeping that in mind, we designed a hybrid model 
with two input layers. One is for the description text and the 
other for the set of numerical features obtained after feature 
selection. The tokenized description text is represented by 
a vector of 30 integers. This dimension is selected based on 
the word count in the description text. In our dataset, the 
longest description consists of 49 words. But a word count 
above 40 is found only in two cases. So, we have chosen 30 
as the integer vector size because 95% of the description 
has 30 or fewer words. This ensures that we include the 
needed information in the description text without causing 
over-clipping of data. This sequence is then converted to 
GLoVe embedded word vectors using the embedding layer. 
After embedding, each word in the sequence is represented 
by a vector of 50 real numbers. This embedded descrip-
tion text is then processed by two long short-term memory 
(LSTM) layers with 32 units each. LSTM is a specific type 
of recurrent neural network (RNN) architecture, which is 
mainly used in processing time-series data (Hochreiter and 
Schmidhuber 1997). It has been successfully used in natural 

Fig. 4  Deep learning model architecture for bot detection

2 https:// nlp. stanf ord. edu/ proje cts/ glove

https://nlp.stanford.edu/projects/glove
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language processing (NLP) where text data is processed to 
solve different types of tasks like classification and predic-
tion (Wang et al. 2018; Yilmaz and Toklu 2020). The output 
from the LSTM units is concatenated with the ten-dimen-
sional numerical features obtained after feature selection. 
This concatenated input vector is fed through two dense 
layers having 128 and 32 neurons respectively, with ‘relu’ 
activation. A dense layer is a fully connected layer that gen-
erally performs a linear operation on its inputs and is passed 
through a nonlinear activation function. Then, it is fed to the 
final dense layer with one neuron with sigmoid activation 
function. This layer classifies the input as a human or bot. 
Our architecture combines the strength of LSTM units to 
learn from the description text and that of the dense layers 
to learn from other features.

4.2.1  Strategies for improving generalizability

In many cases, the bot detection frameworks that perform 
exceptionally on the validation data fail to perform so in an 
unseen dataset or with a separate bot distribution. This is 
because of the lack of generalizability of the model. Deep 
learning models are prone to overfitting which reduces the 
generalizability of the model. In the proposed DeeProBot 
framework, the model is designed to reduce overfitting so 
that it can perform well on the hold-out datasets. We have 
incorporated dropout layers and regularization techniques to 
address the problem of overfitting and, thereby achieving a 
high degree of generalization.

• Dropout: Adding dropout is a simple and effective solu-
tion for reducing overfitting and improving generaliza-
tion. Dropout means dropping out units in a neural net-
work. Randomly chosen units based on a dropout rate are 
temporarily removed from the network during training 
(Srivastava et al. 2014). Adding a dropout layer has the 
effect of combining different neural network architec-
tures efficiently like that of an ensemble model. In this 
design, we have introduced dropout layers with a 10 per-
cent dropout rate before each of the first two dense layers. 
The parameter value is set based on the performance of 
the model.

• Regularization: One of the disadvantages of LSTM is 
that they are prone to overfitting. This can be controlled 
by introducing regularization to the LSTM layers. Regu-
larization adds an extra penalty term to the error func-
tion and this term controls the coefficients from taking 
extreme values. Hence, regularization is a technique that 
discourages learning of a complex model and in turn 
avoids the risk of overfitting. We used activity regulariza-
tion in the LSTM layer so that the weight and bias values 
are adjusted to keep the output small. There are several 
types of regularizers that we can use, and the commonly 

used ones are L1 regularizer and L2 regularizer (Hoerl 
and Kennard 1970; Tibshirani 1996). L1 regularizer adds 
absolute value of the magnitude of layer output as a pen-
alty term to the loss function, whereas L2 regularizer 
adds squared magnitude of layer output as penalty term 
to the loss function. We use the combination of both L1 
and L2 regularizers in the LSTM layer as the activity 
regularizer (Zou and Hastie 2005). The regularized loss 
will be defined as,

where |x| is the absolute value of magnitude of layer out-
put and x2 is the squared magnitude of layer output. l1 and 
l2 are the regularization factors.

• Early Stopping: As the training of the network proceeds, 
there is a point of time when the network starts deviat-
ing from the goal by the noise in the training dataset. 
Thereby, it reduces the generalizability of the network 
and starts overfitting. More precisely, from this point, as 
the network is learning increasingly from training data, 
the training loss continues to decrease, but the valida-
tion loss starts increasing. This results in poor model 
performance across unseen datasets. As a solution to this, 
we can tune the hyperparameter, number_of_epochs, to 
select the parameter value that gives the best model. A 
more efficient and simpler alternative is to introduce an 
early stopping strategy (Prechelt 1998; Yao et al. 2007). 
In this method, at each epoch of training, we validate the 
performance of the model on a hold-out validation set 
and track the validation metric. The training is stopped 
as soon as the validation metric starts deteriorating. A 
more stable stopping criterion is to monitor the perfor-
mance for some more additional epochs to confirm that 
the performance is not getting better. We have used the 
early stopping strategy to decide when to stop the model 
training. At each epoch, the validation loss is monitored. 
The validation loss is expected to decrease on each 
epoch. Once the validation loss stops improving after 
a certain number of epochs, it can be a sign of overfit-
ting. The validation loss is monitored over some more 
epochs characterized by the patience parameter to check 
if it improves further. If the validation loss still does not 
improve, the training process is halted.

4.3  DeeProBot algoithms

In this section, we summarize the whole training phase 
of the DeeProBot framework with the help of algorithms. 
The testing and analysis will be discussed in the following 
sections.

Algorithm 1 describes the text feature processing sub-
module. The function in each step is also described in detail 

Lossreg = Loss + l1
∑

|x| + l2
∑

x2,
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in Sect. 4.1.2. Here, the input is the text data from the train-
ing set. In step 1, we define a for loop to handle each user’s 
text description separately. If the text description is empty, 
it is replaced by a default string D in step 3, as explained in 
Sect. 4.1.2. In step 5, the text sequence is filtered to remove 
all hashtags, mentions, symbols, emoticons, stop words and 
extra white spaces. The filtered text is then converted to low-
ercase in step 6. Now, we have the updated text data contain-
ing filtered text sequences. Step 8 creates an object of the 
Keras tokenizer class, which is fit on the filtered text data in 
step 9. Step 10 tokenizes the text using the tokenizer object 
where each word in the text is integer encoded. Finally in 
step 11, the tokenized text is padded to a finite length, L so 
that all sequences have equal length. This returns the pro-
cessed text as output.

We describe the steps in creating the deep neural network 
model in Algorithm 2. Here the inputs, D1 and D2 are the 
dimensions of text feature and non-text feature, respectively. 
Steps 1 and 2 define the input layers for text and non-text 
features based on their respective dimensions. In step 3, 
embedding layer is defined to embed the text feature using 
GloVe. Step 4 presents the LSTM layers to process GloVe 
embedded data. The concatenation layer in step 5 is to con-
catenate the non-text input, Ix with the LSTM output, Ll. 
Step 6 defines the dropout and dense layers to process the 

concatenated output. The output layer in step 7 is a dense 
layer with sigmoid activation function. Step 8 creates the 
model, and this is returned as the output. The detailed 
architecture of the model is given in Fig. 4 and explained 
in Sect. 4.2.

Algorithm 3 describes the whole DeeProBot framework. 
The input is the training data that consists of numerical fea-
tures, binary features and text features along with the labels. 
In step 1, the numerical data is standardized, and in step 2, 
the binary data is encoded as described in Sect. 4.1.1. In 
step 3, we get the processed text data following the steps in 
Algorithm 1. In step 4, we use the processed numerical and 
binary data to get the K selected subset of features based on 
feature selection explained in Sect. 4.1.1. In steps 5 and 6, 
we select the subset of numerical and binary data based on 
the selected set of features. Steps 7 and 8 update the training 
set based on the selected features and the processed text data. 
Step 9 creates the model as described in Algorithm 2. Steps 
10 and 11 compile the model and train the model and return 
the trained model as output.

5  Experiments

This section describes the experimental setup, implementa-
tion details and result analysis of the work done. The DeeP-
roBot framework focuses on detecting bots in Twitter.
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5.1  Hardware and software

We have implemented the whole framework on Intel Core 
i7 CPU with 8 GB RAM under Windows 10 with 64-bit 
Operating System. We used the Anaconda platform for 
developing the work. Anaconda is an open-source platform 
for developing data science and machine learning projects 
using Python or R. It also supports different Python libraries 
like NumPy, Pandas, Scikit-Learn, Keras etc. and various 
Integrated Development Environments (IDEs) like ‘spy-
der’ ‘jupyter notebook’ etc. for code development. We have 
implemented the application using Python 3.6. The deep 
learning module is implemented using Keras Library with 
TensorFlow as backend.

5.2  Parameter setting

The DeeProBot framework is a bot detection framework 
based on DNN where the network learns from the profile 
metadata information of Twitter account. Our training set 
is obtained by merging five different datasets. The merged 
training dataset has a balanced set of bots and humans 
as shown in Fig. 5. The DNN model is trained using the 
description feature and the ten numerical features obtained 
by backward elimination feature selection, as explained in 
Sect. 4.1.1. Other hyperparameters used in the model are 
given in Table 6.

5.3  Evaluation

Throughout this section, we report the results obtained by 
different evaluation strategies, such as how feature selec-
tion has helped in the better generalization of the model, 
the effect of using description text as a feature to detect bots 
etc. We also observe the impact of using the GLoVe word 
embedding, to represent the description feature. Finally, we 
compare our results with the baseline techniques in terms of 
feature richness, hold-out test set performance, and cross-
domain performance.

Fig. 5  Bar plot showing the number of samples in each class of train-
ing dataset. This shows a balanced distribution of bots and human in 
training set

Table 6  Hyperparameters for neural network model

Hyperparameters Value

Batch size 40
Learning rate 0.001
Optimizer Adam
Loss Binary cross entropy
L1_L2 Regularizer L1 = 0.01, L2 = 0.001
Dropout rate 0.1
Early stopping metric Validation loss
Early stopping patience 5
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We use the Area Under Curve (AUC) of Receiver Opera-
tor Characteristic (ROC) as a metric for evaluating the per-
formance of the model. ROC is a probability curve that plots 
the True Positive Rate (TPR) against False Positive Rate 
(FPR) at various threshold values.

where TP , FP and FN stand for True Positive, False Positive 
and False Negative counts, respectively. We have done anal-
ysis on a hold-out test set, and we have done cross-domain 
performance analysis. Twenty percent of data from the train-
ing set is kept aside as a hold-out test set, and performance 
analysis is done on that data. For cross-domain analysis, we 
test the performance of the model on four test datasets that 
are not used for training or validation.

5.3.1  Effect of feature selection

The current results are obtained using a reduced set of 11 
features from profile metadata that includes ten numerical 
features and the description text. Table 7 shows a compari-
son of the performance of the model with and without fea-
ture selection. Even though the AUC on the hold-out test set 
has been reduced after the feature selection, the performance 
on unseen datasets has been mostly improved. The perfor-
mance on the midterm-18 dataset has been improved by 10% 
and that of gilani-17 has been improved by 5%, while the 

TPR =
TP

TP + FN

FPR =
FP

FP + TN

hold-out test score and the performance of botwiki-verified 
have been slightly decreased (only by 1- 2%). The raw set of 
features were contributing to the slightly higher performance 
of the model on botwiki-verified dataset. However, it has 
been shown that, by backward elimination feature selection, 
we can reduce the dimensionality of the feature set and sig-
nificantly improve the performance of the model on majority 
of the datasets.

5.3.2  Effect of adding description as a feature

As per our knowledge, the previous works for bot detection 
simply excluded the description text while considering some 
of its statistical measures like length and entropy as features. 
The description field usually has the content that depicts the 
behavior of the account owner. Using the description text 
for bot detection is not much analyzed in the literature. We 
have done a study on the description field to check how it 
can contribute to the bot detection framework.

In Twitter, the user provides his/her bio in the description 
field during account creation. This field can be left blank too. 
Figure 6 shows the proportion of empty description text in 
both human and bot classes. Only 10 percentage of human 
class has an empty description field, whereas the field is 
empty for approximately 50 percentage of bots. We also 
analyzed the most frequent words appearing in the descrip-
tion text for both human and bot classes. To do the analysis, 
we removed the stop words from the description text that 
appears frequently but provide less information. Figure 7 
shows the top 10 common words along with their frequency 
counts found in both human and bot classes. It can be seen 
that the top 10 common words and their frequencies are 

Table 7  Result analysis based 
on feature selection

Hold-out set 
(AUC)

Botwiki-verified 
(AUC)

Midterm-18 
(AUC)

Cresci-rtbust 
(AUC)

Gilani-17 
(AUC)

Without feature selection 0.98 0.99 0.86 0.69 0.62
With feature selection 0.97 0.97 0.96 0.72 0.67

Fig. 6  Proportion of empty 
description field in both human 
and bot classes. a Shows the 
description field status of 
human class where only 9.7% of 
users have an empty description 
field. b Shows the status of bot 
class where almost half of the 
users have an empty descrip-
tion text
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significantly different for both classes. This clearly states 
that the inherent behavior in description text can definitely 
contribute to distinguish between human and bot classes.

We utilized the potential of LSTM cells to process the 
description text. This method has been adopted in process-
ing tweet texts in other bot detection works. We also analyze 
how adding the description as a feature and its embedding 
strategy affects the results of DeeProBot. To get the model 
performance without description feature, we only used the 
dense layers in the model to process the numerical fea-
tures. Table 8 shows it clearly that the performance of the 
model on unseen datasets, consistently improved after add-
ing the description feature. Even though it does not show 
any improvement on the hold-out test set, it can improve 
the generalization capability of the model. After adding the 
description text as a feature, we analyzed the performance of 
the model without GLoVe embedding. In the model without 
GLoVe embedding, the embedding layer is initialized with 
random weight values. It will learn an embedding for all 
the integer encoded words in the training set when model 
training is done. The results presented in Table 8 show the 
effect of using GLoVe pre-trained word embedding weights 
instead of training the embedding weights from randomly 
initialized values. We used the GLoVe model for Twitter 
data that was trained on 27 billion unique tokens extracted 

from a set of 2 billion tweets. It can be seen from the results 
that training our own embedding layer has degraded the per-
formance as the network failed to learn the embedding from 
our limited set of vocabulary. Also, we tested with all the 
four GLoVe models provided and the best performance was 
obtained by using the 50-dimensional model.

5.3.3  Comparison with other baselines

Here, we compare the performance of our model with the 
work by Yang et al. (2020b) and other machine learning 
techniques. In the work by Yang et al. (2020b), they pro-
posed a data selection method to find the best subset of 
data for training, to get the best generalizable model. The 
results are shown in Table 9. They have used Random For-
est for the classification task and trained the model with 
different combinations of training datasets. They found 
the best combination of training dataset based on cross-
validation and cross-domain performance. We adopted 
their best-performing training dataset combination for our 
work too. We reproduced their results by using the same 
dataset and the same set of features with Random For-
est classifier. The AUC values obtained are different from 
those mentioned in the base paper. This can be due to the 

Fig. 7  a Shows the top 10 common words in Bot Class. b Shows the top 10 common words in Human Class. The words and their frequencies are 
entirely different for both classes

Table 8  Result analysis of 
adding description text as a 
feature

Hold-out 
set (AUC)

Botwiki-
verified 
(AUC)

Mid-
term-18 
(AUC)

Cresci-
rtbust 
(AUC)

Gilani-17 
(AUC)

Without description 0.97 0.95 0.94 0.66 0.63
Without GLoVe embedding 0.93 0.78 0.84 0.68 0.60
With 25D GLoVe embedding 0.96 0.95 0.93 0.69 0.60
With 50D GLoVe embedding (DeeProBot) 0.97 0.97 0.96 0.72 0.67
With 100D GLoVe embedding 0.97 0.97 0.94 0.71 0.64
With 200D GLoVe embedding 0.96 0.96 0.94 0.66 0.67
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changes in the updated database files from the repository. 
We also extracted the data of varol-icwsm through Twitter 
API. This data may also have undergone changes from that 
used in their work. Based on the results we got, we can say 
that the feature selection technique along with data selec-
tion can improve the generalization ability of the model. 
Even though the performance of the DeeProBot model 
is slightly lower (only 1% reduction) on the hold-out set 
and lower by 2% in the performance of gilani-17 dataset, 
the proposed model achieves significantly higher AUC in 
cresci-rtbust dataset (by 24% improvement) and 3% higher 
AUC in botwiki-verified dataset. We also tested our data 
with other machine learning techniques like Adaboost, 
Gated Recurring Unit (GRU) and Convolutional Neural 
Networks (CNN). Even though Adaboost is showing a bet-
ter performance with the hold-out test set, its performance 
drastically decreases for cross-domain test datasets. GRU 
and CNN networks are also showing poor performance 
compared to the proposed framework. Based on these 
comparisons, it is evident that the DeeProBot framework 
shows an overall better cross-domain performance.

5.3.4  Effect of overfitting reduction mechanisms

Figure 8 shows the performance of the proposed model 
based on the training history of the model. Here, we plot the 
training loss versus validation loss for 25 epochs. The plot on 
the left shows the performance of the model without drop-
out and activity regularizer. It can be seen that the model 
fails to fit properly without these strategies. Even though the 
training loss decreases per epoch, the validation loss tends 
to increase. This means that the model is overfitting with 
the training data and hence reduces the generalizability of 
the model. The plot in the right shows the performance of 
the model with dropout and activity regularizer. Here, we 
can see that the overfitting problem has been controlled by 
introducing dropout and regularization. The model sustains a 
good fit performance until a certain number of epochs. Even 
though the model tends to overfit after almost 15 epochs, 
the training process will be accordingly halted by the early 
stopping strategy. This shows that introducing regularizers, 
dropout and early stopping helped us in getting the best gen-
eralizable model.

Table 9  Comparison of DeeProBot framework with other methods based on AUC 

Method Feature set Hold-out set 
(AUC)

Botwiki-verified 
(AUC)

Midterm-18 
(AUC)

Cresci-rtbust 
(AUC)

Gilani-17 
(AUC)

Yang KC et al.(Yang 
et al. 2020b)

20 features based on user profile 0.98 0.94 0.96 0.48 0.69

AdaBoost 11 features based on user profile 0.99 0.82 0.95 0.42 0.59
GRU 11 features based on user profile 0.96 0.90 0.84 0.61 0.61
CNN 11 features based on user profile 0.95 0.82 0.83 0.63 0.66
DeeProBot 11 features based on user profile 0.97 0.97 0.96 0.72 0.67

Fig. 8  Training loss versus validation loss based on training history 
for 25 epochs. a Learning curve for the model without dropout and 
activity regularizer. The model fails to fit without these regularization 

strategies b Learning curve for model with dropout and activity regu-
larizer shows the model fits its best through initial epochs
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5.3.5  ROC curve analysis on test data

Figure 9 shows the ROC-AUC curves for the test datasets. 
Considering the overall performance across the four different 
test datasets, the model has performed well with botwiki-
verified and midterm-18 datasets. The performance is low 
for cresci-rtbust and gilani-17 datasets. In the dataset analy-
sis explained in Sect. 3.1, these two datasets were found to 
be the most complicated datasets in terms of separability. 
cresci-rtbust dataset is annotated based on group activity 
and retweet behavior. Our work tries to find individual bot 
accounts and these types of bots may not appear suspicious 
when considered individually. This led to the lower AUC 
values for cresci-rtbust. gilani-17 dataset includes sophis-
ticated bots from different categories annotated by human. 
One of the reasons for a lower AUC for gilani-17 is the 
absence of such types of bots in the training dataset. Sec-
ondly, we assume that the selected features for our work 
may not be sufficient to distinguish bot accounts from this 
dataset and may require some other high-level features to 
learn the peculiar bot behavior. Third, gilani-17 dataset is 
annotated manually. Annotating such sophisticated data is a 
difficult task for human and are prone to error (Nasim et al. 
2018). A study by Madahali and Hall (2020) shows that both 

bots and human in gilani-17 have similar and unexpected 
behavior. Additionally, it is to be noted that, even the works 
that consider content-based and network-based features also 
perform comparatively lower on these two datasets (Sayya-
diharikandeh et al. 2020). The performance of a supervised 
machine learning model largely depends on the data it is 
trained on. However, we can say that, by using the deep 
learning approach, we are able to improve the performance 

Fig. 9  ROC curves for the performance of DeeProBot on test datasets. a ROC of botwiki-verified and b ROC of midterm-18 show superior per-
formance while c ROC of cresci-rtbust and d ROC of gilani-17 which are separably complicated datasets show a lower performance

Fig. 10  F1-scores for different threshold values
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and generalizability of the model even by using a reduced 
set of features.

5.3.6  Performance analysis of the model

The model achieves an accuracy of 0.92 and an F1-score 
of 0.83 on the hold-out dataset. A fine-tuned selection of 
threshold maximizes the F1-score. F1-scores for differ-
ent threshold values are given in Fig. 10. The threshold of 
0.34 gives an F1-score of 0.93. The results open a scope for 
improvement in its accuracy value.

A further analysis on the classified data is shown in 
Fig. 11. Based on the predictions, we divided the whole 
test data into four groups. (a) Group of bot accounts that 
are predicted correctly as bots (TrueBotPredictedBot), (b) 
Group of bots that are predicted as human (TrueBotPredict-
edHuman), (c) Group of human accounts predicted correctly 
as human (TrueHumanPredictedHuman) and (d) Group of 
human accounts predicted as bot (TrueHumanPredictedBot). 
Here, groups ‘b’ and ‘d’ represent the misclassified data. It 
can be seen that a larger statuses_count or favourites_count 
favor the prediction of human. As a result, bots with higher 
counts for these features are misclassified. Looking back to 
our training data, it lacks a good representation of bots with 
higher counts for these features. In training data, the average 
statuses_count for human is 18145, whereas that of bot is 
2784. A better representation of all types of bots in the train-
ing dataset can further improve the accuracy of the model. 
We also did an example-based analysis on the description 
feature of the classified data. Examples of description feature 
from correctly classified data include:

Human: ‘A senior accounting taxation professional 
inspired chief accountant.

Bot: ‘Internet marketing help succeed making money 
online.’

Considering the above examples, the model could dis-
tinguish an individual-centered description from that of a 
promotional description. Analyzing a misclassified sam-
ple, where a bot is classified as human, has the following 
description:

‘I’m poor bot I need sympathy.’

Here, even though description text is individual-centered, 
the semantics of the description clearly states that it is a 
bot. However, the model failed to capture it and wrongly 
classified the sample as human. This leaves the scope for a 
better embedding of description text for a better classifica-
tion. Another potential limitation of the model is regard-
ing its usability in multilingual settings. However currently 
our work focuses on analyzing the significance of including 
description as a feature to detect bots. Using a multilingual 
framework for text feature processing can take the work to 
the next level.

6  Conclusion

This paper has proposed a novel framework, DeeProBot, 
which uses deep learning technique to detect bots from the 
user profile metadata-based features from Twitter. Using 
only the profile-based features including the description 
text to detect bots is a novel idea put forward in this work. 
The proposed framework consists of preparing the training 
and test datasets, feature engineering and the deep neural 
network design for detecting bots. Using the description text 
improved the cross-domain performance of the model across 
the test datasets. We have used the backward elimination 

Fig. 11  Average feature values across groups of correctly classified and misclassified test data
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feature selection in selecting the best subset of features that 
make the model to perform better with a lower-dimensional 
feature set. Also, embedding the text feature using GLoVe 
helped in better learning from the feature. DeeProBot uses 
a hybrid DNN model to detect bots, where the description 
feature was learned using the LSTM units and the rest of 
the features were learned using the dense layers. The gen-
eralizability of the model is preserved by adding activity 
regularizer to LSTM layers and by adding dropout layers in 
between the dense layers. Further, early stopping helps in 
stopping the training process when the model starts overfit-
ting. We evaluated the performance of the model against 
a 20% hold-out subset of the same dataset used for train-
ing and we evaluated the cross-domain performance of the 
model by testing the model on four separate test datasets. 
DeeProBot could detect bots with an AUC of 0.97 on the 
hold-out test set. Also, the model obtained a better generali-
zation than that of baseline with a reduced set of features.

One of our plans for future work involves testing the 
detection of bots with a real-time stream of Twitter data 
which also gives us an analysis on the scalability of DeeP-
roBot. Also, bots with new behavioral patterns are evolving 
day by day, making it necessary to come up with a model 
that can capture these changing patterns. As a future work, 
we plan to design the model so as to learn these behavioral 
patterns. Furthermore, it remains to be seen whether with an 
extra overload of extracting other types of features like con-
tent-based and interaction-based features, the performance 
of the model can be improved.
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